ON FUZZY SUPRA P-SPACES

¹K. Selvakumar, ²K. Mahaboob Hassain Sherieff and ³A. Vinoth kumar

 ¹Research Scholar (Part-Time), Department of Mathematics C.Abdul Hakeem College, Melvisharam-632509. Affiliated to Thiruvalluvar University, Serkkadu, Vellore Tamilnadu, India. E-mail:selvakumarpkm@gmail.com
²Assistant Professor, Department of Mathematics C. Abdul Hakeem College, Melvisharam-632509. Affiliated to Thiruvalluvar University, Serkkadu, Vellore Tamilnadu, India. E-mail:rosesheri14@gmail.com
³Associate Professor, Department of Mathematics Shanmuga Industries Arts & Science College, Tiruvannamalai-606603. Affiliated to Thiruvalluvar University, Serkadu,Vellore. Tamilnadu, India. E-mail:vino_math30@yahoo.com

Abstract

In this paper we introduced and studied the concepts of fuzzy supra P-spaces. Also we discuss several characterizations and properties of fuzzy supra P-spaces are introduced. Several examples are given to illustrate the concepts.

Keywords: Fuzzy supra F_{σ} -set, Fuzzy supra G_{δ} -set, Fuzzy supra nowhere dense set, Fuzzy supra dense set.

1. Introduction

In the year 1965, L. A.Zadeh [12] was first introduced the concept of fuzzy sets and fuzzy set operations in his classical paper. In 1968, the theory of fuzzy topological spaces was introduced and developed by C.L.Chang [3].

In 1983, Mashhour.A.S.et.al., [5] introduced and studied the concept of Supra topological spaces. In 1987, AbdEl-monsef et.at [1] introduced the concepts of fuzzy supra topological as a natural generalization of the notion of supra topological spaces.

In 1972, Mishra.A.K [6] introduced the concepts of P-spaces as a generalization of ω_{α} -additive spaces of Sikorski [10] and Cohen.L.W and Goffman.C [4]. The concept of P-spaces in fuzzy setting was introduced by Thangaraj.G and Balasubramanian.G [11].

In this paper introduced and studied the concepts of fuzzy supra P-spaces. Several examples are given to illustrate the concepts. It is established that fuzzy supra σ -boundary sets are fuzzy supra closed sets, fuzzy supra co- σ -boundary sets are fuzzy supra open sets in fuzzy supra P-spaces.

2. Preliminaries

Definition 2.1 [1].

A collection T^* of fuzzy sets in a set U is called fuzzy supra topology on U if the following conditions are satisfied:

1) **0** and **1** belongs to T^* .

2) $g_{\chi} \in T^*$ for each $\chi \in \Lambda$ implies $(v_{\chi \in \Lambda} g_{\chi}) \in T^*$.

The pair (U,T^*) is called a fuzzy supra topological space. The elements of T^* are called fuzzy supra open sets and the complement of a fuzzy supra open set is called fuzzy supra closed set.

Definition: 2.2 [9]

Let (U,T^*) be a fuzzy supra topological space and μ be a fuzzy set in U, then the fuzzy supra closure and fuzzy supra interior of μ defined respectively as

 $cl^*(\mu) = \Lambda \{ g / g \text{ is a fuzzy supra closed set in } U \text{ and } \mu \leq g \}$

 $int^*(\mu) = v \{ g / g \text{ is a fuzzy supra open set in } U \text{ and } g \leq \mu \}$

Definition: 2.3 [9]

Let (U,T) be a fuzzy topological space and T^* be a fuzzy supra topology on U. We call T^* a fuzzy supra topology associated with T if $T \le T^*$.

