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Abstract. In this paper we perform the exact decoupling of a coupled sys-
tem of two 1-dimensional stationary Schroedinger equations that were orig-

inally considered by P.L. Christiansen, J.J. Rasmussen and M.P. Sorensen.
Based on the characteristics of the uncoupled equations found, we argue that

the coupled system of equations is spurious for the problem addressed.

1. Introduction

An interesting topic in the applied version of the theory of differential equations
refers to the establishment of approaches and calculation methods that make it
possible to solve different types of coupled differential equations, being of particular
interest the analytical methods, and among these, those that can reveal, especially,
the exact solutions. In some situations, it may be sufficient to have approximate
solutions that arise from disregarding the term containing the coupling parameter,
if this is relatively small, and if this approach is consistent with some context of the
underlying problem; in this situation, it would be inevitable that the approximate
solution carries less information1 than the corresponding exact solution.

In mathematical modeling in physics, coupled differential equations determine,
in many cases, the dynamics of several systems of particles. In quantum mechanics,
in particular, in the case of the so-called non-ideal Stern-Gerlach effect, which
manifests itself through the splitting of a beam of atoms into secondary beams in
a plane to which correspond coupled equations for the components of the Pauli
spinor, the spatial separation by spin states does not happen2, otherwise what we
have is the simultaneous presence, in each unfolded beam, both of electrons with
their spin in the up state, and of electrons with their spin in the down state, as
shown in the appendix in [6] through the decoupling of these equations without
loss of information, that is, without making any approximation, thus preserving
the exact character of the system solutions. The Cauchy problem for matrix
factorizations of the Helmholtz equation are considered in papers [11]-[17].
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1Note that the information lost, through a specific approach, could be significant for a sector

of the problem considered; therefore, it is worth remembering the possibility of making a different

approximation if we are interested in disclosing such information.
2Contrary to the case with the plane for which the equations are decoupled, which is exclu-

sively presented in textbooks [1] [2] [3] and other references [4] [5].
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1.1. The coupled equations by Christiansen-Rasmussen-Sorensen. In an
interesting recent work [7], addressing two situations of scattering by singular
potentials, for the case of a potential V (x) = ρ δ(x), where ρ is non-negative, a
pair of stationary and coupled Schroedinger equations for two wave functions, ψa

and ψb, was proposed. This pair of equations, the one we will be dealing with
here, is written as follows,

D̂2ψa(x) − ρ δ(x) ψb(x) + k2ψa(x) = 0, (1.1)

D̂2ψb(x) − ρ δ(x) ψa(x) + k2ψb(x) = 0, (1.2)

where: D̂2 ≡ d2/dx2; ρ being the coupling parameter; k the wavenumber and δ(x)
the (what we like to call function) Dirac delta.

In [7] it is noted that the approach generally considered to deal with the
Schroedin- ger equation for a quantum wave impinging on a localized potential
barrier was equally applied to the case of coupled equations (1.1) and (1.2). It
could be expected, however, that before applying this approach, the original equa-
tions could have been decoupled and only subsequently apply such treatment to
them separately.

2. Mathematical development

In this section, we exactly decouple equations (1.1) and (1.2) without making
any approximation, which is possible by imposing an adequate supplementary
condition [6]. This supplementary condition may be compatible with a sector of
the solution space of this coupled system, with, of course, other solutions of the
system that do not fit this condition and which, for this very reason, will not be
revealed through the method that will be used here.

The first thing to do is introduce a free parameter, λ, and construct a linear
combination of the functions ψa and ψb as follows,

χ(x) ≡ ψa(x) + λψb(x). (2.1)

This expression is obtained by multiplying equation (1.2) by λ and adding it to
equation (1.1). With this procedure, expression is also obtained3,

ψb(x) + λψa(x). (2.2)

Then, we consider a second free parameter, β, and it is imposed that,

ψb(x) + λψa(x) = βχ(x). (2.3)

which makes it possible to write the decoupled equation,

D̂2χ(x) − βρ δ(x)χ(x) + k2χ(x) = 0. (2.4)

3One might expect us to follow, for example, the procedure that Feynman presents in subsec-
tion 9-3, in [8], when dealing with certain coupled differential equations, in which, in addition to
adding the equations, he also subtracts them to obtain two new equations, which remain coupled.

