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Abstract. In this article we consider a mathematical model of an initial
stage of closure electrical contact that involves a metallic vaporization af-

ter instantaneous exploding of micro-asperity. Melting of the micro-asperity

which considered as material with a variable cross section, when the radial
component of the temperature gradient can be neglected in comparison with

the axial component could be modeled by making use of Stefan problem

in case of generalized heat equation. The process of arc erosion in electri-
cal contacts caused by vaporization and ejection of liquid metal particles

can be described using mathematical models. Refractory contact materials

such as tungsten, molybdenum, and zirconium can undergo erosion due to
the thermocapillary (Marangoni) effect, which is influenced by the tempera-

ture dependence of the surface tension coefficient. The mathematical model
considers phenomena occurring in the melted pool’s surface layer. Careful

selection of contact materials and control of current pulse parameters can

maintain the contact material’s thermal stability. In this regard, similar-
ity variable transformation is applied for solving the equation, which leads

to reduction of generalized heat equation to nonlinear ordinary differential

equation. It is needed to calculate temperature solution of the liquid phase
and melting isotherm location. Solution uniqueness and existence is proved

by employment of fixed point Banach theorem.

1. Introduction

The heat transfer Stefan problems such as melting and freezing, diffusion process
constitute a vast area with a wide engineering and industrial applications. Stefan
problems describe the heat processes in phase transitions, where these phase tran-
sitions are characterized by thermal diffusion and they have been studied widely
in [1], [7]-[10], [22]-[24], [28]. The extensive bibliography related to this study is
represented in [29].

The classical direct Stefan problems with free boundaries is the phase-change
problem where temperature field in liquid (in melting problem) or solid regions
(in solidification problem) and interface melting temperature at free boundary
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x = β(t) have to be determined but if dynamics of heat flux has to determined in
this case inverse Stefan problem is considered. Such kind of problems for materials
with spherical, cylindrical and cross-section domain arising in electrical contact
phenomena are successfully discussed in [12]-[16], [20], [25]-[27]. Mathematical
modeling of non-classical Stefan problem should take into account temperature
dependence of the thermal conductivity because it is very essential to get correct
description of the boiling and melting dynamics. The nonlinear Stefan problem
with Diriclet, Neumann and Robin conditions on the fixed and moving face are
considered and successfully solved in [2]-[4], [17]-[19]. Bollati, Briozzo and Na-
tale successfully discussed about inverse non-classical Stefan problem in which
unknown thermal coefficients have to be determined [5] and Briozzo, Natale with
Tarzia considered inverse non-classical Stefan problem for Storm’s-type materials
through a phase-change process [6]. Huntul and Lesnic also discussed an inverse
problem of determining the time-dependent thermal conductivity and the transient
temperature satisfying the heat equation with boundary data [11].

Figure 1. Mathematical model of material with variable cross-
section: D1-metallic vapour region, D2-melting region

The study of electrical arc phenomena arising in electrical contact systems when
their opening and closure appears is very necessary for reducing melting bridge,
electrical erosion and increasing the service life of their operation. The increasing
of the velocity of the switching systems involves instantaneous explosion of the
micro-asperity in closure electrical contacts and it is very complicated to obtain
experiential information about its dynamics in process, but only mathematical
modeling help us to get required information in this situation. In closure electrical
contact system blow-off repulsion of the short arc occurs of instantaneous explosion
of the micro-asperity which touching contact surface. The mathematical modeling
of the arc ignition of the metallic vaporization of micro-asperity is the main goal
this paper because it is very important to analyze melting process as it can be the
main reason to failure in vacuum circuit breakers. Some models in this direction
are considered in [18],[19].

Mathematical model of the heat transfer process in the material with cross-
section variable region can be represented by the generalized heat equations. This
kind of model is very useful to describe dynamics of temperature in metal bridge
in electrical contact phenomena to prevent contact explosion. The mathemati-
cal model of initial stage of closure electrical contacts involves domains metallic
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vapour and liquid regions, see Figure ??. Temperature field in domain D1 is
the complicated in mathematical modeling in our approach, thus we suggest that
temperature is the heat resistivity and decreasing linear function of the form

θ1(z, t) =
z2

4α2
0t
(θb − θim) + θim, 0 < z < α(t), t > 0, (1.1)

and temperature in this region decreases from the temperature θim which is re-
quired for ionization of the metallic vapour to the boiling temperature such that

θ1(0, t) = θim, t > 0 (1.2)

θ1(α(t), t) = θb, t > 0, (1.3)

and the balance of heat flux on z = α(t) is

−λ
∂θ1
∂z

∣∣∣∣
z=α(t)

=
P0

2
√
πt

− lbγb
dα

dt
, t > 0, (1.4)

where θ1(z, t) is a temperature in metallic vapour zone, θb is a boiling temperature.
P0 is a given positive constant, lb is a latent heat of boiling and γb > 0 is a density
of material at boiling. The location of the boiling interface α(t) can be represented

α(t) = 2α0

√
t. (1.5)

With the help of (1.1) we can easily see that the solution of the equation (1.4) is
(1.5) where α0 can be determined from the equation

α2
0 +Dα0 + E = 0 (1.6)

where

D =
P0

2lbγb
√
π
, E =

λ(θb − θim)

lbγb
.