Remark: 2.4 [9]

- 1) The fuzzy supra closure of a fuzzy set μ in a fuzzy supra topological space is the smallest fuzzy supra closed set containing μ .
- 2) The fuzzy supra interior of a fuzzy set μ in a fuzzy supra topological space is the largest fuzzy supra open set contained in μ .
- 3) If (U,T^*) is an associated fuzzy supra topological space with the fuzzy topological space (U,T) and μ is any fuzzy set in U, then $int(\mu) \le int^*(\mu) \le \mu \le cl^*(\mu) \le cl(\mu)$

Lemma 2.5 [3]

For a fuzzy set μ in a fuzzy topological space U,

(i) $1 - int(\mu) = cl(1-\mu)$,

(ii) $1 - cl(\mu) = int(1 - \mu)$.

Definition 2.6 [7]

A fuzzy supra open set μ in fuzzy supra topological space (U,T^{*}) is called fuzzy supra F_{σ} -set in (U,T^{*}) if $\mu = \bigvee_{i=1}^{\infty} (\mu_i)$, where $1 - \mu_i \in T^*$ for $i \in I$,

Definition 2.7 [7]

A fuzzy supra open set μ in fuzzy supra topological space (U,T^*) is called fuzzy supra G_{δ} -set in (U,T^*) if $\mu = \wedge_{i=1}^{\infty}(\mu_i)$, where $\mu_i \in T^*$ for $i \in I$.

Definition 2.8 [7]

A fuzzy set μ in a fuzzy supra topological space (U,T^*) is called a fuzzy supra dense set if there exists no fuzzy supra closed set β in (U,T^*) such that $\mu < \beta < 1$. That is, $cl^*(\mu)=1$, in (U,T^*) .

Definition 2.9 [8]

A fuzzy set μ in fuzzy supra topological space (U,T^*) is called a fuzzy supra nowhere dense set if there exists no non-zero fuzzy supra open set δ in (U,T^*) such that $\delta < cl^*(\mu)$. That is, int^{*}cl^{*}(μ)=0, in (U,T^*) .

Definition 2.10 [8]

A fuzzy set μ in a fuzzy supra topological space (U,T^*) is called a fuzzy supra first category set if $\mu = \bigvee_{i=1}^{\infty}(\mu_i)$, where (μ_i) 's are fuzzy supra nowhere dense set in (U,T^*) . Any other fuzzy set in (U,T^*) is said to be fuzzy supra second category space.

3. Fuzzy Supra P-Spaces

Definition 3.1

A fuzzy supra topological space (U,T^*) is called a fuzzy supra P-space if countable intersection of fuzzy supra open sets in (U,T^*) is fuzzy supra open. That is., every non-zero fuzzy supra G_{\Box} -set in (U,T^*) is fuzzy supra open set in (U,T^*) .

Example 3.1

Let U={x,y,z}. The fuzzy sets μ_1 , μ_2 and $\mu_3 \square$ are defined on U as follows:

$\mu_1: U \square [0,1]$ is defined as	$\mu_1(x)=0.2;$	$\mu_1(y)=0.3;$	$\mu_1(z)=0.1.$
$\mu_2: U \square [0,1]$ is defined as	μ ₂ (x)=0.3;	μ ₂ (y)=0.4;	$\mu_2(z)=0.4.$
μ_3 :U \square [0,1] is defined as	μ ₃ (x)=0.1;	μ ₃ (y)=0.2;	μ ₃ (z)=0.3.

Then, $T^* = \{0, \mu_1, \mu_2, \mu_3, (\mu_1 \Box \mu_2), (\mu_1 \Box \mu_3), (\mu_2 \Box \mu_3), (\mu_1 \Box \mu_2), (\mu_1 \Box \mu_3), (\mu_2 \Box \mu_3), [\mu_1 \Box (\mu_2 \Box \mu_3)], [\mu_1 \Box (\mu_2 \Box \mu_3)], (\mu_1 \Box \mu_2 \Box \mu_3), (\mu_1 \Box \mu_2 \Box \mu_3), 1\}$ is a fuzzy supra topology on U. Now the fuzzy sets $\mu_1 \Box \mu_3 = \{\mu_1 \Box \Box \mu_1 \Box \mu_2 \Box \Box \Box \mu_1 \Box \mu_2 \Box (\mu_2 \Box \mu_3)\}$ and $\mu_1 \Box \mu_2 = \{\mu_2 \Box (\mu_2 \Box \mu_3) \cup [\mu_1 \Box (\mu_2 \Box \mu_3)] \cup [\mu_1 \Box (\mu_2 \Box \mu_3)]\}$ are fuzzy supra G_□-sets in (U,T^{*}) and $\mu_1 \Box \mu_3, \mu_1 \Box \mu_2$ are fuzzy supra open sets in (U,T^{*}). Hence, (U,T^{*}) is a fuzzy supra P-space.

