NEW FINDINGS OF OPEN SETS IN A TOPO SPACE

S. Sumithra Devi¹ and L. Meenakshi Sundaram²

¹Research Scholar and ²Assistant Professor, PG and Research Department of Mathematics, V.O.Chidambaram College, Tuticorin-628 008. Affliated by Manonmaniam Sundaranar University, Tamil Nadu, India ssumithradevi27@gmail.com¹ and lmsundar79@gmail.com²

ABSTRACT

The main aim of this paper is to define $\widehat{D_{\alpha}}$ -open sets and $\widehat{D_{\alpha}}$ -interior in topological spaces and obtain certain characterizations of these sets. Furthermore, we have discussed about the concept of $\widehat{D_{\alpha}}$ -derived, $\widehat{D_{\alpha}}$ -border, $\widehat{D_{\alpha}}$ -frontier and $\widehat{D_{\alpha}}$ -exterior of a set using the concept of $\widehat{D_{\alpha}}$ -open sets are introduced.

INTRODUCTION

In this section, first we define $\widehat{D_{\alpha}}$ -open sets and $\widehat{D_{\alpha}}$ -interior in topological spaces and obtain certain characterizations of these sets. M. Caldas and J. Dontchev [8] introduced Λ_s as semi kernel by using semi open sets.

Using this concepts, $\widehat{D_{\alpha}}$ -kernal has been defined. M. Caldas, S. Jafari and T. Noiri [6] introduced and studied the topological properties of *g*-derived, *g*-border, *g*-frontier and *g*-exterior of a set using the concept of $\widehat{D_{\alpha}}$ -open sets. By the same technique the concept of $\widehat{D_{\alpha}}$ -derived, $\widehat{D_{\alpha}}$ -frontier and $\widehat{D_{\alpha}}$ -exterior of a set using the concept of $\widehat{D_{\alpha}}$ -open sets are introduced.

2. PRELIMINARIES

Definition 2.1:

- 1) A generalized pre-regular closed set (briefly *gpr*-closed) [1] if $pcl(A) \subset U$ whenever $A \subset U$ and U is regular open in (X, τ) .
- 2) ω -closed set [3] (= bg-closed [5]) if $cl(A) \subset U$ whenever $A \subset U$ and U is semi-open in (X, τ) .
- 3) $\widehat{\mathbb{D}_{\alpha}}$ -closed set [4] if $\alpha cl(A) \subset U$ whenever $A \subset U$ and U is \widehat{D} -open in (X, τ) .

Preliminaries:2.2

1) Every $\widehat{D_{\alpha}}$ -closed set is gspr- closed (resp. gpr-open, gps-open).

- 2) Every closed set is $\widehat{D_{\alpha}}$ closed
- 3) Every ω closed set is $\widehat{D_{\alpha}}$ closed

Definition 2.3:[6] A proper nonempty open subset U of X is said to be a minimal

open set if any open set contained in U is φ or U.

Definition 2.4:[6] A proper nonempty open subset U of X is said to be a maximal

open set if any open set containing U is X or U.

Definition 2.5:[2] b(A) = A - int(A) is said to be the border of A.

Definition 2.6: [2] Fr(A) = cl(A) - int(A) is said to be the frontier of A.

Definition 2.7:[2] $Ext(A) = int(A^c)$ is said to be the exterior of A.

$3 \text{ ON } \widehat{\mathbb{D}_{A}} \text{ OPEN SETS}$

Definition 3.1. A subset A in (X,τ) is called $\widehat{D_{\alpha}}$ -open in (X,τ) if A^c is $\widehat{D_{\alpha}}$ -closed

in (X, τ). We denote the family of all $\widehat{D_{\alpha}}$ -open sets in X by $\widehat{D_{\alpha}}o(X)$.

Proposition 3.2. Every $\widehat{D_{\alpha}}$ -open set is gspr-open (resp.gpr-open,gps-open).

Proposition 3.3. Every open set is $\widehat{D_{\alpha}}$ -open

Proposition 3.4. Every ω -open set is $\widehat{D_{\alpha}}$ -open **Proposition 3.5.** If A and B are $\widehat{D_{\alpha}}$ -open sets, then AUB and AAB is $\widehat{D_{\alpha}}$ -open sets. **Theorem 3.6.** A subset A of a topological space (X,τ) is said to be $\widehat{D_{\alpha}}$ -open if and only if $F \subset \alpha$ int(A) whenever $F \subset A$ and F is \widehat{D} -closed in (X, τ). Proof. Suppose A is $\widehat{D_{\alpha}}$ -open in X and F \subset A, where F is \widehat{D} -closed in (X, τ). Then $A^{\circ} \subset F^{\circ}$, where F° is \widehat{D} -open in X. Hence, we get $\alpha cl(A^c) \subset F^c implies(\alpha int(A))^c \subset F^c$. Thus we have $F \subset \alpha int(A)$. Conversely, Suppose that $A^{c} \subset U$ and U is \widehat{D} -open in (X,τ) . Then $U^{c} \subset A$ and U^c is \widehat{D} -closed and by hypothesis U^c $\subset \alpha$ int(A) implies (α int(A))^c \subset U. Hence α cl(A^c) \subset U implies that A^cis $\widehat{D_{\alpha}}$ -closed in (X, τ). Therefore, A is $\widehat{D_{\alpha}}$ -open in (X, τ). **Proposition 3.7.** If α int(A) \subset B \subset A and if A is $\widehat{D_{\alpha}}$ -open, then B is $\widehat{D_{\alpha}}$ -open. Proof. Suppose α int(A) \subset B \subset A and A is $\widehat{D_{\alpha}}$ -open. Then $A^c \subset B^c \subset \alpha cl(A^c)$. Since A^cis $\widehat{D_{\alpha}}$ -closed, B^cis $\widehat{D_{\alpha}}$ -closed. Hence, B is $\widehat{D_{\alpha}}$ -open. **Proposition 3.8.** If a set A is $\widehat{D_{\alpha}}$ -closed, then $\alpha cl(A) - A$ is $\widehat{D_{\alpha}}$ -open. **Proof.** Suppose A is $\widehat{D_{\alpha}}$ -closed. Let $F \subset \alpha cl(A) - A$ where F is \widehat{D} -closed. $\mathbf{F} = \boldsymbol{\varphi}.$ Therefore $F \subset \alpha int(\alpha cl(A) - A)$ and by Theorem 2.3.7, $\alpha cl(A) - A is \widehat{D_{\alpha}}$ - open. Remark 3.9. The converse of proposition 3.8 is not true by the following example. **Example 3.10.** Let $X = \{a, b, c, d, e\}$ and $\tau = \{\varphi, \{a\}, \{a, b\}, \{c, d\}, \{a, c, d\}, \{a, b, e\}, \{a, b, e\},$ c, d},X} be defined. The set A = {a, d}, $\alpha cl(A) - A = \{a, b, d\} - \{a, d\} = \{b\}$ is $\widehat{D_{\alpha}}$ -open but A is not $\widehat{D_{\alpha}}$ -closed. **Proposition 3.11.** Let A be a subset of a topological space X. For any $x \in X$, $x \in \widehat{D_{\alpha}} cl(A)$ if and only if $U \cap A \neq \varphi$ for every $\widehat{D_{\alpha}}$ -open set U containing x. Proof. **Necessity:** Suppose that $x \in \widehat{D_{\alpha}}cl(A)$. Let U be a $\widehat{D_{\alpha}}$ -open set containing x such that $A \cap U = \varphi$ and so $A \subset U^c$. But U^c is $\widehat{D_{\alpha}}$ -closed and hence $\widehat{D_{\alpha}}$ cl(A) \subset U^c. Since $x \notin U^c$ we obtain $x \notin \widehat{D_{\alpha}} cl(A)$ which is a contradiction.

