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Abstract. The developed methodology for checking the physical feasibility

of a trajectory during its removal phase from automatic tracking in a trajec-

tory processing device based on surveillance radar data is considered. The
approach is based on the numerical Monte Carlo integration method, taking

into account the altitude-velocity characteristics of real aircraft. It is sug-

gested to describe the a priori trajectory features by means of the generalized
Gaussian distribution. The proposed solution makes it possible to improve

the quality of selection of real objects observed against the background of

target-like interference

1. Introduction

Modern radar facilities are complex real-time information and control technical
systems that make use of the latest advances in radio electronics [1, 2]. Automation
of radar information processing is one of the priority directions of development
in the field of radar, which became possible due to increase of performance of
specialised information processing systems and development of statistical theory
of measurements and decision-making.

Two-coordinate and three-coordinate surveillance radars ensure successful solu-
tion of tasks of detection, guidance, target designation, airspace reconnaissance, air
traffic control and air traffic management (ATC). Lookout radars are distinguished
between primary and secondary (trajectory) stages of radar information process-
ing [3]. In the primary processing tasks of detection, resolution, recognition and
measurement of coordinates and motion parameters in one contact with an object
within one interval of data update [1]. Trajectory processing improves the quality
of radar information and includes the following stages [3, 4, 5, 7]: identification
of primary measurements (plots) with trajectories already being tracked; detec-
tion and creation of new trajectories; filtering and extrapolation of coordinates
and motion parameters of observed objects; removal (resetting) of trajectories
from automatic tracking. In surveillance radars, the implementation of trajectory
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processing is significantly complicated by the presence of target-like interfering re-
flection compensation residuals, called discrete clutters [6, 8, 9]. The appearance
of a large number of discrete clutters in the radar view area can lead to false tra-
jectories, the parameters of which are sometimes comparable to real aerodynamic
aircraft. Figure 1 shows an example of a real-world S-band ATC surveillance radar.
There is a lot of interference, which creates false trajectories that interfere with
the observation of trajectories of real airborne objects.

Figure 1. Radar indicator (a), plots and trajectory results ac-
cumulated over 30 operational scans (b) of the real 2D S-band
ATC surveillance radar.

In surveillance radars, clutter maps are used to counteract discrete clutter (see,
for instance [2, 6, 10, 11, 12, 13]). However, these methods are not always inef-
fective, as the main feature to distinguish aerial vehicles from discrete clutters is
their trajectory features.

To distinguish the trajectory of a real airborne object from the trajectory of a
discrete clutter, it is necessary to calculate the likelihood ratios of the trajectory
features. This requires finding the integral of the product of the a priori and
posterior probability density of the trajectory parameter vector, conditional on
the target class and the input influence model. The choice of a priori probability
density of the vector of trajectory parameters must take into account the altitude-
velocity characteristics of targets and sources of discrete clutters. The solution of
such a problem by analytical integration methods is significantly complicated. An
important problem in this case is the closest possible mathematical description of
altitude-velocity characteristics of real objects and on their basis representation of
a priori probability density function.

This paper introduces the notion of a physically realisable trajectory and sub-
stantiates the use of generalised normal distributions [15] that allow us to keep
the a priori probability densities of trajectory parameters uniform in the region of
their admissible values with a simultaneous smooth decline at their boundaries.

A posteriori probability density of the vector of trajectory parameters deter-
mined by a non-linear transformation over the posterior probability density of the
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state vector, estimates of which are calculated in the filtering and extrapolation
unit [16, 18]. The complexity of calculating the posterior probability density of
trajectory parameters and finding integral of the product of this density with a
priori probability density determines the transition to numerical integration and
approximation methods. The requirements for such methods are the following:
high approximation accuracy (finding a numerical solution), high speed of con-
vergence to the true value and simplicity of practical implementation. Numerical
methods based on discrete grid and Monte Carlo approximation methods meet
these requirements [17, 18, 19]. These methods have a high efficiency when ap-
plied to various applications of nonlinear discrete filtering, which is proved by a
large number of foreign and domestic publications. In this paper, the choice of
the Monte Carlo method is justified, which is associated with a smaller amount of
calculations and speed of convergence to the true value, in comparison with the
methods based on a discrete grid [18].