Example 3.2:

Let U={x,y,z}. The fuzzy sets μ_1 , μ_2 and $\mu_3 \square$ are defined on U as follows:

$\mu_1: U \square [0,1]$ is defined as	$\mu_1(x)=0.3;$	$\mu_1(y)=0.6;$	$\mu_1(z)=0.2.$
μ_2 :U \square [0,1] is defined as	μ ₂ (x)=0.5;	μ ₂ (y)=0.7;	$\mu_2(z)=0.4.$
μ_3 :U \square [0,1] is defined as	μ ₃ (x)=0.7;	μ ₃ (y)=0.3;	µ ₃ (z)=0.4.

Then, $T^* = \{0, \mu_1, \mu_2, \mu_3, (\mu_1 \square \mu_2), (\mu_1 \square \mu_3), (\mu_2 \square \mu_3), (\mu_1 \square \mu_2), (\mu_2 \square \mu_3), (\mu_1 \square \mu_2 \square \mu_3), 1\}$ is a fuzzy supra topology on U. Now the fuzzy set $\lambda = \{\mu_1 \square \mu_2 \square \mu_3 \square \square (\mu_1 \square \mu_2) \square (\mu_1 \square \mu_2) \square (\mu_2 \square \mu_3) \square \square (\mu_1 \square \mu_2) \square (\mu_2 \square \mu_3) \square \square (\mu_1 \square \mu_2) \square (\mu_2 \square \mu_3) \square \square (\mu_1 \square \mu_2) \square (\mu_2 \square \mu_3) \square \square (\mu_1 \square \mu_2)$ is a fuzzy supra G_□-set in (U,T^{*}). But λ is not a fuzzy supra open set in (U,T^{*}). Hence the fuzzy supra topological space (U,T^{*}) is not a fuzzy supra P-space.

Proposition 3.1.

If μ is a non-zero fuzzy supra F_{σ} -set in a fuzzy supra P- space (U,T^*) , then μ is a fuzzy supra closed set in (U,T^*) .

Proof.

Since μ is a non-zero fuzzy supra F_{σ} -set in (U,T^*) , $\mu = \bigvee_{i=1}^{\infty} (\mu_i)$, where (μ_i) 's are fuzzy supra closed in (U,T^*) . Then $1-\mu=1-(\bigvee_{i=1}^{\infty} (\mu_i))=\bigwedge_{i=1}^{\infty} (1-\mu_i)$. Now, (μ_i) 's are fuzzy supra closed set in (U,T^*) , implies that $(1 \Box \mu_i)$'s are fuzzy supra open set in (U,T^*) . Hence, we have $1-\mu=\bigwedge_{i=1}^{\infty} (1-\mu_i)$, where $1 \Box \mu_i \Box T^*$. Then $1 \Box \mu$ is a fuzzy supra G_{δ} -set in (U,T^*) . Since (U,T^*) is a fuzzy supra P-space, $1 \Box \mu$ is fuzzy supra open in (U,T^*) . Therefore μ is a fuzzy supra closed set in (U,T^*) .

Proposition 3.2.

If the fuzzy supra topological space (U,T^*) is a fuzzy supra P-space, then $cl^*(\bigvee_{i=1}^{\infty}(\mu_i)) = \bigvee_{i=1}^{\infty} cl^*(\mu_i)$ where (μ_i) 's are non-zero fuzzy supra closed sets in (U,T^*) .

Proof.

