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Abstract. In this paper we analyze a Klein-Gordon equation, which arises

in the context of the physics of antiferromagnetic magnons, in order to de-
termine whether a beam of linearly polarized spin wave could be separated

into two secondary beams, in each of which one can find both a left and a

right circularly polarized mode, which can be called (similar to what we know
for the Stern-Gerlach effect) a non-ideal version of such a separation. The

analysis carried out seeks to identify a new element to evaluate the Wang-Bao-

Cao-Yan proposal of a “Magnonic Stern-Gerlach effect”. In a complementary
way, it is shown that the method adopted in our analysis is adequate to reveal

incomplete spatial separation in the non-ideal Stern-Gerlach effect.

1. Introduction

In [1], in the context of the physics of antiferromagnetic magnons, Wang-Bao-
Cao-Yan proposed a physical analogy based on the behavior of a linearly polarized
beam of spin waves, which upon entering a region where an interaction of the
type Dzyaloshinskii-Moriya1, two secondary beams are produced, in each of which
the spin waves present separately right and left circular polarization, which is
considered an (ideal) Stern-Gerlach effect with magnonic origin. This proposal
may receive additional support or will have to be reassessed as new information
emerges. In this article we seek to identify, or rule out, the existence of a solution of
the Klein-Gordon magnonic equation [1] compatible with a “non-ideal” analogue
of the Stern-Gerlach effect.

As we know, the Stern-Gerlach effect [2], [3] is presented in Quantum Mechan-
ics texts through its simplest version [4],[5],[6],[7],[8],[9], that is, when in each
secondary beam we have only electrons in the same spin state: up in one beam
and down in the other (in the case of an incident beam formed by Silver atoms).
This situation corresponds to what can be called the ”ideal Stern-Gerlach ef-
fect“, or, simply, the ”Stern-Gerlach effect“. According to [10], however, in a real
Stern-Gerlach experiment, both spin up electrons and spin up electrons can be
found in each secondary beam, a manifestation that is known as the ”non-ideal

2000 Mathematics Subject Classification. Primary 81Q05; Secondary 35Q40.
Key words and phrases. Magnonic Klein-Gordon equation; Partial differential equations;

Non-ideal Stern-Gerlach effect.
1Which effect could be interpreted, within the analogy established in [1], as ”analogous“ to

that produced by the interaction between the magnetic spin moment of an electron (of a silver

atom) with the magnetic field generated by a Stern-Gerlach device.
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Stern-Gerlach effect“ [11]. In papers [14]-[18]. The questions of exact and approx-
imate solutions of the ill-posed Cauchy problem for various factorizations of the
Helmholtz equations are studied. Such problems arise in mathematical physics and
in various fields of natural science (for example, in electro-geological exploration,
in cardiology, in electrodynamics, etc.).

1.1. Klein-Gordon magnonic equation for antiferromagnets. The relevant
equation for our analysis is of the Klein-Gordon type [1],

γ2λ

[(
A

2
∇2 − k

)
Ψ − iD σ3 ∂2Ψ

]
= ∂2

tΨ (1.1)

where we have that,

Ψ =

(
n+

n−

)
, σ3 =

(
1 0
0 −1

)
(1.2)

and the numerical parameters appearing in (1.1) are defined in [1]. Making,

ζ ≡ (γ2λA)/2, ε ≡ γ2λk

we rewrite equation (1.1) as,

ζ
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yy 0
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t

(
n+
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)
(1.3)

where, for simplicity, we use the notation: ∂2
xx ≡ ∂2/∂x2, etc.

2. Mathematical development

The matrix equation (1.3) can be written equivalently as two decoupled differ-
ential equations,

ζ

(
∂2
xx + ∂2

yy

)
n+ − εn+ − iD ∂yn+ = ∂2

t n+ (2.1)

ζ
(
∂2
xx + ∂2

yy

)
n− − εn− + iD ∂yn− = ∂2

t n− (2.2)

or, in a compact form,

Ωn+ − Bn+ = Gn+, (2.3)

Ωn− + Bn− = Gn−, (2.4)

where the symbols introduced correspond to differential operators and other simple
expressions, as follows,

Ω ≡ ζ
(
∂2
xx + ∂2

yy

)
− ε, B ≡ iD∂y, G ≡ ∂2

t , (2.5)