Amathematical model of temperature field of the domainD2 can be represented

c(θ2)ρ(θ2)
∂θ2
∂t

=
1

zν
∂

∂z

[
λ(θ2)z

ν ∂θ2
∂z

]
, α(t) < z < β(t), t > 0, (1.7)

−λ(θ2(α(t), t))
∂θ2
∂z

∣∣∣∣
z=α(t)

=
P0e

−α2
0

2
√
πt

, t > 0, (1.8)

θ2(β(t), t) = θm, t > 0, (1.9)

−λ(θ2(β(t), t))
∂θ2
∂z

∣∣∣∣
z=β(t)

= lmγm
dβ

dt
, t > 0, (1.10)

β(0) = 0 (1.11)

where c(θ2), ρ(θ2) and λ(θ2) are specific heat, material’s density and thermal
conductivity depended on temperature, ν > 0 is a geometry of micro-asperity and
scaling symmetry of the material, θ2(z, t) - temperature in liquid phase, P0 is a
given positive constant, θm - melting temperature, lm - latent heat of melting,
γm - density of material at melting, α(t) is a known free boundary that can be
determined from (1.4) and (1.6), β(t) - location of the melting interface which has
to be found.
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We will consider one more problem replacing the heat flux condition (1.8) with
convective boundary condition on the known free boundary z = α(t) such that

λ(θ2(α(t), t))
∂θ2
∂z

∣∣∣∣
z=α(t)

=
q

2
√
πt

(θ2(α(t), t)− θ∗), t > 0 (1.12)

where q = P0e
−α2

0 is the coefficient characterizes the heat transfer at the free
boundary z = α(t) determined from (1.6), θ∗ is the reference bulk temperature
which arising near to free boundary z = α(t) with θ∗ > θ2(α(t), t).

The purpose of the paper is a providing similarity solution of the one-phase
Stefan problem for generalized heat equation if heat flux enters to liquid region
from known free boundary z = α(t) where boiling process starts and determi-
nation of the location of the melting interface on the boundary z = β(t). This
work is a continuation of the work [17] for analyzing heat process in electrical con-
tact bridge which connects two electrical contact materials when instantaneous
explosion arises. In Section 2, similarity solution of two problems are introduced
where condition (1.12) replaced with (1.8) and this special method enables us to
reduce the problem (1.7)-(1.11) boundary value problem with ordinary nonlinear
differential equation. In Section 3, the existence and uniqueness of the similarity
solutions of the two problems imposed (1.7)-(1.11) with two free boundaries is
provided by using fixed point Banach theorem. In the last section, we provide the
solutions for particular cases of thermal coefficients and their existence, uniqueness
are discussed.

2. Method of solution

2.1. Heat flux condition. Using dimensionless transformation

T (z, t) =
θ(z, t)− θm

θm
(2.1)

Then problem (1.7),(1.8),(1.9),(1.10) and (1.11) can be rewritten as

N̄(T2)
∂T2

∂t
=

a

zν
∂

∂z

[
L̄(T2)z

ν ∂T2

∂z

]
, α(t) < z < β(t), 0 < ν < 1, t > 0, (2.2)

L̄(T2(α(t), t))
∂T2

∂z

∣∣∣∣
z=α(t)

= − P0e
−α2

0

2λ0θm
√
πt

, t > 0, (2.3)

T2(β(t), t) = 0, t > 0, (2.4)

L̄(T2(β(t), t))
∂T2

∂z

∣∣∣∣
z=β(t)

= − lmγm
λ0θm

dβ

dt
, t > 0, (2.5)

β(0) = 0 (2.6)

where

N̄(T2) =
c(θmT2 + θm)ρ(θmT2 + θm)

c0ρ0
, L̄(T2) =

λ(θmT2 + θm)

λ0
(2.7)

and c0, ρ0, λ0, a = λ0/(c0ρ0) are heat capacity, density, thermal conductivity and
thermal diffusivity of the material.
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To solve problem (2.2),(2.3),(2.4),(2.5) and (2.6) we use similarity type substi-
tution

T2(z, t) = u2(η), η =
z

2
√
t
, (2.8)

and from (2.2),(2.3), (2.4) and (2.8) the free boundaries can be represented as

α(t) = 2α0

√
t, β(t) = 2ξ

√
t, (2.9)

where α0 is known constant which determined from (1.6) and ξ has to be deter-
mined. Then we obtain the following problem

[L∗(u2)η
νu′

2]
′ +

2

a
ην+1N∗(u2)u

′
2 = 0, α0 < η < ξ, 0 < ν < 1, (2.10)

L∗(u2(α0))u
′
2(α0) = −q∗, (2.11)

u2(ξ) = 0, (2.12)

u′
2(ξ) = −Mξ (2.13)

where q∗ =
P0e

−α2
0

α0θm
√
π
, M =

2lmγm
λ0θmλ(θm)

and

L∗(u2) =
λ(θmu2 + θm)

λ0
, N∗(u2) =

c(θmu2 + θm)ρ(θmu2 + θm)

c0ρ0
. (2.14)

We can deduce that (u2, ξ) is a solution of the problem (2.10),(2.11),(2.12) and
(2.13) if and only if it satisfies the integral equation

u2(η) = q∗[Φ(ξ, u2(ξ))− Φ(η, u2(η))] (2.15)

where

Φ(η, u2(η)) = αν
0

η∫
α0

E(s, u2(s))

vνL∗(u2(v))
dv (2.16)

E(η, u2(η)) = exp

(
− 2

a

η∫
α0

s
N∗(u2(s))

L∗(u2(s))
ds

)
(2.17)

and condition
q∗αν

0E(ξ, u2(ξ))

Mλ(θm)
= ξν+1 (2.18)

