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Abstract. Previously, boundary control problems for a parabolic type equa-

tions were considered. A portion of the thin rod boundary has a temperature-

controlled heater. Its mode of operation should be found so that the average
temperature in some region reaches a certain value. In this paper, we con-

sider the boundary control problem for a pseudo-parabolic equation in a right

rectangle domain. The value of the solution with the control parameter is
given in the boundary of the domain. Control constraints are given such that

the average value of the solution in considered domain takes a given value.
The auxiliary problem is solved by the method of separation of variables, and

the problem under consideration is reduced to the Volterra integral equa-

tion. The existence theorem of admissible control is proved by the Laplace
transform method.

1. Introduction

Consider the pseudo-parabolic equation in the domain ΩT = {(x, y) : 0 < x <
a, 0 < y < b, 0 < t < T}:

∂u

∂t
=

∂2

∂t∂x

(
k(x)

∂u

∂x

)
+

∂

∂x

(
k(x)

∂u

∂x

)
+

∂3u

∂t∂y2
+
∂2u

∂y2
, (x, y, t) ∈ ΩT , (1.1)

with boundary conditions

u(0, y, t) = ϕ(y)µ(t), u(a, y, t) = 0, 0 < y < b, (1.2)

u(x, 0, t) = 0, u(x, b, t) = 0, 0 < x < a, 0 < t < T, (1.3)

and initial condition

u(x, y, 0) = 0, 0 ≤ x ≤ a, 0 ≤ y ≤ b. (1.4)

Assume that the function k(x) ∈ C2
(
[0, a]

)
satisfies conditions

k(x) > 0, k′(x) ≤ 0, 0 ≤ x ≤ a.

and the function ϕ(y) ∈W 2
2 [0, b] satisfies conditions

ϕ(0) = ϕ(b) = 0, ϕn ≥ 0, 0 ≤ y ≤ b, (1.5)
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where

ϕn =
2

b

b∫
0

ϕ(y) sin
nπy

b
dy. (1.6)

Definition 1.1. If function µ(t) ∈ W 1
2 (R+) satisfies the conditions µ(0) = 0,

|µ(t)| ≤ 1, we say that this function is an admissible control.

Problem H. For the given function θ(t) Problem H consists in looking for
the admissible control µ(t) such that the solution u(x, y, t) of the initial-boundary
problem (1.1)-(1.4) exists and for all t ≥ 0 satisfies the equation

a∫
0

b∫
0

u(x, y, t) dy dx = θ(t). (1.7)

One of the models is the theory of incompressible simple fluids with decaying
memory, which can be described by equation (1) (see [1]). In [2], stability, unique-
ness, and availability of solutions of some classical problems for the considered
equation were studied (see also [3, 4]). Point control problems for parabolic and
pseudo-parabolic equations were considered. Some problems with distributed pa-
rameters impulse control problems for systems were studied in [5, 6]. We recall
that the time-optimal control problem for partial differential equations of para-
bolic type was first investigated in [7] and [8]. More recent results concerned with
this problem were established in [9, 10, 11, 12, 13, 14, 15, 16]. Detailed informa-
tion on the problems of optimal control for distributed parameter systems is given
in the monographs [17, 18, 19, 20]. General numerical optimization and optimal
boundary control have been studied in a great number of publications such as [21].
The practical approaches to optimal control of the heat conduction equation are
described in publications like [22].

Consider the following eigenvalue problem

∂

∂x

(
k(x)

∂vm,n(x, y)

∂x

)
+
∂2vm,n
∂y2

= −λm,n vm,n(x, y), (x, y) ∈ Ω, (1.8)

with boundary conditions

vm,n(x, y) |∂Ω= 0, (1.9)

where vm,n(x, y) = ϑm(x)ωn(y) and these functions are solutions of the following
eigenvalue problems

d

dx

(
k(x)

dϑm(x)

dx

)
+ µm ϑm(x) = 0, 0 < x < a, (1.10)

with boundary conditions

ϑm(0) = ϑm(a) = 0, 0 ≤ x ≤ a, (1.11)

and
d2ωn(y)

dy2
+ νn ωn(y) = 0, ωn(0) = ωn(b) = 0. (1.12)
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It is worth noting

λm,n = µm + νn, νn =
n2π2

b2
, and ωn(y) = sin

nπ

b
.