2. Features of the Automatic Track Deleting Phase

In most trajectory processing algorithms that have been implemented, the main
indication for deciding to drop a trajectory from automatic tracking is the appear-
ance of some sequence of missing (missing) marks associated with this trajectory
in its gates while tracking. To account for such a sequence, a criterion is used that
says that a trajectory must be missed if a threshold series of n consecutive missing
plots appears [3]. The main problem in this case is the value of the parameter
n, which in practice is chosen in the range from 3 to 5 (see, for instance [3, 4]).
However, this approach does not allow to discard false trajectories, which occur
when a large number of interfering marks (target-like compensation residuals from
volumetrically and surface-distributed interfering reflections) are observed (see, for
instance [4, 6]). In this case, improving the quality of secondary processing at the
object trajectory reset stage, along with the calculation of skip marks, is pos-
sible by considering a priori information (a posteriori estimation density at the
previous stage) about possible values of trajectory parameters and evaluating the
consistency of filtering algorithms - i.e., by checking the physical feasibility of the
trajectory.

3. Indicators of Physically Realisable Trajectories of Observed Aerial
Objects

Physically realizable trajectory is such a trajectory of an object, the aggregate
of single coordinate estimates of which falls within the range of possible values
of trajectory parameters of radar observation objects and corresponds to one of
the possible models of input impact, typical for escorted classes of objects. For
example, the speed of aerodynamic aircrafts observed by the all-sky radar is in the
range of 35 to 850 m/s (see, [1]). In addition, the trajectory processing algorithm
must take into account all types of input impact models characteristic of the
observed objects.

The distribution of trajectories of objects of different classes by altitudes and
velocities (and sometimes by their derivatives) is the most commonly used fea-
ture of selection target and discrete clutter. The additional use of models of the
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reference and disturbance effects corresponding to the observed objects on coordi-
nate and motion parameter measurements, combined with estimates of trajectory
parameters, makes it possible to reduce the average time for making a correct
decision about the class of the observed object while maintaining fixed values of
false recognition probabilities (see, [8]).

The distribution of discrete clutters by altitude and velocity is determined by
the movement pattern of the clutter sources. Figure 2 shows the altitude-velocity
characteristics of discrete clutter sources for an eastern European mid-continental
climate. Clouds form in the troposphere. The lower boundary of the clouds is 200
m, the upper boundary coincides with the upper boundary of the troposphere and
can reach 12 km. Average velocity and predominant direction of cloud movement
coincides with average wind speed and its direction; the scatter of velocities and
directions of cloud movement is determined by atmospheric turbulence and scatter
of directions of air streams by altitudes. For the East-European regions the maxi-
mum wind velocity in the surface layer does not exceed 35 m/s (see, [8]). Velocities
of ”angel echo” sources are close to cloud velocities and their altitudes range from
100 m to 3000 m (see, [8]). Surface distributed reflectors and concentrated objects
are stationary. Their height is determined by the altitude of the terrain and the
reflector itself relative to the phase centre of the radar antenna.

Figure 2. Altitude-velocity characteristics of discrete clutter
sources for an eastern European mid-continental climate

In order to simplify the decision-making procedure, the allowed range of heights
and speeds for real objects to be analysed is limited to four lines: minimum height,
maximum height, minimum speed and maximum speed.

An example of the altitude-velocity characteristics of real aircraft (excluding
low-speed aircraft such as: helicopter, balloon, hang glider and small unmanned
aerial vehicle) is shown in Figure 3. These characteristics in turn depend on the
aerodynamic and thrust characteristics of the aircraft. Thus, the maximum alti-
tude is determined by the permissible pressure in the air intake channels, and the
lower one by the structural strength limit. The minimum permissible flight speed
is determined by the lowest sustained flight speed at a given altitude, prevent-
ing the aerodynamic aircraft from stalling, and the maximum permissible flight
speed is the highest sustained flight speed at a given altitude, at maximum engine
operation mode, ensuring the flight safety of the aircraft.
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Figure 3. Altitude-velocity characteristics of real aerodynamic
objects (where Hpot−potential attainable altitude; Mlim−Mach
number airspeed limit; Vevol−the minimum speed at which an
aircraft can evolve, qmax−maximum speed pressure; Vmax per
Plimit−maximum speed at maximum thrust).

