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ABSTRACT  

The main aim of this paper is to define -open sets and -interior in topological spaces and obtain certain 

characterizations of these sets. Furthermore, we have discussed about the concept of -derived, -border, -frontier and 

-exterior of a set using the concept of -open sets are introduced. 

INTRODUCTION 

In this section, first we define -open sets and -interior in topological spaces and obtain certain characterizations of these 

sets. M. Caldas and J. Dontchev [8] introduced as semi kernel by using semi open sets. 

Using this concepts, -kernal has been defined. M. Caldas, S. Jafari and T. Noiri [6] introduced and studied the topological 

properties of g-derived, g-border, g-frontier and g-exterior of a set using the concept of g-open sets. By the same technique 

the concept of -derived, -border, -frontier and -exterior of a set using the concept of -open sets are introduced. 

2. PRELIMINARIES 

Definition 2.1: 

1) A generalized pre-regular closed set (briefly gpr-closed) [1] if pcl(A) ⊂U whenever   A⊂U and U is regular 

open in (X, τ ). 

2) -closed set [3] ( = bg-closed [5]) if cl(A) ⊂U whenever A ⊂U and U is semi-open in (X, τ). 

3) -closed set [4] if cl(A) ⊂U whenever A ⊂U and U is -open in (X, τ). 

Preliminaries:2.2 

1) Every -closed set is gspr- closed (resp. gpr-open, gps-open). 

2) Every closed set is - closed 

3) Every - closed set is - closed 

Definition 2.3:[6] A proper nonempty open subset U of X is said to be a minimal 

open set if any open set contained in U is φ or U. 

Definition 2.4:[6] A proper nonempty open subset U of X is said to be a maximal 

open set if any open set containing U is X or U. 

Definition 2.5:[2] b(A) = A − int(A) is said to be the border of A. 

Definition 2.6: [2] Fr(A) = cl(A) − int(A) is said to be the frontier of A. 

Definition 2.7:[2] Ext(A) = int(Ac) is said to be the exterior of A. 

3 ON OPEN SETS 

Definition 3.1. A subset A in (X,τ) is called -open in (X,τ) if Ac is -closed 

in (X,τ). We denote the family of all -open sets in X by o(X). 

Proposition 3.2. Every -open set is gspr-open (resp.gpr-open,gps-open). 

Proposition 3.3. Every open set is -open 
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Proposition 3.4. Every -open set is -open 

Proposition 3.5. If A and B are -open sets, then A∪B and A⋂B is -open sets. 

Theorem 3.6. A subset A of a topological space (X,τ) is said to be -open if and 

only if F ⊂ int(A) whenever F ⊂A and F is -closed in (X,τ). 

Proof. 

Suppose A is -open in X and F ⊂A, where F is -closed in (X,τ). 

Then Ac⊂Fc, where Fc is -open in X. 

Hence, we get cl(Ac) ⊂Fc implies( int(A))c⊂Fc. 

Thus we have F ⊂ int(A). 

Conversely, Suppose that Ac⊂U and U is -open in (X,τ). Then Uc⊂A and 

Ucis -closed and by hypothesis Uc⊂ int(A) implies ( int(A))c⊂U. 

Hence cl(Ac) ⊂U implies that Acis -closed in (X,τ). 

Therefore, A is -open in (X,τ). 

Proposition 3.7. If int(A) ⊂B ⊂A and if A is -open, then B is -open. 

Proof. 

Suppose int(A) ⊂B ⊂A and A is -open. 

Then Ac⊂Bc⊂ cl(Ac). 

Since Acis -closed, Bcis -closed. Hence, B is -open. 

Proposition 3.8. If a set A is -closed, then cl(A) − A is -open. 

Proof. Suppose A is -closed. 

Let F ⊂ cl(A) − A where F is -closed. 

F = . 

Therefore F ⊂ int( cl(A) − A) and by Theorem 2.3.7, 

αcl(A) − A is - open. 