It is well-know that this problem is self-adjoint in L2(Ω) and there exists a
sequence of eigenvalues {λm,n} so that

0 < λ11 ≤ ... ≤ λm,n →∞, m, n→∞.
The corresponding eigenfuction vm,n form a complete orthonormal system in

L2(Ω) and these function belong to C(Ω̄), where Ω̄ = Ω ∪ ∂Ω (see, [23, 25]).

2. Main integral equation

Definition 2.1. By the solution of the problem (1.1)–(1.4) we understand the
function u(x, y, t) represented in the form

u(x, y, t) =
a− x
a

ϕ(y)µ(t)− v(x, y, t), (2.1)

where the function v(x, y, t) ∈ C2,2,1
x,y,t (ΩT ) ∩ C(Ω̄T ), vx ∈ C(Ω̄T ) is the solution to

the problem:

vt −
∂2

∂t∂x

(
k(x)

∂v

∂x

)
− ∂

∂x

(
k(x)

∂v

∂x

)
− ∂3v

∂t∂y2
− ∂2v

∂y2

=
a− x
a

ϕ(y)µ′(t) +
k′(x)

a
ϕ(y) [µ(t) + µ′(t)]− a− x

a
ϕ′′(y) [µ(t) + µ′(t)],

with initial-boundary value conditions

v(x, y, t) |∂Ω= 0, v(x, y, 0) = 0.

Set
βm,n =

(
λm,n am,n − bm,n + cm,n

)
γm,n, (2.2)

where

am,n = ϕn

a∫
0

a− x
a

ϑm(x) dx, (2.3)

bm,n = ϕn

a∫
0

k′(x)

a
ϑm(x) dx, cm,n = −ϕn νn

a∫
0

a− x
a

ϑm(x) dx, (2.4)

and

γm,n =

a∫
0

b∫
0

ϑm(x)ωn(y) dy dx. (2.5)

Consequently, we have (see, [23])

v(x, y, t) =

∞∑
m,n=1

ϑm(x)ωn(y)

1 + λm,n

×
t∫

0

e−qm,n(t−s)(µ′(s) [am,n + bm,n − cm,n] + µ(s) [bm,n − cm,n]
)
ds, (2.6)
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where qm,n =
λm,n

1+λm,n
.

From (2.1) and (2.6), we get the solution of the problem (1.1)–(1.4):

u(x, y, t) =
a− x
a

ϕ(y)µ(t)−
∞∑

m,n=1

ϑm(x)ωn(y)

1 + λm,n

×
t∫

0

e−qm,n (t−s)(µ′(s) [am,n + bm,n − cm,n] + µ(s) [bm,n − cm,n]
)
ds.

According to condition (1.7) and the solution of the problem (1.1)-(1.4), we
may write

θ(t) =

a∫
0

b∫
0

u(x, y, t) dy dx = µ(t)

a∫
0

b∫
0

ϕ(y)
a− x
a

dy dx

−
∞∑

m,n=1

γm,n
1 + λm,n

t∫
0

e−qm,n(t−s)(µ′(s) [am,n + bm,n − cm,n] + µ(s) [bm,n − cm,n]
)
ds

= µ(t)

a∫
0

b∫
0

ϕ(y)
a− x
a

dy dx−
∞∑

m,n=1

(bm,n − cm,n) γm,n
1 + λm,n

t∫
0

e−qm,n(t−s)µ(s)ds

−
∞∑

m,n=1

(am,n + bm,n − cm,n) γm,n
1 + λm,n

t∫
0

e−qm,n(t−s)µ′(s)ds

= µ(t)

a∫
0

b∫
0

ϕ(y)
a− x
a

dy dx− µ(t)

∞∑
m,n=1

(am,n + bm,n − cm,n) γm,n
1 + λm,n

−
∞∑

m,n=1

(bm,n − cm,n) γm,n
1 + λm,n

t∫
0

e−qm,n(t−s)µ(s)ds

+

∞∑
m,n=1

(am,n + bm,n − cm,n)λm,n γm,n
(1 + λm,n)2

t∫
0

e−qm,n(t−s) µ(s) ds, (2.7)

where γm,n defined by (2.5).
Note that

a∫
0

b∫
0

ϕ(y)
a− x
a

dy dx =

a∫
0

b∫
0

( ∞∑
m,n=1

am,n ϑm(x)ωn(y)

)
dy dx

=

∞∑
m,n=1

am,n γm,n. (2.8)
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From (2.7) and (2.8), we get