Therefore, $U \cap A \neq \varphi$ for every $\widehat{D_{\alpha}}$ -open set U containing x. **Sufficiency:** Suppose that every $\widehat{D_{\alpha}}$ -open set U of X containing x such that $U \cap A \neq \varphi$. If $x \notin \widehat{D_{\alpha}} cl(A)$ then there exist a $\widehat{D_{\alpha}}$ -closed set F of X such that $A \subset F$ and x ∉F. Therefore, $x \in F^c$ and F^c is a $\widehat{D_{\alpha}}$ -open set containing x. But $F^c \cap A = \varphi$. which is contradiction to the hypothesis. Therefore, $x \in \widehat{D_{\alpha}}cl(A)$. **Definition 3.12.** For any A \subset X, $\widehat{D_{\alpha}}$ int(A) is defined as the union of all $\widehat{D_{\alpha}}$ -open sets contained in A. That is, $\widehat{D_{\alpha}}$ int(A) = $\bigcup \{ U : U \subset A \text{ and } U \in \widehat{D_{\alpha}} \circ (\tau) \}$. **Proposition 3.13.** Let A be a subset of a space (X,τ) , then the following are true. (i) $(\widehat{D_{\alpha}}int(A))^{c} = \widehat{D_{\alpha}}cl(A^{c})$ (ii) $\widehat{\mathbf{D}_{\alpha}}$ int(A) = $(\widehat{\mathbf{D}_{\alpha}} cl(A^c))^c$ (iii) $\widehat{D_{\alpha}} cl(A) = (\widehat{D_{\alpha}} int(A^{c}))^{c}$ **Proof.** (i) Let $x \in (\widehat{D}_{\alpha} int(A))^{c}$. Then x $\notin \widehat{D_{\alpha}}$ int(A). That is, every $\widehat{D_{\alpha}}$ -open set U containing x is such that U $\not\subset A$. Thus every $\widehat{D_{\alpha}}$ -open set U containing x is such that $U \cap A^{c} \neq \varphi$. By proposition 2.3.12, $x \in \widehat{D_{\alpha}}cl(A^c)$ and therefore, $(\widehat{D_{\alpha}}int(A))^c \subset \widehat{D_{\alpha}}cl(A^c)$. Conversely, let $x \in \widehat{D_{\alpha}} cl(A^c)$. Then by proposition 3.11, every $\widehat{D_{\alpha}}$ -open set U containing x is such that $U \cap A^{\circ} \neq \varphi$. By definition 3.12, $x \notin \widehat{D_{\alpha}}$ int(A). Hence $x \in (\widehat{D_{\alpha}} int(A))^c$ and so $\widehat{D_{\alpha}} cl(A^c) \subset (\widehat{D_{\alpha}} int(A))^c$. Thus $(\widehat{D_{\alpha}}int(A))^{c} = \widehat{D_{\alpha}}cl(A^{c}).$ (ii) Follows by taking complements in (i). (iii) Follows by replacing A by A^cin (i). 4.0N MINIMAL AND MAXIMAL $\widehat{D_{\alpha}}\text{-}OPEN$ SETS **Definition 4.1:**Let (X, τ) be a topological space. A non-empty $\widehat{D_{\alpha}}$ - open set (A) of (X, τ) is said to be a minimal $\widehat{D_{\alpha}}$ -open set if any \overline{D}_{α} - open set which is contained in (A) is $\tilde{\phi}$ or (A).

Lemma 4.2:

(1) Let (A) be a minimal $\widehat{\mathbb{D}_{\alpha}}$ - open set and (F) be a $\widehat{\mathbb{D}_{\alpha}}$ - open set. Then (A) \cap (F) = $\tilde{\phi}$ or (A) \subset (F).

(2) Let (A) and (B) be minimal $\widehat{D_{\alpha}}$ - open sets. Then (A) \cap (B) = $\tilde{\phi}$ or (A) = (B).

Proof:

(1) Let (F) be a $\widehat{D_{\alpha}}$ - open set such that $(A) \cap (F) \neq \widetilde{\phi}$. Since (A) is a minimal $\widehat{D_{\alpha}}$ - open set and $(A) \cap (F) \subset (A)$, we have $(A) \cap (F) = (A)$. Therefore, $(A) \subset (F)$.

(2) If $(A) \cap (B) \neq \tilde{\phi}$, then we see that $(A) \subset (B)$ and $(B) \subset (A)$ by (1). Therefore, (A) = (B).

Proposition 4.3: Let (A) be a minimal $\widehat{D_{\alpha}}$ - open set. If (x) is an element of (A), then (A) \subset (F) for any $\widehat{D_{\alpha}}$ - neighbourhood (F) of (x).

Proof: Let (F) be a $\widehat{\mathbb{D}_{\alpha}}$ - neighbourhood of (x) such that $(A) \not\subset (F)$.

Then $(A) \cap (F)$ is a $\widehat{\mathbb{D}_{\alpha}}$ - open set such that $(A) \cap (F) \subsetneq (A)$ and $(A) \cap (F) \neq \tilde{\phi}$.

This controverts our assumption that (A) is a minimal $\widehat{D_{\alpha}}$ - open set.