Remark 3.9. The converse of proposition 3.8 is not true by the following example. 

Example 3.10. Let X= {a, b, c, d, e} and τ = { , {a}, {a, b}, {c, d}, {a, c, d}, {a, b, 

c, d},X} be defined. The set A = {a, d}, αcl(A) − A = {a, b, d} − {a, d} = {b} is -open but A is not  -closed. 

Proposition 3.11. Let A be a subset of a topological space X. For any x ∈X, 

x ∈ cl(A) if and only if U ∩ A for every -open set U containing x. 

Proof. 

Necessity: Suppose that x ∈ cl(A). Let U be a -open set containing x 

such that A ∩ U = and so A ⊂Uc. 

But Ucis -closed and hence cl(A) ⊂Uc. 

Since x Uc we obtain x cl(A) which is a contradiction. 
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Therefore, U∩A  for every -open set U containing x. 

Sufficiency: Suppose that every -open set U of X containing x such that 

U ∩ A . 

If x cl(A) then there exist a -closed set F of X such that A ⊂F 

and x F. 

Therefore, x ∈Fc and Fc is a -open set containing x. But Fc∩ A =  

which is contradiction to the hypothesis. 

Therefore, x ∈ cl(A). 

Definition 3.12. For any A ⊂X, int(A) is defined as the union of all -open 

sets contained in A. That is, int(A) = ∪{U : U ⊂A and U ∈ o( )}. 

Proposition 3.13. Let A be a subset of a space (X,τ), then the following are true. 

(i) ( int(A))c= cl(Ac) 

(ii) int(A) =( cl(Ac))c 

(iii) cl(A) =( int(Ac))c 

Proof. (i) Let x ∈ int(A))c. 

Then x ∉ int(A). That is, every -open set U containing x is such that U A. 

Thus every -open set U containing x is such that U ∩Ac . 

By proposition 2.3.12, x ∈ cl(Ac) and therefore, int(A))c⊂ cl(Ac). 

Conversely, let x ∈ cl(Ac). 

Then by proposition 3.11, every -open set U containing x is such that U ∩Ac . 

By definition 3.12, x ∉ int(A). 

Hence x∈( int(A))cand so cl(Ac) ⊂( int(A))c. 

Thus int(A))c= cl(Ac). 

(ii) Follows by taking complements in (i). 

(iii) Follows by replacing A by Acin (i). 

4.ON MINIMAL AND MAXIMAL -OPEN SETS 

Definition 4.1:Let  be a topological space.A non-empty  - open set  of  is said to be a  minimal -open 

set if any  - open set which is contained in  is  or . 

Lemma 4.2: 

(1)  Let be a  minimal - open set and  be a  - open set. Then  or . 

(2)  Let  and  be minimal - open sets. Then  or . 

Proof: 

(1)  Let  be a - open set such that . Since is a minimal - open set and 

, we have . Therefore, . 
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(2)  If , then we see that  and  by (1). Therefore, . 

Proposition 4.3: Let  be a minimal - open set. If  is an element of , then  for any  - neighbourhood 

 of . 

Proof: Let  be a - neighbourhood of  such that . 

Then  is a - open set such that  and . 

This controverts our assumption that  is a minimal - open set. 

Proposition 4.4: Let  be a minimal - open set. Then  is a  - neighborhood of } for any 

element  of . 

Proof: By Proposition 4.3 and the fact that  is a  - neighbourhood of , we have   is a  - 

neighbourhood of } . 

Therefore, the argument proceeds. 

Theorem 4.5: Let  be a non-empty  - open set. Then the here under three conditions are equivalent: 

(1)  is a  minimal - open set. 

(2)  for any non-empty  subset  of . 

(3)  for any non-empty subset  of . 

Proof: 

(1)⇒(2) Let  be any nonempty subset of . 

By Proposition 4.3, for any element  of  and any  - neighbourhood  of , we have 

. 