From expression (2.18) we can determine ξ for the free boundary β(t).
The solution of the free boundary (1.7)-(1.11) is given by (2.1) and

θ2(z, t) = θm + θmu2(η)

where η = z/(2
√
t) and function u2(η) must satisfy the integral equation (2.15)

and condition (2.18).
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2.2. Convective boundary condition. If we use the dimensionless substitution

T (z, t) =
θ(z, t)− θ∗

θm − θ∗
> 0, (2.19)

then problem (1.7)-(1.11) with replaced condition with (1.12) instead of heat flux
condition becomes

N̄(T2)
∂T2

∂t
=

a

zν
∂

∂z

[
L̄(T2)z

ν ∂T2

∂z

]
, α(t) < z < β(t), 0 < ν < 1, t > 0, (2.20)

L̄(T2(α(t), t))
∂T2

∂z

∣∣∣∣
z=α(t)

=
q

2λ0

√
πt

T2(α(t), t), t > 0, (2.21)

T2(β(t), t) = 1, t > 0, (2.22)

L̄(T2(β(t), t))
∂T2

∂z

∣∣∣∣
z=β(t)

=
β′(t)

aSte
, t > 0, (2.23)

β(0) = 0 (2.24)

where q = P0e
−α2

0 , Ste = (θm−θ∗)c0
lm

> 0 and N̄ , L̄ are defined from (2.7). Then

using similarity transformation (2.9) problem (2.20),(2.21),(2.22),(2.23),(2.24) can
be rewritten as

[L∗(u2)η
νu′

2]
′ +

2

a
ην+1N∗(u2)u

′
2 = 0, α0 < η < ξ, 0 < ν < 1, (2.25)

L∗(u2(α0))u
′
2(α0) = p∗u2(α(t)), (2.26)

u2(ξ) = 1, (2.27)

L∗(u2(ξ))u
′
2(ξ) =

2ξ

aSte
(2.28)

where p∗ = q/(λ0
√
π) and L∗, N∗ are determined from (2.14).

We conclude that the solution of the problem (2.25),(2.26),(2.27) and (2.28) is

u2(η) =
1 + αν

0p
∗Φ(η, u2(η))

1 + αν
0p

∗Φ(ξ, u2(ξ))
(2.29)

with condition
aαν

0E(ξ, u2(ξ))Ste

2
[
1 + αν

0p
∗Φ(ξ, u2(ξ))

] = ξν+1 (2.30)

where Φ and E are defined by (2.16) and (2.17).
With help of (2.19) and (2.29) we summarize that solution of the problem

(1.7),(1.12),(1.9),(1.10)(1.11) can be represented in the form of

θ2(η) = θ∗ + (θm − θ∗)u2(η) (2.31)

where η = z/(2
√
t) and u2(η) satisfies the integral equation (2.29) and condition

(2.30).
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3. Existence and uniqueness of the similarity solution

3.1. Problem with heat flux condition. To prove existence of the solution
form (2.15) we assume that ξ > 0 is a given constant. We consider the continuous
real valued functions space C0[α0, ξ] which endowed with supremum norm

||u|| = max
η∈[α0,ξ]

|u(η)|

and using a fixed point Banach theorem (C0[α0, ξ], || · ||), We define operator
W : C0[α0, ξ] → C0[α0, ξ] which is

W (u2)(η) := u2(η), ∀η ∈ [α0, ξ], (3.1)

where u2 is defined by (2.15). Then by using the fixed point Banach theorem we
have to prove that operator (3.1) is contraction operator of mapping and it implies
that there must exists unique solution u ∈ C0[α0, ξ] to integral solution (2.15).

At first, we suppose that L∗ and N∗ are bounded and satisfy Lipschitz inequal-
ities such that

a) There exists Lm =
λm

λ0
> 0 and LM =

λM

λ0
> 0 such that

Lm ≤ L∗(u) ≤ LM , ∀u ∈ C0(R+
0 ) ∪ L∞(R+

0 ). (3.2)

and L̄ =
λ̄(θm + 1)

λ0
> 0 such that

||L∗(u1)− L∗(u2)|| ≤ L̄||u1 − u2||, ∀u1, u2 ∈ C0(R+
0 ) ∪ L∞(R+

0 ). (3.3)

b) There exists Nm =
σm

c0, γ0
> 0 and NM =

σM

c0γ0
> 0 such that

Nm ≤ N∗(u) ≤ NM , ∀u ∈ C0(R+
0 ) ∪ L∞(R+

0 ). (3.4)

and N̄ =
σ̄(θm + 1)

c0γ0
> 0 such that

||N∗(u1)−N∗(u2)|| ≤ N̄ ||u1 − u2||, ∀u1, u2 ∈ C0(R+
0 ) ∪ L∞(R+

0 ). (3.5)

Now we have to obtain some preliminary results to prove the existence and unique-
ness of the solution to the equation (2.15).