Let (μ_i) 's be non-zero fuzzy supra closed sets in a fuzzy supra P-space (U,T^*) . Then $\mu = \bigvee_{i=1}^{\infty} (\mu_i)$, is a non-zero fuzzy supra F_{σ} -set in (U,T^*) . Byproposition.3.1, μ is a fuzzy supra closed set in (U,T^*) . Hence $cl^*(\mu)=\mu$, which implies that $cl^*(\bigvee_{i=1}^{\infty} (\mu_i)) = \bigvee_{i=1}^{\infty} (\mu_i) = \bigvee_{i=1}^{\infty} cl^*(\mu_i)$ [since (μ_i) 's are fuzzy supra closed sets in closed, $cl^*(\mu)=(\mu)$]. Therefore $cl^*(\bigvee_{i=1}^{\infty} (\mu_i)) = \bigvee_{i=1}^{\infty} cl^*(\mu_i)$, where (μ_i) 's are fuzzy supra closed sets in

$(U,T^{*}).$

Proposition 3.3.

If (μ_i) 's are fuzzy supra regular closed sets in a fuzzy supra P-space (U,T^*) , then $cl^*\left(\bigvee_{i=1}^{\infty}(\mu_i)\right) = \bigvee_{i=1}^{\infty}(\mu_i)$.

Proof.

Let (μ_i) 's be fuzzy supra regular closed sets in a fuzzy supra P-space (U,T^*) . Then $(1-\mu_i)$'s are fuzzy supra open sets in (U,T^*) . Let $\lambda = \bigwedge_{i=1}^{\infty} [1-\mu_i]$. Then λ is a non-zero fuzzy supra G_{δ} -set in (U,T^*) .

Since the fuzzy supra topological space (U,T^*) is a fuzzy supra

P-space, int^{*}(λ)= λ , which implies that int^{*}($\bigwedge_{i=1}^{\infty} [1-\mu_i]$) = $\bigwedge_{i=1}^{\infty} [1-\mu_i]$. Then,

$$1 - cl^* \left(\bigvee_{i=1}^{\infty} \left(\mu_i \right) \right) = 1 - \bigvee_{i=1}^{\infty} \left(\mu_i \right). \text{ Hence, we have } cl^* \left(\bigvee_{i=1}^{\infty} \left(\mu_i \right) \right) = \bigvee_{i=1}^{\infty} \left(\mu_i \right).$$

Proposition 3.4.

If the fuzzy supra topological space (U,T^*) is a fuzzy supra P- space and if μ is a fuzzy supra first category set in (U,T^*) , then μ is not a fuzzy supra dense set in (U,T^*) .

Proof.

Assume the contrary. Suppose that μ is a fuzzy supra first category set in (U,T^*) such that $cl^*(\mu)=1$. Then, $\mu = \bigvee_{i=1}^{\infty} (\mu_i)$, where (μ_i) 's are fuzzy supra nowhere dense sets in (U,T^*) . Now $1-cl^*(\mu_i)$ is a fuzzy supra open set in (U,T^*) . Let $\lambda = \bigwedge_{i=1}^{\infty} \left[1-cl^*(\mu_i)\right]$. Then λ is a non-zero fuzzy supra G_{δ} -set in (U,T^*) . Now we have $\bigwedge_{i=1}^{\infty} \left[1-cl^*(\mu_i)\right] = 1-\bigvee_{i=1}^{\infty} cl^*(\mu_i) \le 1-\bigvee_{i=1}^{\infty} (\mu_i) = 1-\mu$. Hence $\lambda \le 1 \Box \mu$. Then $int^*(\lambda) \le int^*(1-\mu)=1-cl^*(\mu) = 1-1=0$. That is, $int^*(\lambda)=0$. Since (U,T^*) is a fuzzy supra P-space, $\lambda = int^*(\lambda)$ which implies that $\lambda = 0$, a contradiction to λ being a non-zero fuzzy supra G_{δ} -set in (U,T^*) .

Proposition 3.5.

If the fuzzy supra topological space (U,T^*) is a fuzzy supra P-space and if μ is a fuzzy supra first category set in (U,T^*) , then μ is not a fuzzy supra nowhere dense set in (U,T^*) .