Thus, there are trajectory differences between aerodynamic objects and discrete
jammers in terms of their altitude-velocity characteristics. Aerodynamic objects
can fly at altitudes from 0.05 to 25 km, while discrete jammers can fly from 0
to 12 km. The range of flight speeds for aerodynamic objects is between 50...70
(on landing) and 850 (or more) m/s, and for discrete jammers from 0 to 35 m/s.
Thus, an aerodynamic object can only be distinguished from discrete jammers by
its altitude if it flies at altitudes above 12 km. The velocity ranges of aerodynamic
objects and discrete jammers do not overlap (discrete jammers up to 35 m/s and
aerodynamic objects from 50 m/s), which makes it possible to distinguish aerody-
namic objects against discrete jammers and use this information for evaluation of
physical realizability of real air object trajectory (see fig.4).

4. Features of using a generalised normal distribution in describing a
priori features of the physical feasibility of a trajectory

To calculate the likelihood ratios for the physical feasibility of a trajectory, it is
necessary to find the integral of the product of the a priori and posterior probability
density of the trajectory parameter vector, conditional on the object class (two
object classes - aerodynamic object and discrete clutter) and the object motion
model. The choice of the a priori probability density of the trajectory parameter
vector must take into account the altitude-velocity characteristics of aerodynamic
objects and discrete clutter sources described in the article above.

If one-dimensional case is considered (e.g., only in height of aerodynamic ob-
ject and discrete interference source), then most often uniform distribution law is
used to describe the a priori features (see Figure 5, a)). The input data for the
presented example are as follows: the range of possible velocities for the ”aerody-
namic object” class is 35 to 850 (or more) m/s, for the ”discrete clutter” class it
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Figure 4. Conditions for physical feasibility of a real aircraft
trajectory based on its altitude-velocity characteristics.

is 0 to 35 m/s; the uniform distribution law parameters for the ”discrete clutter”
is a = 0, b = 35; for the ”aerodynamic object”, a = 35, b = 850. Despite the
simplicity of representation, uniform distribution densities are characterized by a
sharp limitation of the boundaries of the trajectory parameter value ranges, which
leads to jumps in the likelihood ratios, transients in these values and increases the
decision time on the physical feasibility (not feasibility) of the trajectory.

Figure 5. Examples of representations of a priori probability
densities of trajectory attributes of physical realisability of a tra-
jectory: a) using a uniform distribution law; b) using a generalised
normal probability density.

In order to eliminate the negative impact of the jump change in the likelihood
ratio of the trajectory features on the decision-making procedure and to ensure
uniformity of a priori probability densities of the trajectory parameters in the
region of admissible values, their description is possible by means of left-to-zero
truncated generalized normal distributions. The generalized normal distribution,
examples of which are shown in Figure 6, is a parametric family of symmetric
distributions (see, [15]).
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Figure 6. Centred generalised Gaussian probability density
function with unit variance for different values of the shape pa-
rameter.

Fig.6 Centred generalised Gaussian probability density function with unit vari-
ance for different values of the shape parameter.

The probability density pGGD(x) of random variables obeying this family is
given by the formula (see, [15]):

pGGD(x) =
1

2Γ (1 + 1/p)A (p, σ)
e−(|

x−µ
A(p,σ) |)p ,

where Γ(x) =

∞∫
0

tx−1e−tdt - Gamma function;

A (p, σ) =
√
(σ2Γ (1/p))

/
Γ (3/p) - distribution parameter;

σ− standard deviation;
µ− mean;
p− form parameter.
The generalised normal distribution has three special cases, illustrated in Figure

5:
p = 1− the distribution is transformed into a Laplace distribution;
p = 2− the distribution is transformed into a Gaussian (normal) distribution;
p = ∞− the distribution converges to a uniform distribution law on the interval

(µ−
√
3σ, µ+

√
3σ) (see, [15]).