Then, we have  and hence  is an element of . It follows that . 

(2)⇒(3) For any non-empty subset  of , we have . 

On the other hand, by (2), we see . 

Therefore we have  for any non-empty subset  of . 

(3)⇒(1) Suppose that  is not a minimal - open set. 

Then there exists a non-empty open set  such that  and hence there exists an element  such that 

. 

Then we have , the complement of . 

It proceeds that . 

Definition 4.6: Let  be a topological space. A proper non-empty - open subset  of  is said to be a  maximal 

- open set if any  - open set which contains  is  or . 

Lemma 4.7: 

(1)  Let  be a maximal - open set and  a - open set. Then,  or . 

(2)  Let  and  be maximal -open sets. Then,  or . 

Proof: 

(1)  Let  be a  - open set such that . Since  is a  maximal - open set and 

, we have . Therefore, . 
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(2)  If , then  and  by (1). Therefore,  

Proposition 4.8: Let  be a maximal - open set. If  is an element of , then for any  - neighbourhood  of 

,  or . 

Proof: By Lemma 4.7(1), the argument proceeds. 

Theorem 4.9: Let  and  be  - maximal open sets such that . If , then  or 

. 

Proof: We see that  

1.  (by Lemma 4.7(2)) 

2.  

3.  

4.  (since ) 

5.  

If , then , and hence ; namely, . Since  and are  - maximal 

open sets, we have . 

Theorem 4.10: Let  and  be  maximal open sets, which are different from each other. Then, 

. 

Proof: If , then we see that . 

Hence . 

Since , we have . It proceeds that , which contradicts our assumption. 

Proposition 4.11: Let be a  - maximal open set and  an element of . Then,  is an - 

neighbourhood of  such that }. 

Proof: By Proposition 4.8 and the fact that  is an  - neighbourhood of , we have  is a  -

neighbourhood of  such that } . 

Therefore, the argument proceeds. 

Proposition 4.12: Let  be a  topological space. If  be a proper - maximal open subset of  then  is a - 

minimal closed set. 

Proof: Suppose  is not a  - minimal closed set. 

Then there exists a - closed set  such that . 

Hence . 

This means that  is not - maximal which is contradicting that  is - maximal. 

Proposition 4.13: Let  be a  topological space. If  be a proper - minimal open subset of  then  is a  - 

maximal closed set. 

Proof: Suppose  is not a  - maximal closed set. 

Then there exists a - closed set  such that . 

Hence . 
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This means that  is not - minimal which is contradicting that  is  - minimal. 

5.THEORETICAL APPLICATION OF  OPEN SETS 

Definition 5.1. For any A ⊂X, ker(A) is defined as the intersection of all 

-open sets containing A. In symbol, ker(A) = ∩{U : A ⊂U and U ∈ o( )}. 

Example 5.2. Let X = {a, b, c} and τ= {φ, {a},X}. Here o(τ) = {φ, {a}, {a, b}, 

{a, c},X}. If A = {b, c} then ker(A) = X. If B = {a}, then ker(B) = {a}. 

Definition 5.3. A subset A of a topological space X is an U-set if ker(A) = A. 

Example 5.4. By Example 3.10, {a}, {a, b} and {a, c} are U-sets and the set 

{b, c} is not an U-set, because ker({b, c}) = X. 

Lemma 5.5. For subsets A,B and ( ∈ ) of a topological space X, the 

following are hold. 

1.  A ⊂ ker(A). 

2.  If A ⊂B, then ker(A) ⊂ ker(B). 

3.  If ker( ker(A)) = ker(A). 

4.  If A is -open, then A = ker(A). 

5 ker(∪{ (  ∈ )}) ⊃∪{ ker (  ∈ )}. 

6. ker( { (  ∈ )}) { ker (  ∈ )}. 

Proof. 1. Clearly follows from Definition5.1. 