Proof.

Let μ be a fuzzy supra first category set in a fuzzy supra P-space (U,T^{*}). Then, we have $\mu = \bigvee_{i=1}^{\infty} (\mu_i)$, fuzzy sets in (U,T^*) . where (μ_i) 's are supra nowhere dense Now $\operatorname{int}^{*}\operatorname{cl}^{*}(\mu) = \operatorname{int}^{*}\operatorname{cl}^{*}(\bigvee_{i=1}^{\infty}(\mu_{i})) \geq \operatorname{int}^{*}(\bigvee_{i=1}^{\infty}cl^{*}(\mu_{i})) \text{ and } \left[\bigvee_{i=1}^{\infty}cl^{*}(\mu_{i})\right] \text{ is a fuzzy supra}$ F_{σ} -set in (U,T^{*}). Since (U,T^{*}) is a fuzzy supra P-space, by Proposition.3.1, $\left[\bigvee_{i=1}^{\infty} cl^{*}(\mu_{i}) \right]$ is a non-zero fuzzy supra closed set in (U,T*). Also interior of a fuzzy supra closed is a fuzzy supra regular open set, $\operatorname{int}^*\left[\bigvee_{i=1}^{\infty} cl^*(\mu_i)\right]$ is a non-zero fuzzy supra regular open set in (U,T*). Hence, we have $0 \neq \operatorname{int}^* \left[\bigvee_{i=1}^{\infty} cl^*(\mu_i) \right] \leq \operatorname{int}^* cl^*(\mu)$ implies that $\operatorname{int}^* cl^*(\mu) \neq 0$. Therefore, μ is not a fuzzy supra nowhere dense set in (U,T^*) .

Proposition 3.6.

If μ is a fuzzy supra first category set in a fuzzy supra P-space (U,T^*) such that $\lambda \leq 1 \Box \mu$, where λ is a non-zero fuzzy supra dense and fuzzy supra G_{δ} -set in (U,T^*) , then μ is a fuzzy supra nowhere dense set in (U, T^*) .

Proof.

Let μ be a fuzzy supra first category set in (U,T^{*}). Then, $\mu = \bigvee_{i=1}^{\square} (\mu_i)$, where (μ_i) 's are fuzzy supra nowhere dense sets in (U,T^{*}). Now, $1-cl^*(\mu_i)$ is a fuzzy supra open set in (U,T^{*}). Let $\lambda = \Lambda_{i=1} [1-cl^*(\mu_i)]$. (U,T*). non-zero fuzzy supra G_δ-set in Then λ is а Now. we have $\wedge_{i=1}^{\infty} \left[1 - cl^*(\mu_i) \right] = 1 - \bigvee_{i=1}^{\infty} cl^*(\mu_i) \leq 1 - \bigvee_{i=1}^{\infty} (\mu_i) = 1 - \mu$. Hence, $\lambda \leq (1 - \mu)$. Then we have $\mu \leq 1 - \bigvee_{i=1}^{\infty} (\mu_i) \leq 1 - \bigvee_{i=1}^{\infty$ $(1 \Box \lambda)$. Now, $\operatorname{int}^* \operatorname{cl}^*(\mu) \leq \operatorname{int}^* \operatorname{cl}^*(1 \Box \lambda)$, which implies that $\operatorname{int}^* \operatorname{cl}^*(\mu) \leq 1$ - $\operatorname{cl}^* \operatorname{int}^*(\lambda)$. Since (U,T^*) is a fuzzy supra P-space, the fuzzy supra G_{δ}-set λ is fuzzy supra open set in (U,T^*) and int^{*} $(\lambda) = \lambda$. Therefore, int cl^{*}(μ) $\leq 1 - cl^{*}(\lambda) = 1 - 1 = 0$ (since λ is fuzzy supra dense). Then, int cl^{*}(μ) = 0 and hence μ is a fuzzy supra nowhere dense set in (U,T^*) .