θ(t) = µ(t)

∞∑
m,n=1

(am,n λm,n − bm,n + cm,n) γm,n
1 + λm,n

+

∞∑
m,n=1

(am,n λm,n − bm,n + cm,n) γm,n
(1 + λm,n)2

t∫
0

e−qm,n(t−s) µ(s) ds,

where λm,n = µm + νn.
Set

K(t) =

∞∑
m,n=1

ρm,n e
−qm,nt, t > 0, (2.9)

and

α =

∞∑
m,n=1

βm,n
1 + λm,n

, ρm,n =
βm,n

(1 + λm,n)2
,

where βm,n defined by (2.2).
Later we prove βm,n ≥ 0 in proposition 3.2. Hence, α > 0 and bounded.
Then we have the main integral equation

αµ(t) +

t∫
0

K(t− s)µ(s) ds = θ(t), t > 0. (2.10)

3. Main Result

Denote by W (M) the set of function θ ∈ W 2
2 (−∞,+∞), θ(t) = 0 for t ≤ 0

which satisfies the condition

‖θ‖W 2
2 (R+) ≤M.

Theorem 3.1. There exists M > 0 such that for any function θ ∈ W (M) the
solution µ(t) of the equation (2.10) exists and satisfies condition

|µ(t)| ≤ 1.

Proposition 3.2. For the cofficients βm,n defined by (2.2) the estimate

0 ≤ βm,n ≤ C
ϕn
n
, m, n = 1, 2, ... (3.1)

is valid, where ϕn defined by (1.6).

Proof. Step 1. According to (1.10), (1.11) and (2.3), we first calculate the follow-
ing integral

am,n µm = µmϕn

a∫
0

a− x
a

ϑm(x) dx

= −ϕn

a∫
0

a− x
a

d

dx

(
k(x)

dϑm(x)

dx

)
dx = ϕn k(0)ϑ′m(0)
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−ϕn

a∫
0

k(x)

a
ϑ′m(x)dx = ϕn k(0)ϑ′m(0) + ϕn

a∫
0

k′(x)

a
ϑm(x)dx

= ϕn k(0)ϑ′m(0) + bm,n.

Secondly, from (1.12) and (2.3)

am,n νn = νn ϕn

a∫
0

a− x
a

ϑm(x) dx = −cm,n.

Then we have

am,n(µm + νn)− bm,n + cm,n = ϕn k(0)ϑ′m(0). (3.2)

Step 2. Now we integrate the Eq. (1.10) from 0 to x

k(x)ϑ′m(x)− k(0)ϑ′m(0) = −µm

x∫
0

ϑm(τ)dτ,

and according to k(x) > 0, x ∈ [0, a], we can write

ϑ′m(x)− 1

k(x)
k(0)ϑ′m(0) = − µm

k(x)

x∫
0

ϑm(τ)dτ. (3.3)

Thus, we integrate the Eq. (3.3) from 0 to a. Then we have

ϑm(a)− ϑm(0)− k(0)ϑ′m(0)

a∫
0

dx

k(x)
= −µm

a∫
0

1

k(x)

( x∫
0

ϑm(τ)dτ
)
dx. (3.4)

From (1.11) and (3.4), we get

k(0)ϑ′m(0)

a∫
0

dx

k(x)
= µm

a∫
0

1

k(x)

( x∫
0

ϑm(τ)dτ
)
dx.

Then

k(0)ϑ′m(0) = µm

a∫
0

G(τ)ϑm(τ)dτ, (3.5)

where

G(τ) =

a∫
τ

dx

k(x)

( a∫
0

dx

k(x)

)−1

.

According to G(τ) > 0 and from (3.5), we have (see, [25])

ϑ′m(0)

a∫
0

ϑm(τ)dτ ≥ 0. (3.6)

Consequently, according to (1.5), (3.2) and (3.6), we get the following estimate

βm,n = (am,n (µm + νn)− bm,n + cm,n) γm,n
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= ϕn k(0)ϑ′m(0)

a∫
0

ϑm(x)dx

b∫
0

ωn(y)dy

=
b [1− (−1)n]

nπ
ϕn k(0)ϑ′m(0)

a∫
0

ϑm(x)dx ≥ 0.

Step 3. It is clear that if k(x) ∈ C1([0, a]), we may write the estimate (see,
[25, 26])

max
0≤x≤a

|ϑ′m(x)| ≤ Cµ1/2
m .