Since the altitutude-velocity characteristics cannot be in the region of negative
values, it therefore requires the use of a priori densities truncated to the left at
zero. The probability density of a generalised Gaussian distribution truncated to
the left at zero will be:

pTGGD(x) = pGGD(x)

/1−
0∫

−∞

pGGD(x)dx

.
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Figure 5, b), shows an example of generalised normal distributions, truncated to
the left at zero, used to describe the a priori densities of the total velocity distribu-
tion (raw data: the range of possible velocities of the aerodynamic object and dis-
crete clutter correspond to the figure ; the density parameters for discrete interfer-
ence are σ = 20, µ = 0, p = 8 for ”aerodynamic object” –σ = 235, µ = 45, p = 40
As can be seen from Figure 5, b) the use of generalised normal distributions main-
tains uniform a priori probability densities of trajectory parameters in the range
of their admissible values, with a simultaneous smooth decline at their boundaries.

5. Features of Using the Monte Carlo Method for Probability Density
Approximations in Radiolocation

Although it is possible to represent analytically the components of the integral
from the a priori and posterior probability densities of the trajectory features, it
is difficult to express its first form through analytical functions. This problem can
be eliminated by using numerical integration methods. The choice of the Monte
Carlo integration method is due to the advantages of this method over the others
(see, [18, 19]): direct accounting of the influence of nonlinear transformations on
the approximated density, simple implementation and high convergence rate.

The Monte Carlo method is a universal method for the approximate calculation
of integrals I of high multiplicity from some non-randommultidimensional function
g(α) (see, [18]): ∫

Rnα

g(α)dα =

∫
Rnα

g(α)

q(α)
q(α)dα. (5.1)

To calculate the integral it is necessary (see, [18]):
1) obtain N independent random counts αi (so-called Monte Carlo random

samples (particles)), where i is the number of random argument generated by the
random number sensor (i = 1, N ; N >> 1) distributed in the region Rnα with
some distribution density q(α) (where nα−dimension of vector α);

2) determine at points αi values of function g(αi) and probability density q(αi);
3) find numerical value of integral by formula:

IN =
1

N

N∑
i=1

g(αi)

q(αi)
. (5.2)

For independent samples αi, the estimate IN is unbiased and, according to the
law of large numbers, converges in probability to the true value (5.1). The variance
of the estimation error of the integral (5.2) in this case is defined by the expression:

DN =
1

N

N∑
i=1

(
g(αi)

q(αi)
− IN

)2

. (5.3)

From (5.3) it can be seen that that the order of convergence error estimate

of the Monte Carlo method is proportional to relation 1
/√

N . Expression (5.2)

contains as a free parameter, the probability density function q(α) of random
samples αi. Its choice is dictated by the requirement of minimizing the variance
(5.3) by reducing the dispersion of the ratio g(α)/q(α) the probability density q(α)
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value is considered to be admissible with respect to the function g(α), if condition
(see, [18]) is fulfilled:

q(α) > 0 for all α ∈ Rnα , in which |q(α)| > 0. (5.4)

The scatterplot of the random values of the density q(α) must overlap the area of
all possible values of the integrating function g(α). The variance of the integration
error will be minimal if the condition is satisfied:

q(α)∝ |g(α)| . (5.5)

Dispersion minimisation (5.3) is explained as follows: when conditions (5.4)
and (5.5) are satisfied, regions with a large value of the function |g(α)| will be
the most likely to generate random samples. These samples will contribute more
significantly to the IN estimate than the others, for which |g(α)| is negligible.

The set of random samples distributed according to density q(α) for which
conditions (5.4) and (5.5) are satisfied is called Importance Sampling and the
probability density is called Importance Density (see, [19]).