Proposition 4.4: Let (A) be a minimal $\widehat{D_{\alpha}}$ - open set. Then $(A) = \bigcap \{(F) \mid (F) \text{ is a } \widehat{D_{\alpha}}$ - neighborhood of $(x)\}$ for any element (x) of (A).

Proof: By Proposition 4.3 and the fact that (A) is a $\widehat{D_{\alpha}}$ - neighbourhood of (x), we have $(A) \subset \bigcap \{(F) \mid (F) \text{ is a } \widehat{D_{\alpha}}$ - neighbourhood of $(x) \} \subset (A)$.

Therefore, the argument proceeds.

Theorem 4.5: Let (A) be a non-empty $\widehat{D_{\alpha}}$ - open set. Then the here under three conditions are equivalent:

(1)(A) is a minimal $\widehat{D_{\alpha}}$ - open set.

 $(2)(A) \cong Cl(B)$ for any non-empty subset (B) of (A).

(3)Cl(A) = Cl(B) for any non-empty subset (B) of (A).

Proof:

(1)⇒(2) Let (*B*) be any nonempty subset of (*A*).

By Proposition 4.3, for any element (x) of (A) and any $\widehat{D_{\alpha}}$ - neighbourhood (B) of (x), we have $(B) = (A) \cap (B) \subset (C) \cap (B)$.

Then, we have $(C) \cap (B) \neq \tilde{\phi}$ and hence (x) is an element of Cl(B). It follows that $(A) \subset Cl(B)$.

(2)⇒(3) For any non-empty subset (B) of (A), we have $Cl(B) \subset Cl(A)$.

On the other hand, by (2), we see $Cl(A) \subset Cl(Cl(B)) = Cl(B)$.

Therefore we have Cl(A) = Cl(B) for any non-empty subset (B) of (A).

(3)⇒(1) Suppose that (A) is not a minimal $\widehat{D_{\alpha}}$ - open set.

Then there exists a non-empty open set (F) such that $(F) \subsetneq (A)$ and hence there exists an element $y \in (A)$ such that $y \notin (F)$.

Then we have $Cl(\{y\}) \subset (F)^{C}$, the complement of (F).

It proceeds that $Cl(\{y\}) \neq Cl(A)$.

Definition 4.6: Let (X, τ) be a topological space. A proper non-empty $\widehat{D_{\alpha}}$ - open subset (A) of (X, τ) is said to be a maximal $\widehat{D_{\alpha}}$ - open set if any $\widehat{D_{\alpha}}$ - open set which contains (A) is \tilde{X} or (A).

Lemma 4.7:

(1) Let (A) be a maximal $\widehat{\mathbb{D}_{\alpha}}$ - open set and (F) a $\widehat{\mathbb{D}_{\alpha}}$ - open set. Then, (A) \cup (F) = \tilde{X} or (F) \subset (A).

(2) Let (A) and (B) be maximal $\widehat{D_{\alpha}}$ -open sets. Then, (A) \cup (B) = \tilde{X} or (A) = (B).

Proof:

(1) Let (F) be a $\widehat{\mathbb{D}_{\alpha}}$ - open set such that $(A) \cup (F) \neq \tilde{X}$. Since (A) is a maximal $\widehat{\mathbb{D}_{\alpha}}$ - open set and $(A) \subset (A) \cup (F)$, we have $(A) \cup (F) = (A)$. Therefore, $(F) \subset (A)$.

(2) If $(A) \cup (B) \neq \tilde{X}$, then $(A) \subset (B)$ and $(B) \subset (A)$ by (1). Therefore, (A) = (B).

Proposition 4.8: Let (A) be a maximal $\widehat{D_{\alpha}}$ - open set. If (x) is an element of (A), then for any $\widehat{D_{\alpha}}$ - neighbourhood (F) of $(x), (F) \cup (A) = \tilde{X}$ or $(F) \subset (A)$.

Proof: By Lemma 4.7(1), the argument proceeds.

Theorem 4.9: Let (A), (B) and (C) be $\widehat{\mathbb{D}_{\alpha}}$ - maximal open sets such that $(A) \neq (B)$. If $(A) \cap (B) \subset (C)$, then (A) = (C) or (B) = (C).

Proof: We see that $(A) \cap (C) = (A) \cap ((C) \cap X)$

- $= (A) \cap ((C) \cap ((A) \cup (B)))$ (by Lemma 4.7(2))
- $= (A) \cap (((C) \cap (A)) \cup ((C) \cap (B)))$
- $= ((A) \cap (C)) \cup ((C) \cap (A) \cap (B))$
- $= ((A) \cap (C)) \cup ((A) \cap (B)) \text{ (since } (A) \cap (B) \subset (C))$
- $= (A) \cap ((C) \cap (B))$

If $(C) \neq (B)$, then $(C) \cup (B) = \tilde{X}$, and hence $(A) \cap (C) = (A)$; namely, $(A) \subset (C)$. Since (A) and (C) are $\widehat{D_{\alpha}}$ - maximal open sets, we have (A) = (C).

Theorem 4.10: Let (A), (B) and (C) be \widehat{D}_{α} maximal open sets, which are different from each other. Then, $(A) \cap (B) \not\subset (A) \cap (C)$.

Proof: If $(A) \cap (B) \subset (A) \cap (C)$, then we see that $((A) \cap (B)) \cup ((B) \cap (C)) \subset ((A) \cap (C)) \cup ((B) \cap (C))$.

Hence $(B) \cap ((A) \cup (C)) \subset ((A) \cup (B)) \cap (C).$

Since $((A) \cup (C)) = \tilde{X} = ((A) \cup (B))$, we have $(B) \subset (C)$. It proceeds that (B) = (C), which contradicts our assumption.

Proposition 4.11: Let (A)be a $\widehat{D_{\alpha}}$ - maximal open set and (x) an element of (A). Then, (A) = $\cup \{(F) | (F) \text{ is an } \widehat{D_{\alpha}}$ - neighbourhood of (x) such that $(F) \cup (A) \neq \tilde{X} \}$.

Proof: By Proposition 4.8 and the fact that (A) is an $\widehat{D_{\alpha}}$ - neighbourhood of (x), we have (A) $\subset \widetilde{U}\{(F)|(F) \text{ is a } \widehat{D_{\alpha}}$ - neighbourhood of (x) such that $(F) \cup (A) \neq \widetilde{X}\} \subset (A)$.

Therefore, the argument proceeds.