In the next subsection, we present our calculation strategy.
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2.1. Strategy to identify/discard an effect with incomplete spatial sepa-
ration. In this section we present a procedure [12] that would allow us to identify
(or rule out) an effect of incomplete2 spatial separation of the polarization states
of a spin wave incident on the secondary beams. The ”non-ideal“ situation, if
it exists, would mathematically manifest itself as follows: each component of the
spinor in the Klein-Gordon equation would be formed by two terms (functions),
which would correspond to the “movement” in opposite directions3; that is, we
would have left (and right) circular polarization states in each secondary beam,
as occurs (with due adaptations) in the ”non-ideal Stern-Gerlach effect“, see Ap-
pendix. On the other hand, in the ideal situation, each component of the spinor
would be formed by a single term.

In terms of specific symbols, in order for a solution of equations (2.3) and
(2.4) to correspond (if any) to a situation where both beams contain left and
right circular polarizations, we must verify that it is possible to write each spinor
component (φ1, φ2)

t as a sum of two independent contributions, χ1 and χ2, with
one “moving” in the +Y direction and the other in the opposite direction, −Y ,
of the reference considered in [1]. So, we must define, somehow conveniently, the
functions χ1 and χ2 in terms of φ1 and φ2, therefore, inverting the mathematical
relationships, we would obtain φ1 and φ2 in terms of χ1 and χ2.

2.1.1. Implementation of the strategy. As is considered in various calculation
methods, we introduce two external elements (free parameters) into our prob-
lem and then assign them appropriate values. We start by multiplying (2.3) by a
number “λ”, which must be defined correctly, and we add the resulting expression
with (2.4), so we get,

Ω
(
n− + λn+

)
+B

(
n− − λn+

)
︸ ︷︷ ︸ = G

(
n− + λn+

)
. (2.6)

To continue with the second parameter, “m”, not null, which, like λ, would
have to take on appropriate values, we rewrite the term highlighted in (2.6) as
follows,

n− − λn+ = m
(
n− + λn+

)
, (2.7)

Then we define,

χ ≡ n− + λn+.

So, from (2.6) and (2.7) we find the equation for the function χ,

Ωχ+mBχ = Gχ (2.8)

and let’s suppose that there are two non-zero numbers, λ1 and λ2, which allow us
to generate two functions χ1 and χ2 as follows,

χ1 = n− + λ1n+ (2.9)

χ2 = n− + λ2n+ (2.10)

2What is called the ”non-ideal effect“, compared to what is the ”ideal effect“, of total or
complete separation.

3Such ”movement“ is defined by the displacement of the projections of the secondary beams

in the direction orthogonal to the propagation direction of the incident beam.
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which, by imposition, separately verify equation (2.8) with the corresponding value
of m,

Ωχ1 +m1Bχ1 = Gχ1 (2.11)

Ωχ2 +m2Bχ2 = Gχ2 (2.12)

Furthermore, by inverting relations (2.9) and (2.10), we have,

n− =
(
λ2 χ1 − λ1 χ2

)/(
λ2 − λ1

)
(2.13)

n+ =
(
χ2 − χ1

)/(
λ2 − λ1

)
(2.14)

(χ1 and χ2 would be the functions corresponding to the movement in opposite
directions of the secondary beams that move away from each other; in this way,
it would be expected that equations (2.11) and (2.12) could have solutions with
these characteristics). From (2.14), we see the need to assume that λ2 and λ1 are
different.

Since n+, in (2.14) satisfies equation (2.3), we have that,(
Ωχ2 +Bχ2 −Gχ2

)
−

(
Ωχ1 −Bχ1 −Gχ1

)
= 0, (2.15)

The functions χ1 and χ2, in (2.15), must satisfy equations (2.11) and (2.12),
respectively, with adequate values, m1 and m2. We directly note that for (2.15)
to be identically satisfied, one must choose, in (2.11), m1 = −1, as well as choose,
in (2.12), m2 = +1.

On the other hand, substituting (2.13) in expression (2.4) we find,

λ2

(
Ωχ1 +Bχ1 −Gχ1

)
− λ1

(
Ωχ2 +Bχ2 −Gχ2

)
= 0 (2.16)

Analogously to the previous development, in order for expression (2.16) to be
satisfied identically, we must take m1 = +1, as well as m2 = +1, but these values,
together, are incompatible with the values that these parameters must assume
so that expression (2.15) can be satisfied (simultaneously). Consequently, there
will be no solution consistent with a non-ideal effect. In the Appendix, we show
that the strategy used here determines, in the Stern-Gerlach case, that the coupled
equations for the Pauli spinor components lead to an incomplete spatial separation
by spin states.