Lemma 3.1. For all η ∈ [α0, ξ] the following inequality holds

exp

(
− NM

aLm
(η2 − α2

0)

)
≤ E(η, u) ≤ exp

(
− Nm

aLM
(η2 − α2

0)

)
. (3.6)

Proof. E(η, u) ≤ exp

(
− 2Nm

aLM

η∫
α0

sds

)
= exp

(
− Nm

aLM
(η2 − α2

0)

)
. □
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Lemma 3.2. For all η ∈ [α0, ξ] the following inequality holds

1

2LM
exp

(
NM

aLm
α2
0

)√
Nν−1

M

aLν−1
m

[
γ

(
1− ν

2
, η2

NM

aLm

)
− γ

(
1− ν

2
,
NM

aLm
α2
0

)]

≤ Φ(η, u) ≤ 1

2Lm
exp

(
Nm

aLM
α2
0

)√
Nν−1

m

aLν−1
M

[
γ

(
1− ν

2
, η2

Nm

aLM

)
− γ

(
1− ν

2
,
Nm

aLM
α2
0

)]
,

Proof. We have Φ(η, u) ≤ 1

Lm
exp

(
Nm

aLM
α2
0

)
η∫

α0

exp(−Nms2/(aLM ))

sν
ds after using

substitution t = s
√

Nm

aLM
we obtain

Φ(η, u) ≤ 1

Lm
exp

(
Nm

aLM
α2
0

)√
Nν−1

m

aLν−1
M

η
√

Nm/(aLM )∫
α0

√
Nm/(aLM )

e−t2

tν
dt.

Then using substitution z = t1−ν we get

Φ(η, u) ≤ 1

Lm(1− ν)
exp

(
Nm

aLM
α2
0

)√
Nν−1

m

aLν−1
M

(η
√

Nm/(aLM ))1−ν∫
(α0

√
Nm/(aLM ))1−ν

e−z
2

1−ν
dz

and taking y = z
2

1−ν then inequality becomes

Φ(η, u) ≤ 1

Lm(1− ν)
exp

(
Nm

aLM
α2
0

)√
Nν−1

m

aLν−1
M

1− ν

2

η2Nm/(aLM∫
α2

0Nm/(aLM )

y
1−ν
2 −1e−ydy.

Then by using definition of special function type incomplete gamma function

γ(s, x) =
x∫
0

ts−1e−tdt we have proved that

Φ(η, u) ≤ 1

2Lm
exp

(
Nm

aLM
α2
0

)√
Nν−1

m

aLν−1
M

·
[
γ

(
1− ν

2
, η2

Nm

aLM

)
− γ

(
1− ν

2
,
Nm

aLM
α2
0

)]
.

□

Lemma 3.3. Let given α0, ξ ∈ R+ and assumptions (3.2),(3.3),(3.4),(3.5) hold
for specific heat and dimensionless thermal conductivity then for all
u ∈ C0[α0, ξ] we have

|E(η, u)− E(η, u∗)| ≤ 1

aLm

(
Ñ +

NM L̃

Lm

)
(η2 − α2

0)||u∗ − u||.
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Proof. By using inequality exp(−x)− exp(−y)| ≤ |x− y|, ∀x, y ≥ 0 we get

|E(η, u)− E(η, u∗)| ≤

∣∣∣∣∣ exp
(

− 2

a

η∫
α0

s
N(u1(s))

L(u(s))
ds

)

− exp

(
− 2

a

η∫
α0

s
N(u∗(s))

L(u∗(s))
ds

)∣∣∣∣∣
≤ 2

a

∣∣∣∣∣
η∫

α0

s
N(u)

L(u)
ds−

η∫
α0

s
N(u∗)

L(u∗)
ds

∣∣∣∣∣
≤ 2

η∫
α0

∣∣∣∣∣N(u)

L(u)
− N(u∗)

L(u∗)

∣∣∣∣∣sds
≤ 2

a

η∫
α0

∣∣∣∣∣N(u)

L(u)
− N(u∗)

L(u)
+

N(u∗)

L(u)
− N(u∗)

L(u∗)

∣∣∣∣∣sds
≤ 2

a

η∫
α0

(
|N(u)−N(u∗)|

|L(u)|
+

|L(u∗)− L(u)| · |N(u∗)|
|L(u)||L(u∗)|

)
sds

≤ 2

aLm

(
Ñ +

NM L̃

Lm

)
||u∗ − u||

η∫
α0

sds

=
1

aLm

(
Ñ +

NM L̃

Lm

)
(η2 − α2

0)||u∗ − u||.

□

Lemma 3.4. If α0, ξ ∈ R+ are given and (3.2)-(3.5) hold then for all
u∗ ∈ C0[α0, ξ] we have

|Φ(η, u)− Φ(η, u∗)| ≤ Φ̃(α0, ξ)||u∗ − u||,

where

Φ̃(α0, η) =
αν
0

L2
m

(
1

a

(
Ñ +

NM L̃

Lm

)[
η3−ν

3− ν
− α2

0

η1−ν

1− ν

+
2α3−ν

0

(3− ν)(1− ν)

]
+ L̃

η1−ν − α1−ν
0

1− ν

)
. (3.7)

Proof. By using lemmas 3.2 and 3.3 we obtain

|Φ(η, u)− Φ(η, u∗)| ≤ T1(η) + T2(η)
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where

T1(η) ≡ αν
0

η∫
α0

|E(η, u)− E[η, u∗)|
sνL(u(s))

ds

≤ αν
0

aL2
m

(
Ñ +

NM L̃

Lm

)
||u∗ − u||

η∫
α0

(s2 − α2
0)s

−νds

≤ αν
0

aL2
m

(
Ñ +

NM L̃

Lm

)[
η3−ν

3− ν
− α2

0

η1−ν

1− ν
+

2α3−ν
0

(3− ν)(1− ν)

]
||u∗ − u||

and

T2(η) ≡ αν
0

η∫
α0

∣∣∣∣ 1

L(u)
− 1

L(u∗)

∣∣∣∣ 1sν exp

(
− 2

a

η∫
α0

t
N(u∗)

L(u∗)
dt

)
ds

≤ αν
0

η∫
α0

|L(u∗)− L(u)|
|L(u)||L(u∗)|

ds

sν
≤ L̃αν

0

L2
m

||u∗ − u||
η∫

α0

ds

sν

≤ L̃(η1−ν − α1−ν
0 )αν

0

L2
m(1− ν)

||u∗ − u||.