Proposition 4.12: Let (X, τ) be a topological space. If (A) be a proper \widehat{D}_{α} - maximal open subset of \widetilde{X} then $(A)^{C}$ is a \widehat{D}_{α} -minimal closed set.

Proof: Suppose $(A)^{C}$ is not a $\widehat{\mathbb{D}_{\alpha}}$ -minimal closed set.

Then there exists a $\widehat{D_{\alpha}}$ - closed set (B) such that $\widetilde{\phi} \neq (B) \subset (A)^{C}$.

Hence
$$(A) \subset (B)^C \subset \tilde{X}$$
.

This means that (A) is not $\widehat{D_{\alpha}}$ - maximal which is contradicting that (A) is $\widehat{D_{\alpha}}$ - maximal.

Proposition 4.13: Let (X, τ) be a topological space. If (A) be a proper $\widehat{D_{\alpha}}$ -minimal open subset of \tilde{X} then $(A)^{c}$ is a $\widehat{D_{\alpha}}$ -maximal closed set.

Proof: Suppose $(A)^{C}$ is not a $\widehat{D_{\alpha}}$ - maximal closed set.

Then there exists a $\widehat{\mathbb{D}_{\alpha}}$ - closed set (B) such that $(A)^{C} \subset (B) \subset \tilde{X}$.

Hence $\tilde{\phi} \neq (B)^C \subset (A)$.

This means that (A) is not $\widehat{D_{\alpha}}$ - minimal which is contradicting that (A) is $\widehat{D_{\alpha}}$ - minimal.

5. THEORETICAL APPLICATION OF $\widehat{D_{\alpha}}$ OPEN SETS

Definition 5.1. For any $A \subset X$, $\widehat{D_{\alpha}}$ ker(A) is defined as the intersection of all

 $\widehat{D_{\alpha}}$ -open sets containing A. In symbol, $\widehat{D_{\alpha}}$ ker(A) = $\cap \{U : A \subset U \text{ and } U \in \widehat{D_{\alpha}}o(\tau)\}$.

Example 5.2. Let $X = \{a, b, c\}$ and $\tau = \{\phi, \{a\}, X\}$. Here $\widehat{D_{\alpha}}o(\tau) = \{\phi, \{a\}, \{a, b\},$

 $\{a, c\}, X\}$. If $A = \{b, c\}$ then $\widehat{D_{\alpha}} ker(A) = X$. If $B = \{a\}$, then $\widehat{D_{\alpha}} ker(B) = \{a\}$.

Definition 5.3. A subset A of a topological space X is an U-set if $\widehat{D_{\alpha}} \text{ker}(A) = A$.

Example 5.4. By Example 3.10, $\{a\},\,\{a,b\}$ and $\{a,c\}$ are U-sets and the set

{b, c} is not an U-set, because $\widehat{D_{\alpha}}$ ker({b, c}) = X.

Lemma 5.5. For subsets A,B and $A_{\alpha}(\alpha \in \Lambda)$ of a topological space X, the

following are hold.

- 1. $A \subset \widehat{D_{\alpha}} ker(A)$.
- 2. If $A \subset B$, then $\widehat{D_{\alpha}} \ker(A) \subset \widehat{D_{\alpha}} \ker(B)$.
- 3. If $\widehat{D_{\alpha}} \ker(\widehat{D_{\alpha}} \ker(A)) = \widehat{D_{\alpha}} \ker(A)$.
- 4. If A is $\widehat{D_{\alpha}}$ -open, then A = $\widehat{D_{\alpha}}$ ker(A).
- $5\widehat{\mathbb{D}_{\alpha}}\ker(\cup\{A_{\alpha}/(\alpha\in\Lambda)\})\supset\cup\{\widehat{\mathbb{D}_{\alpha}}\ker(A_{\alpha})/(\alpha\in\Lambda)\}.$
- 6. $\widehat{\mathbb{D}_{\alpha}}\ker(\bigcap \{A_{\alpha}/(\alpha \in \Lambda)\}) \subset \bigcap \{\widehat{\mathbb{D}_{\alpha}}\ker(A_{\alpha})/(\alpha \in \Lambda)\}.$

Proof. 1. Clearly follows from Definition5.1.

- 2. Suppose $x \notin \widehat{D_{\alpha}} \ker(B)$. Then there exists a subset $U \in \widehat{D_{\alpha}} \circ(\tau)$ such that $U \supset B$ with $x \notin U$. Since $A \subset B$, $x \notin \widehat{D_{\alpha}} \ker(A)$. Thus $\widehat{D_{\alpha}} \ker(A) \subset \widehat{D_{\alpha}} \ker(B)$.
- 3. Follows from (1) and Definition5.1.
- 4. Since $A \in \widehat{D_{\alpha}}o(\tau)$, we have $\widehat{D_{\alpha}}ker(A) \subset A$. By (1), $A \subset \widehat{D_{\alpha}}ker(A)$. Therefore, $A = \widehat{D_{\alpha}}ker(A)$.
- 5. For each $\alpha \in \Lambda$, $\widehat{D_{\alpha}} \ker(A_{\alpha}) \subset \widehat{D_{\alpha}} \ker(\bigcup_{\alpha \in \Lambda} A_{\alpha})$. Therefore, we obtain $\widehat{D_{\alpha}} \ker(\bigcup_{\alpha \in \Lambda} A_{\alpha}) \subset \widehat{D_{\alpha}} \ker(A_{\alpha})/(\alpha \in \Lambda)$.
- 6. Suppose that $x \notin \bigcap \{\widehat{D_{\alpha}} \ker(A_{\alpha})/(\alpha \in \Lambda)\}$ when there exists an $\alpha_0 \in \Lambda$ such that $x \notin \widehat{D_{\alpha}} \ker(A_{\alpha_0})$ and there exist an $\widehat{D_{\alpha}}$ -open set U such that $x \notin U$ and $A(\alpha_0) \subset U$.

We have $\bigcap_{\alpha \in \Lambda} A_{\alpha} \subset A_{\alpha_{0}} \subset U$ and $x \notin U$. Therefore, $x \notin \widehat{D_{\alpha}} \ker(\bigcap \{A_{\alpha} / (\alpha \in \Lambda)\})$.

Hence, $\widehat{\mathbb{D}_{\alpha}}\ker(\bigcap \{A_{\alpha}/(\alpha \in \Lambda)\}) \subset \bigcap \{\widehat{\mathbb{D}_{\alpha}}\ker(A_{\alpha})/(\alpha \in \Lambda)\}.$

Remark 5.6. In (6) of Lemma5.5, the equality does not necessarily hold as shown by the following example.