2.  Suppose x ker(B). Then there exists a subset U ∈ o(τ) such that U ⊃B with x U. Since A ⊂B, x ker(A). 

Thus ker(A) ⊂ ker(B). 

3.  Follows from (1) and Definition5.1. 

4.  Since A ∈ o( ), we have ker(A) ⊂A. By (1), A ⊂ ker(A). Therefore, A = ker(A). 

5. For each  ∈ , ker( ) ⊂ ker( ). Therefore, we obtain ker(∪{ (  ∈ )}) ⊃∪{ ker (  ∈ )}. 

6.  Suppose that x { ker (  ∈ )}vthen there exists an  ∈ such that x ker( ) and there exist an -open 

set U such that x U and A( ) ⊂U. 

We have ⊂ ⊂U and x U. Therefore, x ker( { (  ∈ )}). 

Hence, ker( { (  ∈ )}) { ker (  ∈ )}. 

Remark 5.6. In (6) of Lemma5.5, the equality does not necessarily hold as  shown by the following example. 

Example 5.7. Let X = {a, b, c, d} and τ= {φ, {c}, {d}, {a, c}, {c, d}, {a, c, d},X}. 

Here o(τ) = {φ, {b, c},X}. Let P = {a, b}, Q = {b, c}. Here ker(P ∩ Q) = {b} and 

ker(P) ∩ ker(Q) = {a, b, c} ∩ {b, c} = {b, c}. 

Remark 5.8. From Lemma5.5, it is clear that ker(A) is a U-set and every open set is a U-set. 

Lemma 5.9. Let (  ∈ ) be a subset of a topological space X. If is an U-set, then  is an U-set. 

Proof. ker( ) ⊂ ker( ) by Lemma 2.3.19. 
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Since each is anU-set, we get ker( ) ⊂( ). 

Again by Lemma5.5, ( ) ⊂ ker( ). 

Thus ker( ) = ( ) implies ( ) is an U-set. 

Definition5.10. A subset A of a topological space X is said to be U-closed if 

A = L ∩ F where L is anU-set and F is a closed set of X. 

Remark 5.11 It is clear that every U-set and closed sets are U-closed. 

Theorem 5.12. For a subset A of a topological space X, the following conditions are equivalent: 

1. A is U-closed. 

2. A = L ∩ cl(A) where L is anU-set. 

3. A = ker(A) ∩ cl(A). 

Proof. (1) =⇒(2) : Let A = L ∩ F where L is a U-set and F is a closed set. Since 

A ⊂F we have cl(A) ⊂F and A ⊂L ∩ cl(A) ⊂L ∩ F = A. Therefore, we obtain 

L ∩ cl(A) = A. 

(2) =⇒(3) : Let A = L ∩ cl(A) where L is an U-set. Since A ⊂L we have 

ker(A) ⊂ ker(L) = L and hence A ⊂ ker(A) ∩ cl(A) ⊂L ∩ cl(A) = A. 

Therefore, we obtain A = ker(A) ∩ cl(A). 

(3) =⇒(1) : Since ker(A) is a U-set, therefore, A is U-closed. 

Definition5.13. Let A be subset of a space X. A point x ∈X is said to be a 

-limit point of A if for each -open set U containing x, U ∩ (A−{x}) . The set 

of all -limit points of A is called a derived set of A and is denoted by (A). 

Theorem 5.14. For subset A, B of a space X, the following statements hold: 

(i) If (A) ⊂D(A), where D(A) is the derived set of A. 

(ii) If A ⊂B, then (A) ⊂ (B). 

(iii) If (A) ∪ (B) ⊂ (A ∪B) and (A ∩ B) ⊂ (A) ∩ (B). 

(iv) If ( (A)) − A ⊂ (A). 

(v) If (A ∪ (A)) ⊂A ∪ (A). 

Proof. 

(i) Since every open set is -open, (A) ⊂ (A). 

(ii) Follows by definition 5.13. 

(iii) Follows by (ii). 