Finally we get

T1(η) + T2(η) ≤
αν
0

L2
m

||u∗ − u||
(
1

a

(
Ñ +

NM L̃

Lm

)[
η3−ν

3− ν
− α2

0

η1−ν

1− ν

+
2α3−ν

0

(3− ν)(1− ν)

]
+ L̃

η1−ν − α1−ν
0

1− ν

)
.

□

Theorem 3.5. Suppose that L∗ and N∗ satisfy the conditions (3.2)-(3.5). If
α0 < ξ < ξ∗ where ξ∗ > 0 is defined as unique solution to ϵ(α0, z) = 1 with

ϵ(α0, z) := 2p∗Φ̃(α0, z) (3.8)

where Φ̃(α0, η) is given by (3.7), then there exists a unique solution u2 ∈ C0[α0, µ]
for the integral equation (2.15).

Proof. We have to show that operator W is defined by (3.1) is a contraction
operator. Suppose we have u2, u

∗
2 ∈ C0[α0, ξ] and by using lemmas 3.1-3.4 we

have

|W (u2(η))−W (u∗
2(η))| ≤ q∗|Φ(ξ, u2(ξ))− Φ(η, u2(η))− Φ(ξ, u∗

2(ξ))

+ Φ(η, u∗
2(η))| ≤ q∗(|Φ(ξ, u2(ξ))− Φ(ξ, u∗

2(ξ))|
+ |Φ(η, u2(η))− Φ(η, u∗

2(η))|)

≤ 2q∗Φ̃(α0, ξ)||u2 − u∗
2||.

It follows that

|W (u2)(η)−W (u∗
2)(η)| ≤ ϵ(α0, ξ)||u2 − u∗

2||,
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where ϵ(α0, η) is defined by (3.8) and we can notice that ϵ is an increasing function
from 0 to +∞ and it implies

ϵ(α0, z) < 1, ∀z : α0 < z < ξ∗, ϵ(α0, z) > 1, ∀z : z > ξ∗.

thus there exists a unique ξ∗ > 0 such that ϵ(α0, ξ
∗) = 1 so the operator W

becomes a contraction operator of mapping. By the fixed point Banach theorem
there must exist a unique solution u2 ∈ C0[α0, ξ] to integral equation (2.15). □

Now we analyze the existence and uniqueness of the solution for the equation
(2.18). We have to show that

ϕ(ξ) = ξν+1, (3.9)

where

ϕ(ξ) =
q∗αν

0E(ξ, u2(ξ))

Mλ(θm)
,

q∗ =
P0e

−α2
0

α0θm
√
π
,

M =
2lmγm

λ0θmλ(θm)

has a unique solution ξ ∈ [α, ξ∗].

Lemma 3.6. Suppose assumptions (3.2)-(3.5) hold, then for all ξ ∈ [α0, ξ
∗] we

have that
ϕ1(ξ) ≤ ϕ(ξ) ≤ ϕ2(ξ) (3.10)

where ϕ1(ξ) and ϕ2(ξ) are functions defined by

ϕ1(ξ) =
q∗αν

0

Mλ(θm)
exp

(
− Nm

aLM
(ξ2 − α2

0)

)
, ξ > α0,

ϕ2(ξ) =
q∗αν

0

Mλ(θm)
exp

(
− NM

aLm
(ξ2 − α2

0)

)
, ξ > α0

(3.11)

which satisfy the following properties

ϕ1(α0) =
q∗αν

0

Mλ(θm)
> 0, ϕ1(+∞) = 0, ϕ′

1(ξ) < 0, ∀ξ > α0

ϕ2(α0) =
q∗αν

0

Mλ(θm)
> 0, ϕ2(+∞) = 0, ϕ′

2(ξ) < 0, ∀ξ > α0.

(3.12)

Proof. We can easily prove this lemma directly using bound (3.6) and definitions
(3.11),(3.12) of the functions ϕ1 and ϕ2. □

Lemma 3.7. If
ϕ2(ξ

∗) < ξ∗ (3.13)

then, there exists a unique solution α0 < ξ1 < ξ∗ to the equation

ϕ1(ξ) = ξν+1, ξ > α0 (3.14)

and there exists a unique solution ξ1 < ξ2 < ξ∗ to the equation

ϕ2(ξ) = ξν+1, ξ > α0. (3.15)

Proof. We can prove by using properties of ϕ1 and ϕ2 shown in Lemma 3.6. □
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Remark 3.8. By using definition of ϕ2 and M we obtain that assumption (3.13) is
equivalent to the following inequality for latent of melting heat

lm >
q∗αν

0λ0θm
2γmξ∗

exp

(
− NM

aLm
(ξ∗2 − α2

0)

)
. (3.16)

Theorem 3.9. Suppose (3.2)-(3.5) and (3.16) hold. Consider ξ1 and ξ2 deter-
mined from (3.14) and (3.15). If ϵ(α0, ξ2) < 1, where ϵ is defined by (3.8), then
there exists at least one solution ξ̄ ∈ (ξ1, ξ2) to the equation (2.18).