3. Conclusion

The Wang-Bao-Cao-Yan proposal of a Stern-Gerlach effect with antiferromag-
netic magnons led us to consider the problem of establishing whether the Klein-
Gordon magnonic equation is an effect of incomplete spatial separation by polar-
ization states (right and left circular, both present in each of the secondary beams
generated by a linearly polarized spin wave), are compatible or not, for which an
adequate strategy was defined in subsection 2.1. We show that what corresponds
is a situation of incompatibility, which characterizes a non-ideal spatial separation
effect, a name that was taken from what is known as the non-ideal Stern-Gerlach ef-
fect. The Wang-Bao-Cao-Yan proposal is compatible with the ideal Stern-Gerlach
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effect, but not with the experimentally observed non-ideal Stern-Gerlach effect
[10].

4. Appendix

4.1. Non-ideal Stern-Gerlach effect and incomplete separation by spin
states. It can be mathematically illustrated that in the Stern-Gerlach effect the
complete separation and the incomplete separation (by electron spin states) occur
in orthogonal planes to each other. Next, we show how the non-ideal Stern-Gerlach
effect is revealed using the method defined in Subsection 2.1

The ”non-ideal“ Stern-Gerlach effect results from coupling the equations for the
Pauli spinor components, with the magnetic field gradient (α) acting as a coupling
parameter. Let’s first pay attention to the expression for the magnetic field,

B⃗(y, z) = (0,−αy, B0 + αz), (4.1)

commonly used in the literature on the Stern-Gerlach effect. Note that (4.1)

checks for ∇⃗ · B⃗ = 0. Expression (4.1), however, is not completely satisfactory, as
one would expect it to be invariant with respect to a Parity transformation, as it
corresponds to pseudo-vector fields in the (1 + 3)-dimensional case.

Applying the Parity transformation in (4.1) we obtain the expression,

B⃗′(−y,−z) = − B⃗(y, z) + 2B0k⃗, (4.2)

from which we see that B⃗ would behave like a vector field if B0 = 0, not be-
ing possible (consistently with a non-zero gradient) that (4.1) corresponds to a
pseudo-vector field. The vector character of (4.2), with B0 = 0, does not affect

the invariance of Maxwell’s equations (with ρ = 0, j⃗ = 0⃗ and ∂E⃗/∂t = 0, cor-
responding to the Stern-Gerlach effect) in relation to a Parity transformation, as
expected for purely electrical and magnetic interactions. For what follows, we keep

the usual expression (4.1), taking B0 = 0, that is, we represent B⃗ as if it were a
vector.

4.2. Mathematical development. We consider the splitting of a bundle of Sil-
ver atoms, which initially moves along the positive direction of the X coordinate
of the reference system considered, as in [1], which then splits into two secondary
bundles in the horizontal plane Z = 0. The Pauli matrix equation, considering
B0 = 0, can be written as follows,

− ℏ2

2m

(
∂2
xx + ∂2

yy 0
0 ∂2

xx + ∂2
yy

)(
η1
η2

)
+ µB

(
0 iαy

−iαy 0

)(
η1
η2

)
=

= iℏ
∂

∂t

(
η1
η2

)
. (4.3)

or, equivalently, as two coupled differential equations for the spinor components,

Ω̃η1 + G̃η2 = Dη1, (4.4)

Ω̃η2 − G̃η1 = Dη2. (4.5)
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the symbols being introduced,

Ω̃ ≡ − ℏ2

2m

(
∂2

∂x2
+

∂2

∂y2

)
, G̃ ≡ iµ

B
αy, D ≡ iℏ

∂

∂t
. (4.6)

Here we implement the strategy used in subsection 2.1.1; that is, we start by
multiplying (4.5) by a suitable number “λ”, to be defined, and we add it with
(4.4), obtaining,

Ω̃

(
η1 + λη2

)
+ G̃

(
η2 − λη1

)
= D

(
η1 + λη2

)
(4.7)

To continue, we introduce a second parameter, m ̸= 0, which will also have to
take a suitable value, so that we can rewrite the functions in the central term in
(4.7) as follows,

