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1. INTRODUCTION

The main object of Fixed-point theory is solving the non — linear equations of the type Tx = x, in which the
function T is defined on some abstract space X. The amazing Banach Contraction principle [1] is widely
recognised as one of the most important and practical findings in contemporary mathematical analysis. It offers a
useful technique for locating those fixed points and ensures the presence and uniqueness property of fixed points
for specific self — maps in a whole metric space.

In 1968 Kannan [14] proved that there are maps with fixed points and discontinuity in their domain after that
Meir and Keeler [16] obtained the unique fixed point for new contractive condition. In continuation of many
researchers finds the fixed point and unique fixed points for different type of mappings (Boyd and Wong [6],
Matkowski [15], Rhoades [34], Jungck et al. [13], Jachymski [12], R.P. Pant [19-32], Pasicki [34 ], Reich [35 ],
V. Pant [30 ], Bhatt et al.[3] Bisht and Pant [ 4], Bisht and Rakocevic [5]).

Our main aim in this research paper the study of contraction criterion in the probabilistic metric space which was
given by Boyd and Wong [6]. Menger [17] proposed the theory of probabilistic metric spaces in relation in
physics. Sehgal [38, 39] made the first attempt in this area by starting the research of contraction mapping
theorems in probabilistic metric spaces in his doctoral dissertation. Since then, a significant advancement in the
development of fixed-point theorems in Mangar space [8, 9, 18] has been made by Sehgal and Bharucha-Reid [2]
who obtained a generalization of the Banach Contraction Principle on a complete Menger space.

In this research paper we are finding the results in probabilistic metric space.

2. MATHEMATICAL PRELIMINARIES
Definition 2.1. [37, 38]. A distribution function (on [—%2, +2£]) is a functionF: [—¢2, +=0]— [0, 1] which is left-
continuous on R,non-decreasing and F (—0¢) = 0, F (+02) = 1.The Heaviside function H is a distribution
function defined by,

0, ift<o0
H(t) = {1, ift = 0.

Definition 2.2. [10].A distance distribution function F: [—09, +02]—+ [0, 1] is distribution function with support
contained in [0,0¢].The family of all distance distribution functions will be denoted by A¥ We denote

D* = {F’: Feat limF(x) = 1},
J—Foa
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Definition 2.3. [36, 37].A probabilistic metric space in the sense of Schweizer and Sklar is an ordered pair
(X, F), where X is a nonempty set and F : ¥ X X — A if and only if the following conditions are satisfied
(F(x,y) = F, forevery x,y € X X X):

(i) forevery (x, y) € X XX, F, (0)= 0;
(i) forevery (x,v) EX XX, F,, = F ;
(ii1) Fo = 1, foreveryt = 0 & x = w;

(iv) forevery (x,v,z) € X X X X X and forevery ty,t, = 0,
F;,}-(tﬂ =1, F;—,z(tzj =1,=F(t; +t,) =1

For each x and ¥ in X and for each real number £ = 0, F;J}-(t] is to be thought of as the probability that the
distance between x and ¥ is less than t. Indeed, if (X, d) is a metric space, then the distribution function Fey (t)
defined by the relation F,, ,,(t) = H(t — d(x, ¥)) induces a probabilistic metric space.

Definition 2.6 [10]. A t —norm is a function T: [0, 1]X [0,1] — [0,1] satisfying the following conditions:
i) T(a,1)=aT(0,0)=0

(i) T(a,b) =T(b,a)

(iii) T(c,d) = T(a,b) forc =z a,d = b

(iv) T(T(a,b),c) =T(a,T(b,c)) forall a, b, cin [0, 1].

Definition 2.7 [10]. A Menger probabilistic metric space (X, F, T) is an ordered triad, where T is a t — norm, and
(X, F) is probabilistic metric space satisfying the following condition:

F;’z(tl + tz:] = T(F;‘}' (tljff;'z[tzjj for all X, Y,z in X and tla t: = 0.

Definition 2.8 [10]. Let (X, F) be a probabilistic metric space. The (€, A) — topology in (X, F) is generated by the
family of neighbourhoods

U={(U,(e):(v.e,A € XX R* x(0,1))},
Where (U, (e,4) = fw:u € X,F, () = 1— A}

If a t-norm T is such that sup,. .4 T(x,x) = 1then (X, F, T) is with the (&, &) topology, a metrizable topological
space.

Definition 2.9 [10]. Let (X, F) be a probabilistic metric space. A sequence {xn} in (X, F) is said to converge a
point x € X if for every € = 0 and 4 = 0, there exists a positive integer N{ €. A)such that

F, «(€) =1—Aforalln=N(e, 2).

Definition 2.10 [10]. Let (X, F) be a probabilistic metric space. A sequence {xn} in (X, F) is said to be a Cauchy
sequence point if for every € = 0 and 4 == 0, there exists a positive integer N{ €, 4) such that

F, =, (€) =1—Aforalln,m= N(e, A).
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Definition 2.11 [10].A probabilistic metric space (X, F) with continuous t — norm is said to be complete if every
Cauchy sequence in X converge to a point in X.