Theorem 3.1.[8]

Let (U,T^*) be a fuzzy supra topological space. Then the following are equivalent:

- (1) (U,T^*) is a fuzzy supra Baire space.
- (2) $int^*(\lambda)=0$, for every fuzzy supra first category set λ in (U,T^*) .
- (3) $cl^*(\mu)=1$, for every fuzzy supra residual set μ in (U,T^*) .

Proposition 3.7.

If μ is a fuzzy supra first category set in a fuzzy supra P-space (U,T^*) such that $\lambda \leq 1$ - μ , where λ is a non-zero fuzzy supra dense and fuzzy supra G_{δ}-set in (U,T^*) , then (U,T^*) is a fuzzy supra Baire space.

Proof.

Let μ be a fuzzy supra first category set in (U,T^{*}). By Proposition.3.6, we have int^{*}cl^{*}(μ) =0. Then int^{*}(μ) \leq int^{*}cl^{*}(μ) implies that int^{*}(μ) = 0 and hence by Theorem 3.1, (U,T^{*}) is a fuzzy supra Baire space.

Proposition 3.8.

If the fuzzy supra topological space (U,T^*) is a fuzzy supra P- space and if μ is a fuzzy supra dense and fuzzy supra first category set in (U,T^*) , then there is no non-zero fuzzy supra G_{δ} -set λ in (U,T^*) such that $\lambda \leq 1 \Box \mu$.

Proof.

Let μ be a fuzzy supra first category set in (U,T^*) . By Proposition.3.6, we have a fuzzy supra G_{δ} -set λ in (U,T^*) such that $\lambda \leq 1 \square \mu$. Then, int^{*} $(\lambda) \leq int^*(1 \square \mu)$ implies that $int^*(\lambda) \leq 1$ -cl^{*} $(\mu) = 1 - 1 = 0$ [since μ is fuzzy supra dense, cl^{*} $(\mu)=1$]. That is, int^{*} $(\mu)=0$. Since (U,T^*) is a fuzzy supra P-space, int^{*} $(\lambda)=\lambda$ and hence we have $\lambda=0$. Hence, if μ is a fuzzy supra dense and fuzzy supra first category set in (U,T^*) , then there is no non-zero fuzzy supra G_{δ} -set λ in (U,T^*) such that $\lambda \leq 1 \square \mu$.

Definition 3.2.

A fuzzy set μ in a fuzzy supra topological space (U,T^*) is called a fuzzy supra σ -boundary set, if $\mu = V^{\infty}_{i=1}(\mu_i)$ where $\mu_i = cl^*(\mu_i) \wedge (1-\mu_i)$ and (μ_i) 's are fuzzy supra regular open sets in (U,T^*) .

Proposition 3.9.

If μ is a fuzzy supra σ -boundary set in a fuzzy supra topological space (U,T^*) , then μ is a fuzzy supra F_{σ} -set in (U,T^*) .

Proof.

Let μ be a fuzzy supra σ -boundary set in a fuzzy supra topological space (U,T^*) . Then $\mu = V^{\infty}_{i=1}(\mu_i)$, where $\mu_i = cl^*(\mu_i) \wedge (1-\mu_i)$ and (μ_i) 's are fuzzy supra regular open sets in (U,T^*) . Since (μ_i) is a fuzzy supra regular open set in (U,T^*) , $(1-\mu_i)$ is a fuzzy supra regular closed set in (U,T^*) . This implies that $(1-\mu_i)$ is a fuzzy supra closed set in (U,T^*) and hence $cl^*(1-\mu_i) = 1-\mu_i$ in (U,T^*) . Then $\mu_i = cl^*(\mu_i)$ $\wedge (1-\mu_i)$ is a fuzzy supra closed set in (U,T^*) . Thus $\mu = V^{\infty}_{i=1}(\mu_i)$, where (μ_i) 's are fuzzy supra closed sets in (U,T^*) , implies that μ is a fuzzy supra F_{σ} -set in (U,T^*) .

Proposition 3.10.

If μ is a fuzzy supra σ -boundary set in a fuzzy supra P-space (U,T^{*}), then μ is a fuzzy supra closed set in (U,T^{*}).