Here we follow another path.
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The values of λ and β must be chosen properly, which will be shown later. Now
let’s consider two distinct functions χ1 and χ2, associated with certain distinct
values λ1 and λ2, respectively; that is, based on (2.1), we write,

χ1(x) = ψa(x) + λ1ψb(x), (2.5)

χ2(x) = ψa(x) + λ2ψb(x), (2.6)

and assume that these are solutions of equation (2.4); accordingly, we write,

D̂2χ1(x) − β1ρ δ(x)χ1(x) + k2χ1(x) = 0, (2.7)

D̂2χ2(x) − β2ρ δ(x)χ2(x) + k2χ2(x) = 0, (2.8)

β1 and β2 being two distinct numbers corresponding, via (2.3), to the numbers λ1
and λ2, respectively.

We must invert expressions (2.5) and (2.6) so that functions ψa and ψb are in
terms of functions χ1 and χ2, solutions of (2.7) and (2.8). Doing: ∆ = 1/(λ2 − λ1),
with λ2 − λ1 ̸= 0, we write,

ψa(x) = ∆
(
λ2χ1(x)− λ1χ2(x)

)
, (2.9)

ψb(x) = ∆
(
− χ1(x) + χ2(x)

)
. (2.10)

Then, the function ψa(x), as expressed in (2.9), and the function ψb(x), as
expressed in (2.10), must satisfy equation (1.1), which we reproduce below,

D̂2ψa(x) − ρ δ(x)ψb(x) + k2ψa(x) = 0

After making the corresponding substitutions, and sorting them, we find the
expression,

λ2 K1(x)− λ1 K2(x) = 0. (2.11)

where K1 and K2 are given by,

K1(x) ≡ D̂2χ1(x) +
1

λ2
ρ δ(x)χ1(x) + k2χ1(x),

K2(x) ≡ D̂2χ2(x) +
1

λ1
ρ δ(x)χ2(x) + k2χ2(x).

Note that the values that should be assigned to parameters β1 and β2, which
are free up to now, will result from requiring that K1(x) and K2(x) cancel out
simultaneously, thus verifying (2.11). These requirements will lead, by comparison
with expressions (2.7) and (2.8), to relations between the parameters λ and β. In
this way, it is found,

β1 = − 1

λ2
and β2 = − 1

λ1
. (2.12)

Relations (2.12) are not enough to fix the values of these parameters; however,
other independent relations can be obtained, for the same parameters, which will
complement these considering that the functions ψa(x) and ψb(x) must also verify
equation (1.2), which we reproduce below,

D̂2ψb(x) − ρ δ(x)ψa(x) + k2ψb(x) = 0.
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Using (2.9) and (2.10) in (1.2) we obtain, after making the corresponding sub-
stitutions and sorting them,

−K3(x) +K4(x) = 0. (2.13)

where K3 and K4 are given by,

K3(x) ≡ D̂2χ1(x) + λ2ρ δ(x)χ1(x) + k2χ1(x),

K4(x) ≡ D̂2χ2(x) + λ1ρ δ(x)χ2(x) + k2χ2(x).

Under arguments similar to those considered a few lines above, asK3(x) andK4(x)
cancel out simultaneously, we find a second pair of independent relations between
the parameters λ and β, given by,

β1 = −λ2 and β2 = −λ1. (2.14)

Now we are in a position to determine the specific values that we must assign to
each of the parameters λ and β to guarantee the consistency of the equations and
the relationships found. Specifically, for equations (2.7), (2.8), (2.11) and (2.13)
to be consistent, it must be fulfilled, from (2.12) and (2.14), that,

λ22 = 1 and λ21 = 1, (2.15)

generating the possible values: λ2 = ±1 and λ1 = ±1. We can choose: λ2 = 1;
and then, λ1 = −1, because, as we have previously assumed, these parameters
must have different values. Using (2.14), we have: β1 = −1 and β2 = 1.