Definition 2.4 [7, 11]. If T is a self-mapping of a set X then a point x in X is called an eventually fixed point of T
if there exists a natural number N such that

T" 1 (x) =T™(x) for n = N,

If T(x) = x then X is called a fixed point of T. A point x in X is called a periodic point of period 7 if T"x = x.
The least positive integer 7 for which T™x = x is called the prime period of x.

Definition 2.5 [6,7] The set {x € X:Tx = x} is called the fixed point set of the mapping T: X — X
3. MAIN RESULTS
In this section we are finding the results in probabilistic metric space.

Theorem 3.1. Let (X,F) be a probabilistic metric space and T: X —+ X such that for each x,V in X with
x # Tx or v # Ty we have

Fre, 1o(t) = 0[F, (O] . (1)

Where @: R, U {0} — R, U {0} is such that @(t) < t fort > 0.If T is upper semi continuous from the right
or if @ is non-decreasing and lim,, _, .@"(t) =0, t > 0, then T has a fixed point. T has a unique fixed point
<= (i) is satisfied foreachx # ¥ in X.

Proof. We can say when x = Txandy = Ty and using (I}, then

Fre, r;,-(fj = ['F;r ¥ (fj]

We can say that T is continuous and Fr,. 1, (t) = o[F,, . (£)] for each x, y in X.Let ¥ be any point in X and
{¥,.} be the sequence defined by

}Fn = T}Fn -1

that is ¥,= T"¥,. If ¥,41 = ¥, for some n, then ¥,, is a fixed point of T and theorem holds. Therefore, assume
that ¥, 24 F ¥, foreachn = 0.

Given an integer p = 1, let k,,= Fv vnun (). Then using (i), foreachn = 1 andp = 1

(1)

We have k,,= F,

e Ynap
=Fry ., T¥nsp1 (t)
=0 |:'F:'".'1—*_J }'n+p—:[tj] = @(kn—lj
20 [E, . . 0]z Bk, 2 O, (]=0"(ky)

Therefore k,, = @"(k,).
Since {k,, }is strictly increasing in B,
there exist L = 1 such that

limn_,mkn =L=Iimn_,mﬁl[kn:], (2)
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Now assume that T satisfies Matkowski condition [10], that is, @is nonincreasing and

lim,_, . @"*(t) = 1 foreacht> 0.

Then, lim__, k_=lim__,_@"(k,) = 1.

This implies that {¥,, }is a Cauchy sequence.

Next assume that T satisfies Boyd and Wond [6] condition, that is, @is upper semi continuous from the right.
If L <1 then we get

lim, _, sup@(k, )= @(L) =L,

Which contradicts (2) since k, < L.

Hence, lim _. k_ =lim__. F;‘l nep (t) = land {¥,} is a Cauchy sequence.

Since X is complete, there exists z in X such that lim, _, ¥, = z and lim__, Ty, = z. Continuity of T implies
lim, _, Ty, =Tzthatis, z=Tz and z is a fixed point of T.

Further, let u be any point in X.
Since T%y, # T“_l}TD foe each n, using (i) we get
Fon,, Ty, (t) =@ (Fl"n_"u, iy (t])
= @ (Fyn-zy, pn-zy () = = @"(E, ,, (8))
Our assumption on @ imply that
lim, _,..Frn, pny (£) =0, thatis, lim, . .T"u = z.
Thus, if there exists a point ¥;; such that
T ”+1}FD # T™y, for each n,

then for each u in X the sequence of iterates {T ™} converges to z and z is the unique fixed point of T.
Therefore,T nﬂ}?u # T"y,,n = 0, for somey, implies uniqueness of the fixed point.

Now, assume the condition (i) is satisfied for all X, y in X. Then T can have only one fixed point. Conversely,
suppose that T has a unique fixed point.

Then for distinct x, y we have x #fx or y # fy which implies that condition (i) holds for each x # y it may be
noted that a mapping T satisfying this theorem cannot possess periodic point of prime period =2.

If possible, suppose T satisfies Theorem 2.1 and x is periodic point of T with prime period 2, that is, T Zx = xbut
Tx # x.

Then using (1) we get

Fre 18y, (t) = 'E'[F;, r}-(t]] > F, ry(t) = Frzy 1. (2).

This is a contradiction.

It follows similarly that T cannot have periodic points of prime period = 2.

This completes the proof of the theorem.
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Example 3.2.Let (X, F) be a probabilistic metric space, where X = [1, @) and
eyl

£, ={e T #E20
0, ift=20

Where T: X— Xbe a signum function Tx = sgn x defined as

Tx=—1ifx < 0,T0O=0,Tx=1ifx>= 0.

Then Tx = 1 for each x and 1 is the unique fixed point of T. T satisfies condition (i) with @(t) = %t. Here if
x # 1 then Tx = T?x and x is an eventually fixed point.
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