Proof.

Let μ be a fuzzy supra σ -boundary set in (U,T^*) . Then, by Proposition 3.9, μ is a fuzzy supra F_{σ} -set in (U,T^*) and 1- μ is a fuzzy supra G_{δ} -set in (U,T^*) . Since (U,T^*) is a fuzzy supra P-space, the fuzzy supra G_{δ} -set, 1- μ is a fuzzy supra open set in (U,T^*) and hence μ is a fuzzy supra closed set in (U,T^*) .

Definition 3.3.

A fuzzy set μ in a fuzzy supra topological space (U,T^{*}) is called a fuzzy supra co- σ -boundary set if $\mu = \bigwedge_{i=1}^{\infty} (\mu_i)$, where $\mu_i = int^*(1-\mu_i) \wedge (\mu_i)$ and (μ_i) 's are fuzzy supra regular open sets in (U,T^{*})

Proposition 3.11.

If μ is a fuzzy supra co- σ -boundary set in a fuzzy supra P-space (U,T^{*}), then μ is a fuzzy supra open set in (U,T^{*}).

Proof.

Let μ be a fuzzy supra co- σ -boundary set in (U,T^{*}). Then, 1- μ is a fuzzy supra σ -boundary set in (U,T^{*}). Since (U,T^{*}) is a fuzzy supra P-space, by Proposition.3.10, 1- μ is a fuzzy supra closed set in (U,T^{*}) and thus μ is a fuzzy supra open set in (U,T^{*}).

4. Conclusion

In this paper, we introduced and studied the concepts of fuzzy supra P-spaces. Several characterizations and properties of these spaces are established. Suitable examples are given to illustrate the concepts. It is established that fuzzy supra σ -boundary sets are fuzzy supra closed sets and fuzzy supra F_{σ} -set, fuzzy supra co- σ -boundary sets are fuzzy supra open sets in fuzzy supra P-spaces.

References

- [1]. Abd El-Monsef, M. E. and Ramadan, A. E.,(1987), On fuzzy supra topological spaces, Indian J. Pure Appl.Math., Vol.18(4), 322-329.
- [2]. Ahmed S, Chandra Chetia B (2014), On Certain properties of fuzzy supra semi open sets, International Journal of Fuzzy Mathematics and Systems, Vol.4(1), 93-98.
- [3]. Chang. C.L. (1968), Fuzzy topological spaces, Journal of Mathematical Analysis and applications, Vol.24, 182-190.
- [4]. Cohen.L.W and Goffman.C (1949), A theory of transfinite convergence, Trans. Amer. Math. Soc., Vol.66, 65–74.
- [5]. Mashhour A.S., Allam A.A., Mahmoud F.S and Khedr F.H., (1983), On Supra Topological Spaces, Indian J. Pure and Appl. Math., Vol.4(14), 502-510.
- [6]. Mishra.A.K.,(1972), Topological view of P-spaces, Gen. Topology Appl. Vol.2(4), 349-362.
- [7]. Poongothai E and Thangaraj G.,(2018), Fuzzy Settings on Supra σ -Baire Spaces, Global Journal for Research Analysis., Vol.7(1), 31-34.
- [8]. Poongothai E and Celine.A.,(2022), On Fuzzy Supra Baire Spaces, Int. J. Adv. Sci. Eng., Vol.8(3), 2310-2313.

- [9] Sahidul Ahmed and Biman Chandra Chetia (2014), On Certain Properties of Fuzzy Supra Semi open Sets, International Journal of Fuzzy Mathematics and Systems, Vol.4(1), 93-98.
- [10] Sikorski.R (1950), Remarks on spaces of high power, Fund. Math. Vol.37, 125-136.
- [11] Thangaraj.G and Balasubramanian.G (2001), On Fuzzy Basically Disconnected Spaces, J.Fuzzy Math. Vol.9(1), 103-110.
- [12]. Zadeh. L.A (1965), Fuzzy sets, Informatics and Control, Vol.8, 338-353.