Example 5.7. Let $X = \{a, b, c, d\}$ and $\tau = \{\phi, \{c\}, \{d\}, \{a, c\}, \{c, d\}, \{a, c, d\}, X\}$.

Here $\widehat{D_{\alpha}}o(\tau) = \{\phi, \{b, c\}, X\}$. Let $P = \{a, b\}, Q = \{b, c\}$. Here $\widehat{D_{\alpha}}ker(P \cap Q) = \{b\}$ and

 $\widehat{\mathsf{D}_{\alpha}}\ker(P)\cap\widehat{\mathsf{D}_{\alpha}}\ker(Q)=\{a,b,c\}\cap\{b,c\}=\{b,c\}.$

Remark 5.8. From Lemma5.5, it is clear that $\widehat{D_{\alpha}}$ ker(A) is a U-set and every open set is a U-set.

Lemma 5.9. Let $A_{\alpha}/(\alpha \in \Lambda)$ be a subset of a topological space X. If A_{α} is an U-set, then $\bigcap_{\alpha \in \Lambda} A_{\alpha}$ is an U-set.

Proof. $\widehat{D_{\alpha}} \ker(\bigcap_{\alpha \in \Lambda} A_{\alpha}) \subset \bigcap_{\alpha \in \Lambda} \widehat{D_{\alpha}} \ker(A_{\alpha})$ by Lemma 2.3.19.

Since each A_{α} is an U-set, we get $\widehat{\mathbb{D}_{\alpha}} \ker(\bigcap_{\alpha \in \Lambda} A_{\alpha}) \subset (\bigcap_{\alpha \in \Lambda} A_{\alpha})$.

Again by Lemma 5.5, $(\bigcap_{\alpha \in \Lambda} A_{\alpha}) \subset \widehat{D_{\alpha}} ker (\bigcap_{\alpha \in \Lambda} A_{\alpha})$.

Thus $\widehat{\mathbb{D}_{\alpha}}\ker(\bigcap_{\alpha \in \Lambda} A_{\alpha}) = (\bigcap_{\alpha \in \Lambda} A_{\alpha})$ implies $(\bigcap_{\alpha \in \Lambda} A_{\alpha})$ is an U-set.

Definition5.10. A subset A of a topological space X is said to be U-closed if

 $A = L \cap F$ where L is anU-set and F is a closed set of X.

Remark 5.11 It is clear that every U-set and closed sets are U-closed.

Theorem 5.12. For a subset A of a topological space X, the following conditions are equivalent:

1. A is U-closed.

2. $A = L \cap cl(A)$ where L is anU-set.

3. A = $\widehat{D_{\alpha}}$ ker(A) \cap cl(A).

Proof. (1) = \Rightarrow (2) : Let A = L \cap F where L is a U-set and F is a closed set. Since

 $A \subset F$ we have $cl(A) \subset F$ and $A \subset L \cap cl(A) \subset L \cap F = A$. Therefore, we obtain

$$L \cap cl(A) = A.$$

 $(2) \Rightarrow (3)$: Let $A = L \cap cl(A)$ where L is an U-set. Since $A \subset L$ we have

 $\widehat{D_{\alpha}} \ker(A) \subset \widehat{D_{\alpha}} \ker(L) = L \text{ and hence } A \subset \widehat{D_{\alpha}} \ker(A) \cap cl(A) \subset L \cap cl(A) = A.$

Therefore, we obtain $A = \widehat{D_{\alpha}} \ker(A) \cap \operatorname{cl}(A)$.

(3) =⇒(1): Since $\widehat{D_{\alpha}}$ ker(A) is a U-set, therefore, A is U-closed.

Definition5.13. Let A be subset of a space X. A point $x \in X$ is said to be a

 $\widehat{D_{\alpha}}$ -limit point of A if for each $\widehat{D_{\alpha}}$ -open set U containing x, U \cap (A-{x}) $\neq \varphi$. The set

of all $\widehat{D_{\alpha}}$ -limit points of A is called a $\widehat{D_{\alpha}}$ derived set of A and is denoted by $D_{\widehat{D_{\alpha}}}(A)$.

Theorem 5.14. For subset A, B of a space X, the following statements hold:

(i) If $D_{\widehat{D_{\alpha}}}(A) \subset D(A)$, where D(A) is the derived set of A.

(ii) If
$$A \subset B$$
, then $D_{\widehat{D_{\alpha}}}(A) \subset D_{\widehat{D_{\alpha}}}(B)$.

(iii) If $D_{\widehat{\mathbb{D}_{\alpha}}}(A) \cup D_{\widehat{\mathbb{D}_{\alpha}}}(B) \subset D_{\widehat{\mathbb{D}_{\alpha}}}(A \cup B)$ and $D_{\widehat{\mathbb{D}_{\alpha}}}(A \cap B) \subset D_{\widehat{\mathbb{D}_{\alpha}}}(A) \cap D_{\widehat{\mathbb{D}_{\alpha}}}(B)$.

(iv) If
$$D_{\widetilde{D}_{\alpha}}(D_{\widetilde{D}_{\alpha}}(A)) - A \subset D_{\widetilde{D}_{\alpha}}(A)$$
.

(v) If $D_{\widehat{\mathbf{D}_{\alpha}}}(A \cup D_{\widehat{\mathbf{D}_{\alpha}}}(A)) \subset A \cup D_{\widehat{\mathbf{D}_{\alpha}}}(A)$.

Proof.

(i) Since every open set is $\widehat{D_{\alpha}}$ -open, $D_{\widehat{D_{\alpha}}}(A) \subset \widehat{D_{\alpha}}(A)$.

(ii) Follows by definition 5.13.

(iii) Follows by (ii).

(iv) If $x \in (D_{\widehat{D_{\alpha}}}(D_{\widehat{D_{\alpha}}}(A)) - A)$ and U is $\widehat{D_{\alpha}}$ -open set containing x,

then $U \cap (D_{\widehat{D}_{\alpha}}(A) - \{x\}) \neq \varphi$.

Let $y \in U \cap (D_{\widehat{D_{\alpha}}}(A) - \{x\})$. Since $y \in D_{\widehat{D_{\alpha}}}(A)$ and $y \in U, U \cap (A - \{y\}) \neq \varphi$.