Therefore,

|ϑ′m(0)| ≤ Cµ1/2
m , |ϑ′m(a)| ≤ Cµ1/2

m ,

From (1.10), we can write

k(a)ϑ′m(a)− k(0)ϑ′m(0) = −µm

a∫
0

ϑm(x)dx.

Then we obtain

|γm,n| =
b [1− (−1)n]

nπ

∣∣∣∣
a∫

0

ϑm(x)dx

∣∣∣∣
=
b [1− (−1)n]

nπ

∣∣∣∣k(a)ϑ′m(a)− k(0)ϑ′m(0)

µm

∣∣∣∣ ≤ C µ
−1/2
m

n
.

Consequently,

|βm,n| = ϕn k(0)|ϑ′m(0) γm,n| ≤ C
ϕn
n
.

�

Proposition 3.3. A function K(t) defined by (2.9) is continuous on the half-line
t ≥ 0.

Proof. Indeed, according to proposition 3.2, we can write

0 ≤ ρm,n =
βm,n

(1 + λm,n)2
≤ C ϕn

n (1 + λm,n)2
.

It is clear that, from (3.1) function K(t) is positive. It is known from the general
theory that if k(x) is a smooth function, the following estimate is valid (see, [26]):

µm =
m2π2

p2
+O(m−2), p =

a∫
0

dx√
k(x)

,

where µm are the eigenvalues of problem (1.10)-(1.11).
Then we have

0 < K(t) ≤ const

∞∑
m,n=1

ϕn
n (1 + λm,n)2

.

where λm,n = µm + νn. �
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We write integral equation (2.10)

αµ(t) +

t∫
0

K(t− s)µ(s)ds = θ(t), t > 0.

For solve equation (2.10), we use the Laplace transform method. We introduce
the notation

µ̃(p) =

∞∫
0

e−pt µ(t) dt.

Then we use Laplace transform obtain the following equation

θ̃(p) =

∞∫
0

e−pt dt

t∫
0

K(t− s)µ(s)ds+ α

∞∫
0

e−pt µ(t) dt = K̃(p) µ̃(p) + α µ̃(p).

Consequently, we get

µ̃(p) =
θ̃(p)

α+ K̃(p)
, where p = a+ iξ, a > 0,

and

µ(t) =
1

2πi

a+iξ∫
a−iξ

θ̃(p)

α+ K̃(p)
eptdp =

1

2π

+∞∫
−∞

θ̃(a+ iξ)

α+ K̃(a+ iξ)
e(a+iξ)tdξ. (3.7)

Then we can write

K̃(p) =

∞∫
0

K(t)e−pt dt =

∞∑
m,n=1

ρm,n

∞∫
0

e−(p+qm,n)t dt =

∞∑
m,n=1

ρm,n
p+ qm,n

,

where K(t) defined by (2.9) and

α+ K̃(a+ iξ) = α+

∞∑
m,n=1

ρm,n
a+ qm,n + iξ

= α+

∞∑
m,n=1

ρm,n (a+ qm,n)

(a+ qm,n)2 + ξ2

−iξ
∞∑

m,n=1

ρm,n
(a+ qm,n)2 + ξ2

= Re(α+ K̃(a+ iξ)) + i Im(α+ K̃(a+ iξ)),

where

Re(α+ K̃(a+ iξ)) = α+

∞∑
m,n=1

ρm,n (a+ qm,n)

(a+ qm,n)2 + ξ2
,

Im(α+ K̃(a+ iξ)) = −ξ
∞∑

m,n=1

ρm,n
(a+ qm,n)2 + ξ2

.

We know that

(a+ qm,n)2 + ξ2 ≤ [(a+ qm,n)2 + 1](1 + ξ2),

126



BOUNDARY CONTROL PROBLEM...

and we have the following inequality

1

(a+ qm,n)2 + ξ2
≥ 1

1 + ξ2

1

(a+ qm,n)2 + 1
. (3.8)

Consequently, according to estimate (3.1) and (3.8) we have the following esti-
mates

|Re(α+ K̃(a+ iξ))| = α+

∞∑
m,n=1

ρm,n (a+ qm,n)

(a+ qm,n)2 + ξ2

≥ 1

1 + ξ2

∞∑
m,n=1

ρm,n (a+ qm,n)