(iv) If x ∈( ( (A))− A) and U is -open set containing x,  

then U ∩ ( (A) −{x})  . 

Let y ∈U ∩ ( (A) − {x}). Since y ∈ (A) and y ∈U, U ∩ (A −{y}) . 
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Let z ∈U ∩ (A − {y}). Then z x for z ∈A and x A. Hence, 

U ∩ (A − {x}) . Therefore, x ∈ (A). 

(v) Let x ∈ (A ∪ (A)). If x ∈A, the result is obvious. 

So let x ∈ (A ∪ (A))−A, then for a -open set U containing x such that 

U ∩((A∪ (A))−{x}) . 

Thus U ∩ (A − {x}) or U ∩ ( (A) − {x}) . Now, it follows 

similarly from (iv) that U ∩(A−{x}) . 

Hence, x ∈ (A). 

Therefore, in any case (A ∪ (A)) ⊂A ∪ (A). 

Remark 5.15. In general the converse of (i) is not true. 

Example 5.16. Let X = {a, b, c} and τ= {φ, {a, b},X}. Then o(τ) = P(X) − 

{c}. Take A = {a, b}, then (A) = {c} and D(A) = X. Hence, D(A) (A). 

Theorem 5.17. For any subset A of a space X, cl(A) = A ∪ (A). 

Proof. Since (A) ⊂ cl(A), A ∪ (A) ⊂ cl(A). 

On the other hand, let x ∈ cl(A). If x ∈A, then the proof is complete. 

If x A, each -open set U containingx intersects A at a point distinct from x, so x ∈ (A). Thus cl(A) ⊂A ∪ (A) 

which completes the proof. 

Definition 5.18. (A) = A − int(A) is said to be the border of A. 

Theorem 5.19. For a subset A of a space X, the following statements hold: 

1. (A) ⊂b(A) where b(A) denotes the border of A. 

2. A = int(A) ∪ (A). 

3. int(A) ∩ (A) = . 

4. If A is -open, then (A) = . 

5. int( (A)) = . 

6. ( (A)) = (A). 

7. (A) = A ∩ cl(Ac). 

Proof. 1), 2) and 3) clearly follows. 

4) If A is -open, then A = int(A). Therefore, (A) = . 

5) If x ∈ int( (A)), then x ∈ (A). On the otherhand, since (A) ⊂A, 

x ∈ int( (A)) ⊂ int(A). Hence, x ∈ int(A) ∩ (A) which contradicts (3). 

Thus int( (A)) = . 
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6) Follows by (5). 

7) (A) = A − int(A) = A − ( cl(Ac))c= A ∩ cl(Ac). 

Remark 5.20. In general the converse of (1) is not true. 

Example 5.21. Let X = {a, b, c, d} and τ= {φ, {c}, {d}, {a, c}, {c, d}, {a, c, d},X}. 

Here o(τ) = {φ, {c}, {d}, {a, c}, {c, d}, {b, c}{b, d}, {a, b, c}, {a, c, d}, {b, c, d},X}. 

If A = {a, b, c} then (A) = {a, b, c} − {a, b, c} = φ, b(A) = {a, b, c} − {a, c} = {b}. 

Hence, b(A) (A). 

Definition 5.22. Fr (A) = cl(A) − int(A) is said to be the -frontier of A. 

Theorem 5.23. For a subset A of a space X, the following statements are hold: 

1. Fr (A) ⊂Fr(A) where Fr(A) denotes the frontier of A. 

2. cl(A) = int(A) ∪Fr (A). 

3. int(A) ∩ Fr (A) = φ. 

4. (A) ⊂Fr (A). 

5. Fr (A) = (A) ∪ (A). 

6. If A is -open, then (A) = Fr (A). 

7. Fr (A) = cl(A) ∩ cl(Ac). 

8. Fr (A) = Fr (Ac). 

9. Fr (( int(A)) ⊂Fr (A). 

10. Fr ( cl(A)) ⊂Fr (A). 

Proof. 1. Since every open set is -open we get the proof. 