η2 − λη1 = m

(
η1 + λη2

)
. (4.8)

With that, we define

χ ≡ η1 + λη2. (4.9)

Then, we can identify, from (4.7), (4.8) and (4.9), the equation for the function
χ,

Ω̃χ + mG̃χ = Dχ. (4.10)

On the other hand, from (4.9), and for two different numbers λ1 and λ2 we
impose that the functions χ1 and χ2 that follow,

χ1 = η1 + λ1η2, (4.11)

χ2 = η1 + λ2η2, (4.12)

correspond to the solutions of equation (4.10); that is, we can write,

Ω̃χ1 + m1G̃χ1 = Dχ1, (4.13)

Ω̃χ2 + m2G̃χ2 = Dχ2. (4.14)

Furthermore, inverting relations (4.11) and (4.12), we have,

η1 =
(
λ2χ1 − λ1χ2

)/(
λ2 − λ1

)
(4.15)

η2 =
(
− χ1 + χ2

)/(
λ2 − λ1

)
(4.16)

(we are assuming that λ2 − λ1 ̸= 0). Since η1, in (4.15), and η2, in (4.16), should
verify equation (4.4),

Ω̃η1 + G̃η2 = Dη1

Thus, we have, substituting the expressions (4.15) and (4.16) in this equation, and
after sorting the terms, that,

λ2

(
Ω̃χ1 −

1

λ2
G̃χ1 −Dχ1

)
− λ1

(
Ω̃χ2 −

1

λ1
G̃χ2 −Dχ2

)
= 0. (4.17)
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As the functions χ1 and χ2, must verify equations (4.13) and (4.14), respectively,
then, in order for expression (4.17) to be verified identically, we must assume the
following relations,

m1 = − 1

λ2
e m2 = − 1

λ1
. (4.18)

On the other hand, the functions η1 and η2, in (4.15) and (4.16), respectively,
must satisfy equation (4.5); to mean,

Ω̃η2 − G̃η1 = Dη2.

So, substituting (4.15) and (4.16) into (4.5), and after sorting the terms, we
have that,

−

(
Ω̃χ1 + λ2G̃χ1 −Dχ1

)
+

(
Ω̃χ2 + λ1G̃χ2 −Dχ2

)
= 0 (4.19)

and as the functions χ1 and χ2, in the previous expression, verify equations (4.13)
and (4.14), respectively, we see that for (4.19) to be verified identically, one must
consider what,

m1 = λ2 e m2 = λ1 (4.20)

Consequently, based on the mathematical consistency between equations (4.13),
(4.14), (4.17) and (4.19), it must be fulfilled, from (4.18) and (4.20), that,

λ2 = − 1

λ2
e λ1 = − 1

λ1
(4.21)

thus establishing their values, resulting in λ2 = ±i and λ1 = ±i. It is convenient
to choose λ2 = −i; hence, λ1 = +i, since these must be different, as previously
assumed. Note the complete consistency of the values assigned: λ1 = i, λ2 = −i,
m1 = −i and m2 = i with expression (4.8), which is checked for each pair formed
by the values of λ and m.

With the values assigned to the parameters (which were previously free) we
have that equations (4.13) and (4.14) are well defined, as follows,

Ω̃χ1 − iG̃χ1 = Dχ1, (4.22)

or explicitly,

− ℏ2

2m

(
∂2χ1

∂x2
+

∂2χ1

∂y2

)
+ µ

B
αyχ1 = iℏ

∂χ1

∂t
. (4.23)

And also,

Ω̃χ2 + iG̃χ2 = Dχ1. (4.24)

or explicitly,

− ℏ2

2m

(
∂2χ2

∂x2
+

∂2χ2

∂y2

)
− µ

B
αyχ2 = iℏ

∂χ2

∂t
(4.25)

On the other hand, based on [13] equations (4.23) and (4.25), in the context of
the Stern-Gerlach Effect, have the following exact solutions,

χ1(x, y, t) = Ai

[
a

(
y + (ξ0/a) + bt2

)]
×Θ

[
y − (ν0/a) + (ξ0/a) + bt2

]
×
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×ei(cyt)e(i/ℏ)[xpx−ℏω+t] (4.26)