Proof. By hypothesis of Lemma 3.6 if ϵ(α0, ξ2) < 1 then we have that the inequality
(3.10) holds for each ξ1 ≤ ξ ≤ ξ2 ≤ ξ∗ and ϵ(α0, ξ) < 1. As function ϕ is continuous
decreasing function we obtain that there exists at least one solution ξ̄ ∈ [ξ1, ξ2] to
the equation (2.18). □

Now we can make conclusion by following main theorem.

Theorem 3.10. Assume that (3.2)-(2.12) hold and ϵ(α0, ξ2) < 1 where ϵ defined
by (3.8) and ξ2 defined from (3.15) then there exist at least one solution to the
problem (1.7)-(1.11) where unknown free boundary is given by

β(t) = 2ξ̄
√
t, t > 0 (3.17)

where ξ̄ defined from Theorem 3.9 and temperature is given by

θ(z, t) = θm(uξ̄(η) + 1), α0 ≤ η ≤ ξ̄ (3.18)

where η =
z

2
√
t
being similarity substitution and uξ̄ is the unique solution of the

integral equation (2.15) which was established in Theorem 3.5.

3.2. Problem with convective boundary condition. In this section, analo-
gously as in previous, we will prove existence and uniqueness of the solution form
(2.29) assuming that there is given constant ξ > 0 and considering fixed point
Banach space (C0[α0, ξ], || · ||), defining the operator V : C0[α0, ξ] → C0[α0, ξ]
such

V (u2)(η) = u2(η), α0 ≤ η ≤ ξ, (3.19)

where u2 is defined by (2.29).
Let assume that L∗, N∗ satisfy all assumptions (3.2)-(3.5) then we can get the

following results.

Theorem 3.11. Suppose that (3.2)-(3.5) hold. If α0 ≤ ξ ≤ ξ∗c where ξ∗c is defined
as the unique solution of ϵ̂(α0, z) = 1 such as

ε̂(α0, z) := A(α0, z)Φ̃(α0, z), (3.20)

where Φ̃(α0, z) defined from (3.7) and

A(α0, ξ) =
8aLν−1

m

αν
0p

∗ exp
(

2NM

aLm
α2
0

)
Nν−1

M h(α0, ξ)

+
4
√
aLν−1

m

exp
(

NM

aLm
α0

)√
Nν−1

M h(α0, ξ)

(3.21)
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h(α0, z) = γ

(
1− ν

2
, z2

Nm

aLM

)
− γ

(
1− ν

2
,
Nm

aLM
α2
0

)
, (3.22)

then there exists a unique solution u2 ∈ C0[α0, ξ] for integral equation (2.29).

Proof. By analogously approach in Theorem 3.5, we need to show that operator
V defined by (3.19) is a contraction operator and we suppose that there exists
u2, u

∗
2 ∈ C0[α0, ξ] then by using lemmas 3.1-3.4 we get

||V (u2)(η)− V (u∗
2)(η)|| ≤ max

η∈[α0,ξ]

∣∣∣∣∣1 + αν
0p

∗Φ(η, u2)

1 + αν
0p

∗Φ(ξ, u2)
− 1 + αν

0p
∗Φ(η, u∗

2)

1 + αν
0p

∗Φ(ξ, u∗
2)

∣∣∣∣∣
≤ max

η∈[α0,ξ]

[
αν
0p

∗
∣∣Φ(ξ, u∗

2)− Φ(ξ, u2)
∣∣

|1 + αν
0p

∗Φ(ξ, u2)||1 + αν
0p

∗Φ(ξ, u∗
2)|

+
αν
0p

∗
∣∣Φ(η, u2)− Φ(η, u∗

2)
∣∣

|1 + αν
0p

∗Φ(ξ, u2)||1 + αν
0p

∗Φ(ξ, u∗
2)|

+

(
αν
0p

∗)2∣∣Φ(η, u2)Φ(ξ, u
∗
2)− Φ(η, u∗

2)Φ(ξ, u2)
∣∣

|1 + αν
0p

∗Φ(ξ, u2)||1 + αν
0p

∗Φ(ξ, u∗
2)|

]
≡ B1 +B2

where

B1 ≤ 2αν
0p

∗Φ̃(α0, ξ)∣∣ (1 + αν
0p

∗Φ(ξ, u2))
∣∣2 ||u2 − u∗

2|| ≤
2αν

0p
∗Φ̃(α0, ξ)∣∣αν

0p
∗Φ(ξ, u2)

∣∣2 ||u2 − u∗
2||

≤ 2Φ̃(α0, ξ)

αν
0p

∗
∣∣Φ(ξ, u2)

∣∣2 ||u2 − u∗
2|| ≤

8aLν−1
m

αν
0p

∗ exp
(

2NM

aLm
α2
0

)
Nν−1

M h(α0, ξ)
||u2 − u∗

2||

and

B2 ≤ (αν
0p

∗)2 max
η∈[α0,ξ]

[ ∣∣Φ(η, u2)− Φ(η, u∗
2)
∣∣∣∣Φ(ξ, u∗

2)
∣∣

|1 + αν
0p

∗Φ(ξ, u2)||1 + αν
0p

∗Φ(ξ, u∗
2)|

+

∣∣Φ(ξ, u∗
2)− Φ(ξ, u2)