6. Monte Carlo Approximation of an Arbitrary Probability Density
Function

Let a non-random function g(α) be represented as the product of some pre-
specified function f(α) and a probability density p(α) positively defined on a
domain Rnα (see, [19]):

g(α) = f(α)p(α). (6.1)

If the upper boundedness condition of the ratio g(α)/q(α) is satisfied, expression
(5.1) will be written as [19]:

IN =
1

N

N∑
i=1

f(αi)
p(αi)

q(αi)
=

1

N

N∑
i=1

f(αi)w̃i, (6.2)

Where w̃i =
p(αi)

q(αi)
− irregular weights.

The use of non-normalised weights w̃i is converted to normalised weights [18]:

wi =
w̃i

N∑
j=1

w̃j

,

N∑
i=1

wi = 1. (6.3)

Expression (6.1) with reference to (6.3) will be written as:

IN =

N∑
i=1

f(αi)
w̃i

N∑
j=1

w̃j

=

N∑
i=1

f(αi)w̃i. (6.4)
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When using the delta function δ(α) instead of f(α), the probability density
function p(α) can be approximated by a weighted sum (due to the filtering property
of the delta function) (see, [19]):

p(α) =
1

N

N∑
i=1

w̃iδ(α− αi) =

N∑
i=1

wiδ(α− αi). (6.5)

The minimum variance of the approximation error p(α) will be observed when
the equality q(α) = p(α) is satisfied. In nonlinear Bayesian filtering the pairs
{αi, wi}Ni=1 are called particles. Here αi is the coordinate of the i -th particle and
wi is its weight. In the simplest case the weight is chosen equal to the value of
density δ(α).

Example of Monte Carlo approximation of one-dimensional probability density
function. Let the density for a one-dimensional random variable x be defined as
Gaussian (expectation equal to zero and variance equal to D = 169). We know
that the probability density for the square of a Gaussian random variable with
RMS D is:

fy(y) =
1√

2πyD
e

(
−

y

2D

)
, y > 0. (6.6)

This needs to be proved using the Monte Carlo approximation method (see
Figure 7). The proof was carried out in three stages. In the first stage, random
Monte Carlo samples were generated (the number of random samples was 3074,
in order to provide a relative error value of 5% and a confidence level of 0.95)
within the allowable values of the random variable x, with weights equal to the
probability density function, as shown in the upper left part of Figure 7). At the
second stage, weights were normalised and the initial distribution law was checked
for consistency with the Monte Carlo distribution obtained by solving the problem
of statistical series alignment followed by the Pearson’s χ2 test, as shown in the
middle section of Figure 7. As a result of the calculations, it was determined
that, with 7 degrees of freedom, the confidence interval was p = 0.95. The third
step was a non-linear Monte Carlo transformation y = x2 over random samples,
followed by a Monte Carlo test for consistency with the distribution law (6.6). The
calculation showed that, with 7 degrees of freedom, the confidence was also p =
0.95 for condition (6.6). Thus, the statement was true.

An example of approximation of two-dimensional probability density function
by Monte Carlo method. As an example, we considered the classical radioloca-
tion’s problem of finding the joint probability density function for the amplitude
and phase of an oscillation generated by the rotational motion of a point with
coordinates x1, x2 around the origin. For different values of parameters of random
variables x1, x2 there will be different kinds of distribution of amplitude and phase.
As an example, we considered the simplest case of centred independent random
variables with the same unit variance. In this case, the amplitude A will have a
Rayleigh distribution density and the phase will be uniformly distributed. The
Monte Carlo approximation procedure for the two-dimensional probability den-
sity function is similar to the one-dimensional probability density function and is
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Figure 7. Example of Monte Carlo approximation of a proba-
bility density function (univariate case).

shown in Figure 8. As can be seen from the figure, after a non-linear transforma-
tion over the generated Monte Carlo random samples, the law is checked against
the obtained Monte Carlo method.

Figure 8. Example of Monte Carlo approximation of a proba-
bility density function (two-dimensional case).

Thus the numerical Monte Carlo method has a high approximation accuracy
(finding a numerical solution) and is easy to implement in practice. Compared

69



2A.S. SOLONAR, P.A. KHMARSKI, A.O. NAUMOV, D.A. JURAEV, AND B.M. MUXAMMEDOV

to grid-based methods, the Monte Carlo method is less computationally intensive
and has a higher rate of convergence to the true value.

