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ABSTRACT 
To study temperature effect on vibration of non-homogeneous orthotropic elliptical plate in which temperature 

and thickness are taken as linear in both the directions. The variation in density is assumed as linear along a line 

through plate centre, which raise non-homogeneity of the plate materials and make problem interesting as 

introducing variation in non-homogeneity of the material mass density reduce the problem practical importance 

in comparison to homogeneous plate. For visco-elastic, basic elastic and viscous elements are combined in 

parallel. Here we have taken Kelvin model for visco-elasticity that is the combination of viscous and elastic 

elements. Here the elastic element means the spring and viscous element means the dashpot. The governing 

equation has been solved by the Rayleigh-ritz method. Frequency corresponding to the first two modes of 

vibration of a clamped non-homogeneous visco-elastic elliptic plate for various value of thermal gradient, taper 

constant, aspect ratio are obtained and shown graphically. 
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INTRODUCTION 

In modern technology an interest towards the effect of high temperature on non-homogeneous plates of variable 

thickness is developed due to applications in various engineering branches such as nuclear, power plants, 

aeronautical, chemicals etc. where metals and their alloys exhibits visco-elastic behavior. Therefore for these 

changes the structures are exposed to high intensity, heat fluxes and material properties undergo significant 

changes. Several authors [1-4] have studied the thermal effect on vibration of homogeneous plates of variable 

thickness but none of the authors have so far considered thermal effect on vibration of non-homogeneous 

elliptical plate of varying thickness. Therefore solution of vibration of non-homgeneous plate of variable 

thickness with thermal gradient is more important as non-homogeneity play an important role in the theory of 

vibration of plates. Khanna and Sharma [5] has studied the transverse vibration of square plate of variable 

thickness with thermal gradient. Khanna, Kumar & Bhatia [6] has studied A Computational   Prediction on  Two 

Dimensional Thermal Effect on Vibration of Visco-elastic   Square   Plate   of   Variable Thickness. Bhardwaj, 

Gupta, Choong, Wang   & Ohmori [8] has studied the transverse Vibrations of clamped and simply-supported 

circular   plates   with   two   dimensional thickness variation. Khanna, Kaur & Sharma [9] has discussed the 

effect of varying poisson ratio on thermally induced   vibrations   of   non-homogeneous rectangular plate. 

Khanna & Sharma [10-12] has studied a computational prediction  on  vibration  of square plate by varying 

thickness with bi-dimensional  thermal  effect  and mechanical vibration   of   visco-Elastic   Plate   with thickness 

Variation and effect of thermal gradient on vibration of visco-elastic   Plate   with   Thickness   Variation. De and 

Debnath[13] has discussed the vibration of orthotropic  circular  plate  with  Thermal Effect in   Exponential   

thickness   and quadratic   temperature   distribution. Khanna & Sharma [14] has studied the natural vibration of 

visco-elastic elate of varying thickness with thermal effect. Kumar Sharma, A., & Sharma, S. K. [15] has 

discussed the free vibration analysis of visco-elastic orthotropic rectangular   plate   with   bi- parabolic thermal 

effect and bi-linear thickness variation. S. K., & A. K. [16] has studied the mechanical vibration of orthotropic 

rectangular plate with 2D linearly varying thickness and thermal effect. Kumar Sharma, A., & Sharma, S.  K. [17] 

has studied the vibration computational of visco-elastic plate with sinusoidal thickness variation and linearly 

thermal effect in 2D. Sharma, S. K., & Sharma, A. K. [18] effect of bi-parabolic thermal    and    thickness 

Variation on Vibration of Visco-Elastic Orthotropic Rectangular Plate. 
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The aim of the present study is to determine the thermal effect on vibration of a clamped non-homogeneous visco-

elastic elliptic plate of variable thickness. Rayleigh-ritz has been applied to obtain corresponding natural 

frequencies. The poisson ratio is assumed to remain constant. Frequency for the first two modes of vibration is 

obtained for various numerical values of thermal gradient, tapering constant and non-homogenous constant. 

Results are presented in graphical and tabular form. 

EQUATION OF MOTION 
The governing differential equation of transverse motion of visco-elastic non-homogeneous plate of variable 

thickness is 

                       
(1) 

Assuming that the elliptical plate has a steady two dimensional temperature distribution which is represented by 

τ = τ0 (1 - )                             (2) 

Where τ denotes the temperature excess above the reference temperature at any point on the diameter from the 
centre of the elliptic plate and τ0 denotes the temperature at any point on the boundary of the elliptic plate i.e. 1-

. 

 
Fig. 1.1 Elliptical plate 

The temperature dependent modulus of elasticity is taken as 

                             (3) 

Where E0 is the Young’s modulus and γ is taken as slope variation. 

From equation (1) and (2) , we have 

E = E0 [ 1 – τ0 ( 1 -  

E = E0 [ 1 –         (4) 

Where  ( 0  ), a parameter. 