∣∣∣∣Φ(η, u∗
2)
∣∣

|1 + αν
0p

∗Φ(ξ, u2)||1 + αν
0p

∗Φ(ξ, u∗
2)|

]
≤ 2(αν

0p
∗)2

Φ̃(α0, ξ)|Φ(ξ, u2)|∣∣1 + αν
0p

∗Φ(ξ, u2)
∣∣2 ||u2 − u∗

2|| ≤ 2
Φ̃(α0, ξ)

|Φ(ξ, u2)|
||u2 − u∗

2||

≤ 4
√
aLν−1

m Φ̃(α0, ξ)

exp
(

NM

aLm
α0

)√
Nν−1

M h(α0, ξ)

where

h(α0, z) = γ

(
1− ν

2
, z2

Nm

aLM

)
− γ

(
1− ν

2
,
Nm

aLM
α2
0

)
,

then we have

B1 +B2 ≤ A(α0, ξ)Φ̃(α0, ξ)||u2 − u∗
2|| ≡ ε̂(α0, ξ)||u2 − u∗

2||,
where ε̂(α0, ξ), A(α0, ξ) and h(α0, ξ) are defined by (3.20), (3.21) and (3.22), it is
easy to check that ε̂ is also increasing function from 0 to +∞ then we get

ε̂(α0, z) < 1, ∀z ∈ [α0, ξ
∗
c ], ε̂(α0, z) > 1, ∀z ∈ [ξ∗c ,∞).
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We can see that ε̂ is an increasing function then it enables us to make conclusion
that there exists a unique positive constant ξ∗c such that ε̂(α0, ξ

∗
c ) = 1 and we

obtain that operator V is a contraction mapping operator. At the end, we can make
conclusion that there must be a unique solution u2 ∈ C0[α0, ξ] to the equation
(2.29). □

We obtained that for each given α0 < ξ < ξ∗c , a unique solution for (2.29) is
u2(η) = u2(ξ)(η) and its derivative will be

u′
2(ξ)(η) =

αν
0p

∗E(η, u2(ξ)(η))[
1 + αν

0p
∗Φ(η, u2(ξ)(η))

]
ηνL∗(u2(ξ)(η)).

(3.23)

It remains to analyze the condition (2.30) which can be rewritten as

ϕc(ξ) = φc(u2(ξ), ξ) := ξν+1 (3.24)

where

ϕc(ξ) =
aαν

0E(ξ, u2(ξ))Ste

2
[
1 + αν

0p
∗Φ(ξ, u2(ξ))

] .
Then we can obtain the next results.

Lemma 3.12. Assume that (3.2)-(3.5) hold. Then for all ξ ∈ (α0, ξ
∗
c ) we have

0 ≤ ϕc(ξ) ≤ ϕc
2(ξ) (3.25)

where

ϕc
2(ξ) =

a
√
Lν−1
m exp

(
− NM

aLm
ξ2
)
Ste

p∗
√

Nν−1
M

[
γ
(

1−ν
2 , NM

aLm
ξ2
)
− γ

(
1−ν
2 , NM

aLm
α2
0

)] (3.26)

which satisfy the following property

ϕc
2(α0) = +∞, ϕc

2(+∞) = 0.

Then there exists unique solution ξ̃∗c ∈ (α0, ξ
∗
c ) for equation (3.24).

Proof. By using boundness of functions E and Φ we have the following assumption

aαν
0E(ξ, u2(ξ))Ste

2
[
1 + αν

0p
∗Φ(ξ, u2(ξ))

] ≤ aE(ξ, u2(ξ))Ste

2p∗Φ(ξ, u2(ξ))
≤

a
√

Lν−1
M exp

(
− NM

aLm
ξ2
)
Ste

p∗
√

Nν−1
M h(α0, ξ)

,

where h(α0, z) is defined by (3.22) and it is easy to check that right hand side
of inequality ϕc

2(ξ) is decreasing function when ξ goes from zero to infinity then
left hand side of inequality ϕc

2(ξ) function is also decreasing. Then it implies that

there exists unique solution ξ̃∗c ∈ (α0, ξ
∗
c ) for the equation (3.24). □

Theorem 3.13. Assume that (3.2)-(3.5), (3.15) hold, then by Lemma 3.7 we can

conclude that there exists unique solution ξ̃∗c ∈ (α0, ξ2) to the equation (3.24).

Proof. It can be proved analogously as Theorem 3.9. □
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Theorem 3.14. Assume that (3.2)-(3.5), (3.25) hold, then there exists at least
one solution of the problem (1.7)-(1.11) with replaced condition with (1.12) where
free boundary is defined by

β(t) = 2ξ̃∗c
√
t, t > 0, (3.27)

where ξ̃∗c is defined in Theorem 3.13 and temperature in liquid region is given by

θ2(z, t) = (θm − θ∗)u2(ξ̃∗c )
(η) + θ∗, α0 ≤ η ≤ ξ̃∗c , (3.28)

where η = z/(2
√
t) is similarity variable and u2(ξ̃∗c )

is unique solution to the integral

equation (2.29) established from Theorem 3.11.

4. Particular cases for thermal conductivity

4.1. Constant thermal coefficients. In this section we are going to analyze
the solution (2.15) and (2.29) when thermal coefficients are constant such that

c(θ2) = c0, ρ(θ2) = ρ0, λ(θ2) = λ0, (4.1)

then replacing (2.14) with N∗ = L∗ = 1 we get the results for E and Φ functions
as the following

E(η, u2(η)) = exp

(
− 1

a
(η2 − α2

0)

)
, (4.2)

Φ(η, u2(η)) =
1

2
exp

(
α2
0

a

)
a

1−ν
2

[
γ

(
1− ν

2
,
η2

a

)
− γ

(
1− ν

2
,
α2
0

a

)]
. (4.3)