χ2(x, y, t) = Ai

[
a

(
− y + (ξ0/a) + bt2

)]
×Θ

[
− y − (ν0/a) + (ξ0/a) + bt2

]
×

×e−i(cyt)e(i/ℏ)[xpx−ℏω−t] (4.27)

respectively, being,

a =

(
2m(µBα− 2mb)

ℏ2

)1/3

, c = −2mb

ℏ
, b =

µBα

4m

ℏω+ = ℏω− =
p2x
2m

− ξ0
2

(
µ2
Bα

2ℏ2

m

)1/3

(4.28)

Θ is the Heaviside function, ν0 is the first zero of the Airy (Ai) function, and ξ0
is the first maximum of Ai. Note that the argument of the function Ai, in (4.26),
with a > 0, represents the ”accelerated“ part of the projection of the movement
of a secondary beam in the −Y direction and that the argument of the function
Ai, in (4.27), represents the ”accelerated“ part of the projection of the movement
of the second secondary beam in the opposite direction. Consequently, functions
(4.15) and (4.16), components of the Pauli spinor, can be written separately as
the sum of two contributions moving in opposite directions along the Y coordinate
direction,

η1(x, y, t) =
1

2

(
χ1(x, y, t) + χ2(x, y, t)

)
, (4.29)

η2(x, y, t) =
1

2i

(
χ1(x, y, t) − χ2(x, y, t)

)
, (4.30)

which clearly constitute solutions that do not correspond to the ”ideal Stern-
Gerlach effect“, but to a non-ideal effect, or incomplete separation by electronic
spin states in the split beams, as observed experimentally according to [10].

References

1. Wang, Z., Bao, W., Cao, Y., Yan, P.: Appl. Phys. Lett. 120 (2022) 242403.
2. Gerlach, W., Stern, O.: Zeit. Physik 9 (1922) 349.

3. Phipps, T.E., Taylor, J.B.: Phys. Rev. 29 (1927) 309.

4. Cohen-Tannoudji, C., Diu, B., Laloe, F.: Quantum Mechanics, Wiley, New York, 1977.
5. Liboff, R.L.: Introductory Quantum Mechanics, Addison-Wesley, Mass., 1980.

6. Griffiths, D.J.: Introduction to Quantum Mechanics, Prentice-Hall, N.J., 1995.

7. Merzbacher, E.: Quantum Mechanics, John Wiley & Sons, New York, 1998.
8. Schwabl, F.: Quantum Mechanics, Springer, Berlin, 2007.

9. Trigg, G.L.: Crucial Experiments in Modern Physics, Crane, Russak & Company, Inc., New

York, 1975.
10. Müller, C.W., Metz, F.W.: J. Phys. A: Math. Gen. 27 (1994) 3511.

11. Home, D., Kumar Pan, A., Manirul Ali, Md. and Majumdar, A.S.: J. Phys. A: Math. Theor.

40 (2007) 13975.
12. Bulnes, J.D., Master’s Thesis, Brazilian Center for Research in Physics (CBPF), Brazil,

2000.
13. Bulnes, J.D., Oliveira, I.S.: Brazilian Journal of Physics 31 (2001) no. 2, 488.

14. Juraev, D.A., Noeiaghdam, S.: Regularization of the ill-posed Cauchy problem for matrix

factorizations of the Helmholtz equation on the plane, Axioms, 10 (2021), no. 2, 1–14.
15. Juraev, D.A.: Solution of the ill-posed Cauchy problem for matrix factorizations of the

Helmholtz equation on the plane, Global and Stochastic Analysis, 8 (2021), no. 3, 1–17.

36



KLEIN-GORDON’S EQUATION FOR MAGNONS ...

16. Juraev, D.A., Gasimov, Y.S.: On the regularization Cauchy problem for matrix factorizations
of the Helmholtz equation in a multidimensional bounded domain, Azerbaijan Journal of

Mathematics, 12 (2022), no. 1, 142–161.

17. Juraev, D.A.: On the solution of the Cauchy problem for matrix factorizations of the
Helmholtz equation in a multidimensional spatial domain, Global and Stochastic Analysis,

9 (2022), no. 2, 1–17.

18. Juraev, D.A., Noeiaghdam, S.: Modern problems of mathematical physics and their appli-
cations, Axioms, 11 (2022), no. 2, 1–6.

J.D. Bulnes: Dep. Ciências Exatas e Tecnologia, Universidade Federal do Amapá,
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