It is important to note the mathematical consistency of the assigned values:
λ1 = −1, λ2 = 1, β1 = −1 and β2 = 1 with expressions (2.3) and (2.1).

Thus, the previous development allows writing the exact and decoupled version
of the coupled equations (1.1) and (1.2) as follows,

D̂2χ1 + ρ δ(x)χ1 + k2χ1 = 0, (2.16)

D̂2χ2 − ρ δ(x)χ2 + k2χ2 = 0, (2.17)

which are two stationary Schroedinger equations for the functions χ1 and χ2,
separately. Furthermore, it is worth mentioning that the equivalence between (1.1)
& (1.2) and (2.16) & (2.17), which will be verified in the following subsection, is
only valid in the case considered in the first paragraph of section 2.

2.1. Verification of equivalence between (1.1) & (1.2) and (2.16) &
(2.17). It is simple to check such equivalence. From (2.5) and λ1 = −1, we
have,

χ1(x) = ψa(x)− ψb(x). (2.18)

From (2.6) and λ2 = +1, we have,

χ2(x) = ψa(x) + ψb(x). (2.19)

Replacing (2.18) and (2.19) in (2.16) and (2.17), respectively, we have,

D̂2ψa(x)− D̂2ψb(x)+ρ δ(x)ψa(x)−ρ δ(x)ψb(x)+k
2ψa(x)−k2ψb(x) = 0, (2.20)

D̂2ψa(x)+ D̂
2ψb(x)−ρ δ(x)ψa(x)−ρ δ(x)ψb(x)+k

2ψa(x)+k
2ψb(x) = 0. (2.21)

Adding (2.20) and (2.21) we find,

D̂2ψa(x)− ρ δ(x)ψb(x) + k2ψa(x) = 0, (2.22)
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which coincides with (1.1). Also, subtracting (2.20) from (2.21) we have,

D̂2ψb(x)− ρ δ(x)ψa(x) + k2ψb(x) = 0, (2.23)

which coincides with (1.2), thus demonstrating that the decoupling procedure we
have been using is exact.

3. Discussion

1. The exact mathematical solutions ψa and ψb that can be found for equa-
tions (1.1) and (1.2), through expressions (2.9) and (2.10), using the solutions of
(2.16) and (2.17), could have no relation to a physical solution if we notice that
the decoupled Schroedinger equations contain terms that correspond both to a
“well” of potential V1(x) = −ρδ(x), and to a barrier of potential V2(x) = +ρδ(x),
separately, an unexpected mathematical fact that has been revealed through the
exact decoupling of the original equations. In the considered physical situation,
of scattering by a Dirac delta potential, however, there is no “well” of potential;
thus, the system of coupled equations (1.1) and (1.2) would be spurious for this
problem.

2. The “appearance” of a term corresponding to a potential well is not explicitly
perceived in [7] because, in their case, the solutions found for equations (1.1) and
(1.2) correspond to two redundant equations for a single independent function,
not a coupling situation. According to our development, the redundant case for
the coupled system, with ψa = ψb, could not be obtained, because the only way to
achieve this, observing expressions (2.9) and (2.10), would be by doing the choice:
λ2 = λ1 = −1, which is incompatible with the decoupling method considered here,
which has these parameters with different values.

4. Conclusion

We have shown that the coupled differential equations (1.1) and (1.2), taken
from [7], can be exactly uncoupled, as verified in subsection 2.1. And, based on the
characteristics arising from the decoupled equations, we maintain that equations
(1.1) and (1.2) are spurious for the problem with a potential barrier of the Dirac
delta type. Finally, since the decoupling method we have been using is independent
of the nature of the derivatives, it could be useful even when we are considering
equations with derivatives of the fractional type [9]-[10].

Acknowledgment. We are grateful for the kindness of Professor Jens Juul Ras-
mussen (Technical University of Denmark) for providing us with the reference [7].
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