Stochastic Modelling

&

Computational Sciences
    

Vol. 3 No. 1 (June, 2023)




Special IssueApplication of the Latest Achievements of Mathematics in Modeling and in Applied Problems

Guest Editors: Davron Aslonqulovich Juraev, Murat Yakar, Vagif Rza Ibrahimov & Yusif Soltan Gasimov


1. ON THE SOLUTION OF THE ILL-POSED CAUCHY PROBLEM FOR ELLIPTIC SYSTEMS OF THE FIRST ORDER

Author: DAVRON ASLONQULOVICH JURAEV et.al.                                DOWNLOAD                                                                                                    
DOI NO: 10.61485/SMCS.27523829/v3n1P1


How to Cite:

Juraev, D. A., 2023. ON THE SOLUTION OF THE ILL-POSED CAUCHY PROBLEM FOR ELLIPTIC SYSTEMS OF THE FIRST ORDERStochastic Modelling & Computational Sciences, 3(1).




2. EXACT DECOUPLING OF A COUPLED SYSTEM OF TWO STATIONARY SCHROEDINGER EQUATIONS

Author: J.D. BULNES et. al.                                                DOWNLOAD                                                                                        
 
DOI NO: 10.61485/SMCS.27523829/v3n1P2

How to Cite:

Bulness, J. D. et. al., 2023. EXACT DECOUPLING OF A COUPLED SYSTEM OF TWO STATIONARY SCHROEDINGER EQUATIONSStochastic Modelling & Computational Sciences, 3(1).




3. KLEIN-GORDON’S EQUATION FOR MAGNONS WITHOUT NON-IDEAL EFFECT ON SPATIAL SEPARATION OF SPIN
WAVES

Author: J.D. BULNES et.al.                                                      DOWNLOAD                                                                                           

DOI NO: 10.61485/SMCS.27523829/v3n1P3


How to Cite:

Bulness, J. D. et. al., 2023. KLEIN-GORDON’S EQUATION FOR MAGNONS WITHOUT NON-IDEAL EFFECT ON SPATIAL SEPARATION OF SPIN WAVESStochastic Modelling & Computational Sciences, 3(1).





4. MATHEMATICAL MODEL OF THE MELTING OF MICRO-ASPERITY ARISING IN CLOSED ELECTRICAL CONTACTS

Author: TARGYN NAURYZ et.al.                                                   DOWNLOAD                                                                                                  

DOI NO: 10.61485/SMCS.27523829/v3n1P4


How to Cite:

Nauryz, T.  et. al., 2023. MATHEMATICAL MODEL OF THE MELTING OF MICRO-ASPERITY ARISING IN CLOSED ELECTRICAL CONTACTSStochastic Modelling & Computational Sciences, 3(1).





5. THE USE OF NUMERICAL MONTE CARLO INTEGRATION TO VERIFY THE PHYSICAL FEASIBILITY OF A
TRAJECTORY BASED ON SURVEILLANCE RADAR DATA

Author: A.S. SOLONAR et.al.                                                              DOWNLOAD                                                                           

DOI NO: 10.61485/SMCS.27523829/v3n1P5


How to Cite:

Solonar, A.S. et. al., 2023. THE USE OF NUMERICAL MONTE CARLO INTEGRATION TO VERIFY THE PHYSICAL FEASIBILITY OF A TRAJECTORY BASED ON SURVEILLANCE RADAR DATAStochastic Modelling & Computational Sciences, 3(1).




6. ON MULTIPLE EIGENFUNCTION EXPANSION OF AN OPERATOR PENCIL WITH COMPLEX ALMOST PERIODIC
POTENTIALS

Author: SH. M. ANNAGHIILI et.al.                                           DOWNLOAD    


DOI NO: 10.61485/SMCS.27523829/v3n1P6 

                                                                                                                                       
How to Cite:

Annaghili,Sh. M. et. al., 2023. ON MULTIPLE EIGENFUNCTION EXPANSION OF AN OPERATOR PENCIL WITH COMPLEX ALMOST PERIODIC POTENTIALSStochastic Modelling & Computational Sciences, 3(1).




7. ON FREDHOLM PROPERTY OF A BOUNDARY VALUE PROBLEM

Author: GULSUM A. AGHAYEVA                               DOWNLOAD    


DOI NO: 10.61485/SMCS.27523829/v3n1P7
                                                                                                  
How to Cite:


Aghayeva,G.A., 2023. ON FREDHOLM PROPERTY OF A BOUNDARY VALUE PROBLEM. Stochastic Modeling & Computational Sciences, 3(1).




8.  ABOUT THE NEW WAY FOR SOLVING SOME PHYSICAL PROBLEMS DESCRIBED BY ODE OF THE SECOND ORDER
WITH THE SPECIAL STRUCTURE                                                                                                                

Author: V. R. IBRAHIMOV et.al.                                                 DOWNLOAD         


DOI NO: 
10.61485/SMCS.27523829/v3n1P8


How to Cite:

Ibrahimov, V. R. et. al., 2023. ABOUT THE NEW WAY FOR SOLVING SOME PHYSICAL PROBLEMS DESCRIBED BY ODE OF THE SECOND ORDER WITH THE SPECIAL STRUCTUREStochastic Modelling & Computational Sciences, 3(1).




9. BOUNDARY CONTROL PROBLEM ASSOCIATED WITH A PSEUDO-PARABOLIC EQUATION    

Author: FARRUKH N. DEKHKONOV                                                       DOWNLOAD  


DOI NO: 
10.61485/SMCS.27523829/v3n1P9


How to Cite:

Dekhkonov, F., 2023. BOUNDARY CONTROL PROBLEM ASSOCIATED WITH A PSEUDO-PARABOLIC EQUATION. 
Stochastic Modelling & Computational Sciences, 3(1).




10. SOME NOTES ON SOFT DIMONOIDS

Author: GULAY OGUZ                                                          DOWNLOAD         


DOI NO: 10.61485/SMCS.27523829/v3n1P10

How to Cite:


Oguz, G., 2023. SOME NOTES ON SOFT DIMONOIDS. Stochastic Modelling & Computational Sciences, 3(1).