2. int(A) ∪Fr (A) = int(A) ∪( cl(A) − int(A)) = cl(A). 

3. int(A) ∩ Fr (A) = int(A) ∩ ( cl(A) − int(A)) = φ. 

4. Clearly follows from Definitions 5.22 

5. Since int(A)∪Fr (A) = int(A)∪ (A)∪ (A) we get Fr (A) = (A)∪ (A). 

6. If A is -open, then ( (A) = φthen by (5), (A) = Fr (A). 

7. Fr (A) = cl(A) − int(A) = cl(A) − ( cl(Ac))c= cl(A) ∩ cl(Ac). 

8. Follows by (7) 

9. Clearly follow 

10. Fr ( cl(A)) = cl( cl(A))− int( cl(A)) ⊂ cl(A)− int(A) = Fr (A) 

Remark 5.24. In general the converse of (1) is not true. 

Example 5.25. Let X and φ be defined as Example 5.21. Take A = {d} then 

Fr (A) = φ, Fr(A) = {b}. Thus Fr(A) ⊂Fr (A). 

Definition 5.26. Ext(A) = int(Ac) is said to be the -exterior of A. 
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Theorem 5.27. For a subset A of a space X, the following statement are hold: 

1. Ext(A) ⊂ Ext(A), where Ext(A) denotes the exterior of A. 

2. Ext(A) = int(Ac) = ( cl(A))c. 

3. Ext( Ext(A)) = int( cl(A)). 

4. If A ⊂B then Ext(A) ⊃ Ext(B). 

5. Ext(A ∪B) ⊂ Ext(A) ∪ Ext(B). 

6. Ext(A ∩ B) ⊃ Ext(A) ∩ Ext(B). 

7. Ext(X) = φ. 

8. Ext(φ) = X. 

9. int(A) ⊂ Ext( Ext(A)). 

Proof. (1) & (2) Clearly follows from Definition5.26. 

(3) Ext( Ext(A)) = Ext( int(Ac) = Ext( cl(A))c= int( cl(A)). 

(4) If A ⊂B, then Ac⊃Bc. Hence int(Ac) ⊃ int(Bc) and so Ext(A) ⊃ 

Ext(B). 

(5) If A ⊂A B, then (A B)c⊂Ac. Hence int((A B)c) ⊂ int(Ac) 

and so Ext(A B) ⊂ Ext(A). If B ⊂A B, then (A B)c⊂Bc. Hence 

int((A B)c) ⊂ int(Bc) and so Ext(A B) ⊂ Ext(B). Therefore 

Ext(A B) ⊂ Ext(A) Ext(B). 

(6) If A B ⊂A, then Ac⊂(A B)c. Hence int(Ac) ⊂ int((A B)c) and so 

Ext(A) ⊂ Ext(A B). If A B ⊂B, then Bc⊂(A B)c. Hence int(Bc) ⊂ 

int((A B)c) and so Ext(B) ⊂ Ext(A B). Therefore Ext(A) Ext(B) ⊂ 

Ext(A B). 

(7) & (8) Follows from Definition5.26. 

(9) int(A) ⊂ int( cl(A)) = int( int(Ac))c= int( Ext(A))c= 

Ext( Ext(A)). 

Remark5.28. Converse of (1), (5) and (6) in theorem 5.27 need not be true. 

Example 5.29. Let X = {a, b, c} and = {φ, {a, b},X}. Then o(τ) = P(X) − 

{c}. If A = {a}, B = {b}, C = {c}, then Ext(A) = {b, c}, Ext(A) = φ, 

Ext(B) = {a, c}, Ext(C) = {a, b}, Ext(A∪B) = φ, Ext(A∩C) = X. Then 

Ext(A) Ext(A), Ext(A ∩ C) Ext(A) ∩ Ext(C) and Ext(A ∪B)  

Ext(A) ∪ Ext(B). 
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