7. Method for Verifying a Physically Realisable Trajectory

Based on the approaches proposed above, the device for checking physical fea-
sibility and selecting trajectory signs was implemented, which consists of the fol-
lowing elements (see Fig. 9): block of approximation of a posteriori probability
densities; block of evaluation of trajectory consistency and probability of physi-
cal feasibility, decision-making device on assigning a sign ”physically unrealizable
trajectory”.

Figure 9. Device for checking the physical feasibility of a trajectory.

Figure 10. Example of Monte Carlo approximation of the full
velocity probability density.

The proposed methodology for checking the physical feasibility of a trajectory at
the stage of trajectory reset from automatic tracking is reduced to the calculation
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of the likelihood ratio Vf (V
(j)
k+1) based on the trajectory parameters at the current

(k+1)-survey of the radar:

LTp(V
(j)
k+1) =

Vmax∫
Vmin

p(V
(j)
k+1)p(V

(j)
k+1

∣∣∣Θ(j)
k+1)dVk+1

where V
(j)
k+1 = h

(T )
V (V

(j)
k+1)−is the full velocity of the object for the j−th trajectory

on the k + 1−survey, related to the state vector α
(j)
k+1 via the functional transfor-

mation h
(T )
η (·) (for the two-dimensional case see Figure 10 for an example);

p(V
(j)
k+1)−is the a priori probability density of total velocity V

(j)
k+1 for the j−th

trajectory on the k+ 1− survey at the set (first to k+ 1−th) Θ
(j)
k+1 of radar plots

of the detected object;

p(V
(j)
k+1

∣∣∣Θ(j)
k+1)−is the posterior total velocity density V

(j)
k+1 for the j−th trajec-

tory on the k+1−survey at the set (first to k+1−th) Θ
(j)
k+1 of radar marks of the

detected object;
V min
max minimum and maximum full velocity.

The developed methodology for verifying the physical feasibility of a trajectory
at the stage of trajectory reset from automatic tracking includes the following
sequence of actions (on the example of the j−th trajectory, the upper index j is
omitted):

1. Monte Carlo approximation of the posterior probability density function of
the state vector p(αk+1|Θk+1) on the k + 1−survey by a set of NMC random

Monte Carlo particles α
(s)
k+1.

2. Approximation of the posterior probability density function of the full ve-

locity distribution p(V
(j)
k+1

∣∣∣Θ(j)
k+1) by a non-linear transformation h

(T )
V (α

(s)
k+1) over

the approximated density function .
3. determine the value of the likelihood ratio by calculating the numerical value

of integral LF

(
V

(j)
k+1

)
using the Monte Carlo method.

4. Assess the physical feasibility of the trajectory by comparing LF (V
(j)
k+1)to a

pre-set threshold value Lth.
5. Calculate the consistency of the estimation of the filtering and extrapolation

device according to (see, [7]) and check that it falls within a given confidence
interval.

6. The evaluation of the final physical feasibility of the trajectory (for the case
of ”physically unrealizable trajectory”) is performed according to the calculated
value of the likelihood ratio (5.1), taking into account the value of the filtering
device consistency.

8. Conclusion

The paper considers the problem of false trajectories, which significantly com-
plicate the process of radar observation of useful real airborne objects. It was
shown that false trajectories can be formed both randomly (by noise) and from
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discrete interference. To combat false trajectories, it is necessary to carry out the
consistency check on the set of trajectory marks and take into account the trajec-
tory differences of interference from useful objects. In order to take into account
trajectory differences one must form an integral of the product of a priori features
and posterior probability density. In this paper we propose a method of Monte
Carlo approximation of posterior probability density function and description of
a priori distributions of trajectory features of selection by generalized Gaussian
density function truncated to zero to eliminate step change of probability ratio
for trajectory features. The advantage of calculating integrals included in the
likelihood ratios using the trajectory features by the numerical Monte Carlo inte-
gration method is substantiated, which will allow taking into account the a priori
density form of any complexity, and the required accuracy of such likelihood ratio
calculations will be determined by the number of random Monte Carlo samples.
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