It is assumed that thickness and non-homogeneity of the plate (which is non-homogeneity of the material mass 

density) varies along a diameter respectively as 
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h = h0 [ 1 –                    (5) 

and 

                    (6) 

Where  

Since, the plate is assumed as clamped at all the four edges, so the boundary conditions are: 

 

                                                            (7) 

Deflection function W(x,y) of plate is assumed to be 

W = A1                           (8) 

where A1, A2 are constants to satisfy boundary conditions.  

Now, unit less variables having no dimension are using for us convince as 

                                     (9) 

Solution by Rayleigh-Ritz Method 
Rayleigh – Ritz method is used to find an appropriate vibrational frequency. This method works on the 

phenomena that maximum strain energy (PE) must equal to maximum kinetic energy (KE).  An equation in the 

following form is obtained as 

                             (10) 

The expression for kinetic and strain energy are 

                                                                       (11) 

             (12) 

 

Now using the values of E  and  h from equations (3.3) and (3.4)  in ‘D’ , We get 

                                                               (13) 

Substitute the values from equations (5) , (6) , (7) , (8) and (9) in equation (10) , we get 

                                                 (14) 

Where,  

         (15) 
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(16) 

 

Now, on substituting the value of W, equation consist of two unknown constants i.e. A1 & A2 which is evaluate as 

follow: 

    ,       for n= 1,2                           (17) 

On simplifying (3.16), we get 

mn1A1 + mn2A2 = 0,   for n= 1, 2                         (18) 

Where mn1, mn2 (n = 1,2) comprises parametric constant and the frequency parameter. 

For non-trivial solution, the determinant of the co-efficient of equation (3.17) must be zero. 

So, we  get the frequency equation as 

                              (19) 

With the help of equation (3.18), we get quadratic equation in λ2 from which the two values of λ2  
can be found. 

These two values of λ2
 represent the frequency vibration of two modes i.e. λ1 (first mode) & λ2 (second mode) for 

different values of taper constant and thermal gradient for a clamped plate. 

RESULT AND DISCUSSION 

Frequency equation (3.18) is quadratic in λ2
, so it will give two roots. The frequency is derived for the first two 

modes of vibration for non – homogeneous elliptical plate having linearly varying thickness in both the directions, 

for the various values of taper constant (β), and thermal gradient (α), non – homogeneity constant (c1). The value 

of passion ratio ν has been taken 0.345. All the results are calculated with the help of MAPLE software. 

The results are shown in figures (1-4) for the first two modes of vibration for the elliptic plate. 

Fig. 1, represents thermal gradient versus frequency with fixed value of Poisson ratio (ν = 0.345). It is clearly seen 

that as thermal gradient (α) increases from 0 to 1 results frequency increases. Figure 1 has shown the results for 

the following three cases: 

i)  β = ξ = C1 = 0.0 , a/b = 1.5,  ii)   β = ξ = C1 = 0.2 , a/b = 1.5   iii)  β = ξ = C1 = 0.4 , a/b = 1.5 
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Fig. 1 Thermal gradient v/s Frequency 

Fig. 2represents taper constant versus frequency with fixed value of Poisson ratio (ν = 0.345). It is clearly seen 

that as taper constant (β) increases from 0 to 1 results frequency decreases. Figure 2 has shown the results for the 
following three cases: 

i) α = ξ = C1 = 0.0 , a/b = 1.5, ii)  α = ξ = C1 = 0.2 , a/b = 1.5  iii) α = ξ = C1 = 0.4 , a/b = 1.5 

 
Fig. 2  Taper constant (β) vs frequency 

Fig. 3, It is observed that for both modes of vibration, frequency parameter increases with the increase in aspect 

ratio a/b 0.5 to 3. Figure 3 has shown the results for the following three cases: 

i)  α = β = ξ = C1 = 0.0  ii) α = β = ξ = C1 = 0.2  iii) α = β = ξ = C1 = 0.4 
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Fig. 3  Aspect ratio (a/b) vs frequency 

Fig. 4, It is observed that for both modes of vibration, frequency parameter increases with the increase in ξ 0 to 1. 
Figure 4 has shown the results for the following three cases: 

i)  α = β = C1 = 0.0, a/b = 1.5 ii)  α= β = C1 = 0.2, a/b = 1.5  iii) α = β = C1 = 0.4, a/b = 1.5 

 
Fig.4 Frequency vs ξ 

CONCLUSION 
It can be clearly seen from the figures that frequency parameter decreases with an increase in taper constant and 

increases with the increase in thermal gradient. Also, frequency increases with increase in the value of aspect 

ratio. Actually this is the need of the hour to develop more but authentic mathematical model for the help of 

mechanical engineers. Therefore, mechanical engineers and technocrats are advised to study and get the practical 

importance of the present paper and to provide much better structure and machines with more safety and 

economy. 
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