Let $z \in U \cap (A - \{y\})$. Then $z \neq x$ for $z \in A$ and $x \notin A$. Hence, $U \cap (A - \{x\}) \neq \varphi$. Therefore, $x \in D_{\widehat{D_{\alpha}}}(A)$. (v) Let $x \in D_{\widehat{D_{\alpha}}}(A \cup D_{\widehat{D_{\alpha}}}(A))$. If $x \in A$, the result is obvious. So let $x \in D_{\widehat{D_{\alpha}}}(A \cup D_{\widehat{D_{\alpha}}}(A)) - A$, then for a $\widehat{D_{\alpha}}$ -open set U containing x such that $U \cap ((A \cup D_{\widehat{D_{\alpha}}}(A)) - \{x\}) \neq \varphi.$ Thus $U \cap (A - \{x\}) \neq \varphi$ or $U \cap (D_{D_{\varphi}}(A) - \{x\}) \neq \varphi$. Now, it follows similarly from (iv) that $U \cap (A - \{x\}) \neq \varphi$. Hence, $x \in D_{\widehat{D_{\alpha}}}(A)$. Therefore, in any case $D_{\overline{D_{\alpha}}}(A \cup D_{\overline{D_{\alpha}}}(A)) \subset A \cup D_{\overline{D_{\alpha}}}(A)$. Remark 5.15. In general the converse of (i) is not true. **Example 5.16.** Let $X = \{a, b, c\}$ and $\tau = \{\phi, \{a, b\}, X\}$. Then $\widehat{D_{\alpha}}o(\tau) = P(X) - P(X)$ {c}. Take A = {a, b}, then $D_{\widehat{D_{\alpha}}}(A) = {c}$ and D(A) = X. Hence, $D(A) \not\subset D_{\widehat{D_{\alpha}}}(A)$. **Theorem 5.17.** For any subset A of a space X, $\widehat{D_{\alpha}}cl(A) = A \cup D_{\widehat{D_{\alpha}}}(A)$. **Proof.** Since $D_{\widehat{\mathbb{D}_{\alpha}}}(A) \subset \widehat{\mathbb{D}_{\alpha}}cl(A)$, $A \cup D_{\widehat{\mathbb{D}_{\alpha}}}(A) \subset \widehat{\mathbb{D}_{\alpha}}cl(A)$. On the other hand, let $x \in D_{\alpha}cl(A)$. If $x \in A$, then the proof is complete. If $x \notin A$, each $\widehat{D_{\alpha}}$ -open set U containing x intersects A at a point distinct from x, so $x \in D_{\widehat{D_{\alpha}}}(A)$. Thus $\widehat{D_{\alpha}}cl(A) \subset A \cup D_{\widehat{D_{\alpha}}}(A)$ which completes the proof. **Definition 5.18.** $b_{\widehat{D_{\alpha}}}(A) = A - \widehat{D_{\alpha}} \operatorname{int}(A)$ is said to be the $\widehat{D_{\alpha}}$ border of A. Theorem 5.19. For a subset A of a space X, the following statements hold: 1. $b_{\overline{D_{\alpha}}}(A) \subset b(A)$ where b(A) denotes the border of A. 2. A = $\widehat{D_{\alpha}}$ int(A) $\cup b_{\widehat{D_{\alpha}}}(A)$. 3. $\widehat{\mathbf{D}_{\alpha}}$ int(A) $\cap \mathbf{b}_{\widehat{\mathbf{D}_{\alpha}}}(A) = \boldsymbol{\varphi}$. 4. If A is $\widehat{D_{\alpha}}$ -open, then $b_{\overline{D_{\alpha}}}(A) = \varphi$. 5. $\widehat{\mathbf{D}_{\alpha}}$ int $(\mathbf{b}_{\widehat{\mathbf{D}_{\alpha}}}(\mathbf{A})) = \boldsymbol{\varphi}$. 6. $b_{\widehat{\mathbf{D}_{\alpha}}}(b_{\widehat{\mathbf{D}_{\alpha}}}(\mathbf{A})) = b_{\widehat{\mathbf{D}_{\alpha}}}(\mathbf{A}).$ 7. $b_{\overline{D_{\alpha}}}(A) = A \cap \widehat{D_{\alpha}}cl(A^c)$. **Proof.** 1), 2) and 3) clearly follows. 4) If A is $\widehat{\mathbb{D}_{\alpha}}$ -open, then $A = \widehat{\mathbb{D}_{\alpha}}$ int(A). Therefore, $b_{\widehat{\mathbb{D}_{\alpha}}}(A) = \varphi$. 5) If $x \in \widehat{\mathbb{D}_{\alpha}}$ int $(b_{\widehat{\mathbb{D}_{\alpha}}}(A))$, then $x \in b_{\widehat{\mathbb{D}_{\alpha}}}(A)$. On the other hand, since $b_{\widehat{\mathbb{D}_{\alpha}}}(A) \subset A$, $x \in \widehat{D_{\alpha}}int(b_{\widehat{D_{\alpha}}}(A)) \subset \widehat{D_{\alpha}}int(A)$. Hence, $x \in \widehat{D_{\alpha}}int(A) \cap b_{\widehat{D_{\alpha}}}(A)$ which contradicts (3). Thus $\widehat{D_{\alpha}}$ int $(b_{\widehat{D_{\alpha}}}(A)) = \varphi$.