(a+ qm,n)2 + 1
=

C1a

1 + ξ2
, (3.9)

and

|Im(α+ K̃(a+ iξ))| = |ξ|
∞∑

m,n=1

ρm,n
(a+ qm,n)2 + ξ2

≥ |ξ|
1 + ξ2

∞∑
m,n=1

ρm,n
(a+ qm,n)2 + 1

=
C2a |ξ|
1 + ξ2

, (3.10)

where C1a, C2a as follows

C1a =

∞∑
m,n=1

ρm,n (a+ qm,n)

(a+ qm,n)2 + 1
, C2a =

∞∑
m,n=1

ρm,n
(a+ qm,n)2 + 1

.

From (3.9) and (3.10), we have the following estimate

|α+ K̃(a+ iξ)|2 = |Re(α+ K̃(a+ iξ))|2 + |Im(α+ K̃(a+ iξ))|2 ≥ min(C2
1a, C

2
2a)

1 + ξ2
,

and

|α+ K̃(a+ iξ)| ≥ Ca√
1 + ξ2

, where Ca = min(C1a, C2a). (3.11)

Then, when a→ 0 from (3.7), we obtain

µ(t) =
1

2π

+∞∫
−∞

θ̃(iξ)

α+ K̃(iξ)
eiξtdξ. (3.12)

Lemma 3.4. Let θ(t) ∈ W (M). Then for the image of the function θ(t) the
following inequality

+∞∫
−∞

|θ̃(iξ)|
√

1 + ξ2dξ ≤ C ‖θ‖W 2
2 (R+),

is valid.

Proof. We calculate the Laplace transform of a function θ(t) as follows

θ̃(a+ iξ) =

∞∫
0

e−(a+iξ)tθ(t) dt = −θ(t) e
−(a+iξ)t

a+ iξ

∣∣∣∣t=∞
t=0

+
1

a+ iξ

∞∫
0

e−(a+iξ)t θ′(t) dt,
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then, we get

(a+ iξ) θ̃(a+ iξ) =

∞∫
0

e−(a+iξ)t θ′(t) dt,

and for a→ 0 we have

iξ θ̃(iξ) =

∞∫
0

e−iξt θ′(t) dt.

Also, we can write the following equality

(iξ)2 θ̃(iξ) =

∞∫
0

e−iξt θ′′(t) dt.

Then we have
+∞∫
−∞

|θ̃(iξ)|2(1 + ξ2)2dξ ≤ C1 ‖θ‖2W 2
2 (R+). (3.13)

Consequently, according to (3.13) we get the following estimate

+∞∫
−∞

|θ̃(iξ)|
√

1 + ξ2dξ =

+∞∫
−∞

|θ̃(iξ)|(1 + ξ2)√
1 + ξ2

≤
( +∞∫
−∞

|θ̃(iξ)|2(1 + ξ2)2dξ

)1/2( +∞∫
−∞

1

1 + ξ2
dξ

)1/2

≤ C ‖θ‖W 2
2 (R+).

�

Proof of the Theorem 3.1 We prove that µ ∈ W 1
2 (R+). Indeed, according

to (3.11) and (3.12), we obtain

+∞∫
−∞

|µ̃(ξ)|2(1 + |ξ|2) dξ =

+∞∫
−∞

∣∣∣∣∣ θ̃(iξ)

α+ K̃(iξ)

∣∣∣∣∣
2

(1 + |ξ|2) dξ

≤ C
+∞∫
−∞

|θ̃(iξ)|2(1 + |ξ|2)2 dξ = C‖θ‖2W 2
2 (R).

Further,

|µ(t)− µ(s)| =

∣∣∣∣∣∣
t∫
s

µ′(τ) dτ

∣∣∣∣∣∣ ≤ ‖µ′‖L2

√
t− s.

Hence, µ ∈ Lipα, where α = 1/2. Then, from (3.11), (3.12) and lemma 3.4, we
can write

|µ(t)| ≤ 1

2π

+∞∫
−∞

|θ̃(iξ)|
|α+ K̃(iξ)|

dξ ≤ 1

2πC0

+∞∫
−∞

|θ̃(iξ)|
√

1 + ξ2dξ
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≤ C

2πC0
‖θ‖W 2

2 (R+) ≤
CM

2πC0
= 1.

As M we took

M =
2πC0

C
.

Theorem 3.1 is proved.
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