By making substitutions the (4.2), (4.3) into integral equations (2.15) and (2.29)
then we have solution for the problem with heat flux condition as

u2(η) =
q∗

2
exp

(
α2
0

a

)
a

1−ν
2

[
γ

(
1− ν

2
,
ξ2

a

)
− γ

(
1− ν

2
,
η2

a

)]
(4.4)

with condition

ϕ(ξ) = ξν+1 (4.5)

where

ϕ(ξ) =
q∗αν

0λ0 exp
(
− 1

a (ξ
2 − α2

0)
)

2lmγm
(4.6)

and it is easy to check that function (4.6) is decreasing function such that

ϕ(α0) > 0, ϕ(+∞) = 0, ϕ′(ξ) < 0,

then we can state that equation (4.5) has an unique solution.
With help of (4.2) and (4.3) the solution of the problem (1.7)-(1.11) replaced

with condition (1.12) can be represented

u2(η) =

1 +
αν

0p
∗

2 exp

(
α2
0

a

)
a

1−ν
2

[
γ

(
1− ν

2
,
η2

a

)
− γ

(
1− ν

2
,
α2
0

a

)]
1 +

αν
0p

∗

a exp

(
α2
0

a

)
a

1−ν
2

[
γ

(
1− ν

2
,
ξ2

a

)
− γ

(
1− ν

2
,
α2
0

a

)] (4.7)

with condition

ϕc(ξ) = ξν+1 (4.8)
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where

ϕc(ξ) =
aαν

0 exp
(
− 1

a (ξ
2 − α2

0)
)
Ste

2

[
1 +

αν
0p

∗

a exp
(α2

0

a

)
a

1−ν
2

(
γ
(
1−ν
2 , ξ2

a

)
− γ
(
1−ν
2 ,

α2
0

a

))] (4.9)

and here we can also see that function (4.9) is non-increasing function because

ϕc(α0) > 0, ϕc(+∞) = 0, ϕ′
c(ξ) < 0,

then we can be obtained that there exists a unique solution to equation (4.8).

4.2. Linear thermal coefficients. In this subsection we are going to analyse
the case when thermal coefficients are given by

c(θ2) = c0

(
1 + α

θ − θ∗

θm − θ∗

)
, ρ(θ2) = ρ0, λ(θ2) = λ0

(
1 + β

θ − θ∗

θm − θ∗

)
(4.10)

where α and β are given positive constants. This particular case can be considered
in this paper for the problem (1.7),(1.12),(1.9)-(1.11).

From (2.14) replacing (4.10) we can obtain

L ∗ (u2) = 1 + βu2, N∗(u2) = 1 + αu2

and notice that u2 ∈ C0[α0, ξ] then taking α0 = 1, ξ = 2 from assumptions
(3.2)-(3.5) we get the

1 + β ≤ L∗(u2) ≤ 1 + 2β, 1 + α ≤ N∗(u2) ≤ 1 + 2α

with

Lm = 1 + β, LM = 1 + 2β, Nm = 1 + α, NM = 1 + 2α.

Then definition of E and Φ functions becomes

E(η, u2(η)) = exp

(
− 1 + α

a(1 + β)
(η2 − α2

0)

)
, (4.11)

Φ(η, u2(η)) =
1

2(1 + β)
exp

(
1 + α

a(1 + 2β)
α2
0

)√
(1 + α)ν−1

a(1 + 2β)ν−1

·
[
γ

(
1− ν

2
, η2

1 + α

a(1 + 2β)

)
− γ

(
1− ν

2
,

1 + α

a(1 + 2β)
α2
0

)]
.

(4.12)

By using (4.11) and (4.12) the integral equation (2.29) can be rewritten as the
following form

u2(η) =

1 +
αν

0p
∗

2(1+β) exp

(
α2

0(1+α)
a(1+2β)

)√
(1+α)ν−1

a(1+2β)ν−1w(α0, η)

1 +
αν

0p
∗

2(1+β) exp

(
α2

0(1+α)
a(1+2β)

)√
(1+α)ν−1

a(1+2β)ν−1w(α0, ξ)

(4.13)

where

w(α0, η) =

[
γ

(
1− ν

2
, η2

1 + α

a(1 + 2β)

)
− γ

(
1− ν

2
,

1 + α

a(1 + 2β)
α2
0

)]
with condition

ϕ̃c(ξ) = ξν+1 (4.14)
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where

ϕ̃c(ξ) =
aαν

0 exp
(
− 1+α

a(1+β) (ξ
2 − α2

0)
)
Ste

2
[
1 + αν

0p
∗Φ(ξ, u2(ξ))

] (4.15)

with Φ(ξ, u2(ξ)) which can be defined by (4.12). We can easily notice that function

ϕ̃c is a decreasing function for all η ∈ (α0, ξ) and it enables us to get statement
that equation (4.14) has a unique solution.

Conclusion

We have studied one-phase Stefan problem for generalized heat equation with
heat flux entering to domain D2 from metallic vapour zone through free boundary
z = α(t) which determined from (1.6). The temperature field in liquid metal zone
and free boundary on melting interface are determined. Existence and uniqueness
of the similarity solution imposing heat flux and convective boundary condition at
the known left free boundary which describes the location of the boiling interface
is proved. This article will be very useful in electrical contact engineers to describe
heat process arising in the body with cross-section variable regions, in particular,
the metal bridge between two electrical contact materials is melted when explosion
appears and to avoid from crashing contacts it is very important to analyze the heat
transfer in bridge material with different characteristics. Explicit solutions for the
problem (1.7)-(1.11) with constant and linear thermal coefficients are represented,
existence and uniqueness of the solution is successfully discussed.
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