6) Follows by (5). 7) $b_{\widehat{D_{\alpha}}}(A) = A - \widehat{D_{\alpha}} int(A) = A - (\widehat{D_{\alpha}} cl(A^c))^c = A \cap \widehat{D_{\alpha}} cl(A^c)$. Remark 5.20. In general the converse of (1) is not true. **Example 5.21.** Let $X = \{a, b, c, d\}$ and $\tau = \{\phi, \{c\}, \{d\}, \{a, c\}, \{c, d\}, \{a, c, d\}, X\}$. Here $\widehat{D_{\alpha}}o(\tau) = \{\varphi, \{c\}, \{d\}, \{a, c\}, \{c, d\}, \{b, c\}, \{b, d\}, \{a, b, c\}, \{a, c, d\}, \{b, c, d\}, X\}.$ If A = {a, b, c} then $b_{\widehat{D_{\alpha}}}(A) = \{a, b, c\} - \{a, b, c\} = \phi, b(A) = \{a, b, c\} - \{a, c\} = \{b\}.$ Hence, $b(A) \not\subset \overline{b_{D_{\alpha}}}(A)$. **Definition 5.22.** $\operatorname{Fr}\widehat{D_{\alpha}}(A) = \widehat{D_{\alpha}}\operatorname{cl}(A) - \widehat{D_{\alpha}}\operatorname{int}(A)$ is said to be the $\widehat{D_{\alpha}}$ -frontier of A. Theorem 5.23. For a subset A of a space X, the following statements are hold: 1. $\operatorname{Fr}\widehat{D_{n}}(A) \subset \operatorname{Fr}(A)$ where $\operatorname{Fr}(A)$ denotes the frontier of A. 2. $\widehat{\mathbf{D}_{\alpha}}$ cl(A) = $\widehat{\mathbf{D}_{\alpha}}$ int(A) UFr $\widehat{\mathbf{D}_{\alpha}}$ (A). 3. $\widehat{\mathbf{D}_{\alpha}}$ int(A) \cap Fr $\widehat{\mathbf{D}_{\alpha}}$ (A) = φ . 4. $\underline{b}_{\widehat{D_{\alpha}}}(A) \subset Fr\widehat{D_{\alpha}}(A)$. 5. $\operatorname{Fr}\widehat{D_{\alpha}}(A) = b_{\widehat{D_{\alpha}}}(A) \cup D_{\widehat{D_{\alpha}}}(A).$ 6. If A is $\widehat{D_{\alpha}}$ -open, then $D_{\widehat{D_{\alpha}}}(A) = Fr\widehat{D_{\alpha}}(A)$. 7. $\operatorname{Fr}\widehat{D_{\alpha}}(A) = \widehat{D_{\alpha}}\operatorname{cl}(A) \cap \widehat{D_{\alpha}}\operatorname{cl}(A^{c}).$ 8. $\operatorname{Fr}\widehat{D_{\alpha}}(A) = \operatorname{Fr}\widehat{D_{\alpha}}(A^{c}).$ 9. $\operatorname{Fr}\widehat{D_{\alpha}}((\widehat{D_{\alpha}}\operatorname{int}(A)) \subset \operatorname{Fr}\widehat{D_{\alpha}}(A).$ 10. $\operatorname{Fr}\widehat{D_{\mathfrak{a}}}(\widehat{D_{\mathfrak{a}}}\operatorname{cl}(A)) \subset \operatorname{Fr}\widehat{D_{\mathfrak{a}}}(A)$. **Proof.** 1. Since every open set is $\widehat{D_{\alpha}}$ -open we get the proof. 2. $\widehat{D_{\alpha}}$ int(A) \cup Fr $\widehat{D_{\alpha}}$ (A) = $\widehat{D_{\alpha}}$ int(A) \cup ($\widehat{D_{\alpha}}$ cl(A) - $\widehat{D_{\alpha}}$ int(A)) = $\widehat{D_{\alpha}}$ cl(A). 3. $\widehat{D_{\alpha}}$ int(A) \cap Fr $\widehat{D_{\alpha}}$ (A) = $\widehat{D_{\alpha}}$ int(A) \cap ($\widehat{D_{\alpha}}$ cl(A) - $\widehat{D_{\alpha}}$ int(A)) = φ . 4. Clearly follows from Definitions 5.22 5. Since $\widehat{D_{\alpha}}$ int(A) \cup Fr $\widehat{D_{\alpha}}(A) = \widehat{D_{\alpha}}$ int(A) $\cup b_{\widehat{D_{\alpha}}}(A) \cup D_{\widehat{D_{\alpha}}}(A)$ we get Fr $\widehat{D_{\alpha}}(A) = b_{\widehat{D_{\alpha}}}(A) \cup D_{\widehat{D_{\alpha}}}(A)$. 6. If A is $\widehat{D_{\alpha}}$ -open, then $b_{\overline{D_{\alpha}}}(A) = \varphi$ then by (5), $D_{\overline{D_{\alpha}}}(A) = Fr\widehat{D_{\alpha}}(A)$. 7. $\operatorname{Fr}\widehat{D_{\alpha}}(A) = \widehat{D_{\alpha}}\operatorname{cl}(A) - \widehat{D_{\alpha}}\operatorname{int}(A) = \widehat{D_{\alpha}}\operatorname{cl}(A) - (\widehat{D_{\alpha}}\operatorname{cl}(A^{c}))^{c} = \widehat{D_{\alpha}}\operatorname{cl}(A) \cap \widehat{D_{\alpha}}\operatorname{cl}(A^{c}).$ 8. Follows by (7) 9. Clearly follow 10. $\operatorname{Fr}\overline{D_{\alpha}}(\widehat{D_{\alpha}}\operatorname{cl}(A)) = \overline{D_{\alpha}}\operatorname{cl}(\widehat{D_{\alpha}}\operatorname{cl}(A)) - \overline{D_{\alpha}}\operatorname{int}(\widehat{D_{\alpha}}\operatorname{cl}(A)) \subset \overline{D_{\alpha}}\operatorname{cl}(A) - \overline{D_{\alpha}}\operatorname{int}(A) = \operatorname{Fr}\overline{D_{\alpha}}(A)$ Remark 5.24. In general the converse of (1) is not true. **Example 5.25.** Let X and φ be defined as Example 5.21. Take A = {d} then $\operatorname{Fr}\widehat{\mathbb{D}_{\alpha}}(A) = \varphi, \operatorname{Fr}(A) = \{b\}.$ Thus $\operatorname{Fr}(A) \subset \operatorname{Fr}\widehat{\mathbb{D}_{\alpha}}(A).$ **Definition 5.26.** $\widehat{D_{\alpha}}$ Ext(A) = $\widehat{D_{\alpha}}$ int(A^c) is said to be the $\widehat{D_{\alpha}}$ -exterior of A.

Theorem 5.27. For a subset A of a space X, the following statement are hold:

1. Ext(A) $\subset \widehat{D_{\alpha}}$ Ext(A), where Ext(A) denotes the exterior of A. 2. $\widehat{\mathbf{D}_{\alpha}}$ Ext(A) = $\widehat{\mathbf{D}_{\alpha}}$ int(A^c) = $(\widehat{\mathbf{D}_{\alpha}}$ cl(A))^c. 3. $\widehat{D_{\alpha}} \operatorname{Ext}(\widehat{D_{\alpha}} \operatorname{Ext}(A)) = \widehat{D_{\alpha}} \operatorname{int}(\widehat{D_{\alpha}} \operatorname{cl}(A)).$ 4. If A \subset B then $\widehat{D_{\alpha}}$ Ext(A) $\supset \widehat{D_{\alpha}}$ Ext(B). 5. $\widehat{D_{\alpha}}$ Ext(A \cup B) $\subset \widehat{D_{\alpha}}$ Ext(A) $\cup \widehat{D_{\alpha}}$ Ext(B). $6.\widehat{D_{\alpha}}Ext(A \cap B) \supset \widehat{D_{\alpha}}Ext(A) \cap \widehat{D_{\alpha}}Ext(B).$ 7. $\widehat{\mathbf{D}_{\boldsymbol{\alpha}}} \operatorname{Ext}(\mathbf{X}) = \boldsymbol{\varphi}$. 8. $\widehat{\mathbf{D}_{\sigma}}$ Ext($\boldsymbol{\omega}$) = X. 9. $\widehat{D_{\alpha}}$ int(A) $\subset \widehat{D_{\alpha}}$ Ext($\widehat{D_{\alpha}}$ Ext(A)). **Proof.** (1) & (2) Clearly follows from Definition5.26. (3) $\widehat{D_{\alpha}}\operatorname{Ext}(\widehat{D_{\alpha}}\operatorname{Ext}(A)) = \widehat{D_{\alpha}}\operatorname{Ext}(\widehat{D_{\alpha}}\operatorname{int}(A^{c})) = \widehat{D_{\alpha}}\operatorname{Ext}(\widehat{D_{\alpha}}\operatorname{cl}(A))^{c} = \widehat{D_{\alpha}}\operatorname{int}(\widehat{D_{\alpha}}\operatorname{cl}(A)).$ (4) If A \subset B, then A^c \supset B^c. Hence $\widehat{D_{\alpha}}$ int(A^c) $\supset \widehat{D_{\alpha}}$ int(B^c) and so $\widehat{D_{\alpha}}$ Ext(A) \supset $\widehat{\mathbf{D}_{\alpha}}$ Ext(B). (5) If A \subset AUB, then (AUB)^c \subset A^c. Hence $\widehat{D_{\alpha}}$ int((AUB)^c) $\subset \widehat{D_{\alpha}}$ int(A^c) and so $\widehat{D_{\alpha}}$ Ext(AUB) $\subset \widehat{D_{\alpha}}$ Ext(A). If B \subset AUB, then (AUB)^c \subset B^c. Hence $\widehat{D_{\alpha}}$ int((AUB)^c) $\subset \widehat{D_{\alpha}}$ int(B^c) and so $\widehat{D_{\alpha}}$ Ext(AUB) $\subset \widehat{D_{\alpha}}$ Ext(B). Therefore $\widehat{D_{\alpha}}Ext(A\cup B) \subset \widehat{D_{\alpha}}Ext(A) \cup \widehat{D_{\alpha}}Ext(B).$ (6) If $A \cap B \subset A$, then $A^{\circ} \subset (A \cap B)^{\circ}$. Hence $\widehat{D_{\alpha}}$ int $(A^{\circ}) \subset \widehat{D_{\alpha}}$ int $((A \cap B)^{\circ})$ and so $\widehat{D_{\alpha}}Ext(A) \subset \widehat{D_{\alpha}}Ext(A\cap B)$. If $A\cap B \subset B$, then $B^{c} \subset (A\cap B)^{c}$. Hence $\widehat{D_{\alpha}}int(B^{c}) \subset B^{c}$. $\widehat{D_{\alpha}}$ int((A \cap B)^c) and so $\widehat{D_{\alpha}}$ Ext(B) $\subset \widehat{D_{\alpha}}$ Ext(A \cap B). Therefore $\widehat{D_{\alpha}}$ Ext(A) $\cap \widehat{D_{\alpha}}$ Ext(B) \subset $\widehat{D_{\alpha}}$ Ext(A ∩ B). (7) & (8) Follows from Definition 5.26. (9) $\widehat{D_{\alpha}}$ int(A) $\subset \widehat{D_{\alpha}}$ int($\widehat{D_{\alpha}}$ cl(A)) = $\widehat{D_{\alpha}}$ int($\widehat{D_{\alpha}}$ int(A^c))^c= $\widehat{D_{\alpha}}$ int($\widehat{D_{\alpha}}$ Ext(A))^c= $\widehat{\mathbf{D}_{\alpha}}$ Ext($\widehat{\mathbf{D}_{\alpha}}$ Ext(A)). Remark5.28. Converse of (1), (5) and (6) in theorem 5.27 need not be true. **Example 5.29.** Let $X = \{a, b, c\}$ and $\tau = \{\phi, \{a, b\}, X\}$. Then $\widehat{D_{\alpha}}o(\tau) = P(X) - P(X)$ {c}. If A = {a}, B = {b}, C = {c}, then $\widehat{D_{\alpha}}Ext(A) = {b, c}, Ext(A) = \varphi$, $\widehat{D_{\alpha}}$ Ext(B) = {a, c}, $\widehat{D_{\alpha}}$ Ext(C) = {a, b}, $\widehat{D_{\alpha}}$ Ext(AUB) = φ , $\widehat{D_{\alpha}}$ Ext(A \cap C) = X. Then $\widehat{D_{\alpha}}Ext(A) \not\subset Ext(A), \widehat{D_{\alpha}}Ext(A \cap C) \neq \widehat{D_{\alpha}}Ext(A) \cap \widehat{D_{\alpha}}Ext(C) \text{ and } \widehat{D_{\alpha}}Ext(A \cup B) \neq \mathbb{C}$ $\widehat{D_{\alpha}}$ Ext(A) $\cup \widehat{D_{\alpha}}$ Ext(B).

REFERENCES

- [1] Y. Gnanambal, On generalized pre-regular closed sets in topological spaces, Indian J. Pure Appl. Math., 28(1997), 351 360.
- [2] M. Lellis Thivagar, A Note on Quotient mappings, Bull.Malaysian Maths.Soc, (Second series) 14(1991), 21-30.
- [3] P. Sundaram and M. Sheik John, On -closed sets in topology, Acta Ciencia Indica, 4(2000), 389-392.
- [4] S. Sumithra Devi and L. Meenakshi Sundaram, View on generalized closed set in topological spaces, (communicated)
- [5] M. K. R. S. Veera Kumar, μp-closed sets in Topological spaces, Antarctica journal of maths, 2(1) (2005), 31-52.
- [6] F. Nakaoka and N. Oda, On minimal closed sets, Proceeding of Topological paces theory and its applications, 5, (2003), 19-21.