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Abstract. Mathematical models for many theoretical and practical prob-

lems of natural sciences have been described by the ODEs. Such processes
are common in the investigation of physical processes, which the scientists

have begun to study from Newton (it is enough to remember Newton’s laws).

In recent times it often arises the necessity to construct mathematical models
for some physical processes by using ODEs of the second order with the spe-

cial structure (as the Schturm-Liouville, Scrhödinger and others problems).

As is known there are wide classes of methods for solving the initial-value
problem for the ODE of the second order with the special structures. One

of the classical efficiency methods for solving these problems is the Störmer-
Verlet method. Here, by developing this method have constructed the new

class of hybrid methods with the constant coefficients.

1. Introduction

By taking into account that many theoretical and applied tasks are reduced to
solve the initial value problem for ODE of the second order, here have considered
to investigation of following problem:

y′′(x) = F (x, y, y′), y′(x0) = y′0, y(x0) = y0, x0 <= x <= X. (1.1)

There are wide classes of numerical methods for solving this problem. Here for
solving problem (1.1) proposed to use the multistep multiderivative methods with
constant coefficients having the hybrid types. Let us assume that the problem
(1.1) has a unique solution y(x) , which is defined in the segment [x0, X]. The
totality of arguments function F (x, y, z) is continuous and has been defined in
some close domain.

Many famous scientists have studied finding the solution of the equation that
participated in the problem (1). For the illustration of this, let us to consider the
following generalization of the known Scrhödinger and Sturm-Liouville equations,
which can be presented as: y′′ = ϕ(x, y) (see [1, p.150-152], [2, p.111-113],
[3, p.277]). Note that the Scrhödinger and Sturm-Liouville problems are usually
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formulated by the boundary-value problem for the above mentioned equation (see
for example [1, 2, 3]), which can be reduced two initial value problem for the ODE
of the second order (see for example [4, 5, 6]).

As was noted above, the problem (1.1) has been investigated by many authors
using one-step or multistep methods (see for example [7, 8, 9]). Here, for solving
the problem (1.1) proposed to use some generalization of the Störmer-Verlet meth-
ods, for the construction of which has used the hybrid method with the special
structure. To define the maximum value of the order of accuracy for proposed
methods, I have used the method of unknown coefficients and the theory of non-
linear systems of algebraic equations (see for example [10, 11, 12, 13, 14, 15]).

Here the construction of numerical methods have used different schemes. Noting
that for solving a specific physical problem, Störmer has constructed one simple
method, which has been generalized by some scientists and in fundamental form
has been explored by Dahlquist (see [7]). Usually the Störmer-Verlet method has
been applied to solve the initial-value problem for the above-mentioned ODE of the
second order with special structure. For the determination of the advantages and
disadvantages of the Störmer-Verlet method, let us consider the construction of
the Störmer-Verlet method by using some simple problems. For this aim, suppose
that the right hand side of the ODE in the problem (1.1), can be presented as :
F (x, y, y′) = f(x) . In this case, from the problem (1.1) one can be receive the
following:

y′′ = f(x), y′(x0) = y′0, y(x0) = y0, x ∈ [x0, X]. (1.2)

It is easy to prove that the solution of this problem can be written as:

y(x) = y(x0) + y′(x0)(x− x0) +

∫ x

x0

(x− s)f(s)ds,

y′(x) = y′(x0) +

∫ x

x0

f(s)ds,

2y′(x0) = 2y′(x)− 2

∫ x

x0

f(s).

From here receive that:

y(x+h) = y(x0)+y′(x0)(x−x0)+hy′(x0)+

∫ x+h

x0

(x− s)f(s)ds+h

∫ x+h

x0

f(s)ds,

y(x− h) = y(x0) + y′(x0)(x− x0)− hy′(x0) +

∫ x−h

x0

(x− s)f(s)ds− h

∫ x−h

x0

f(s).

Here, the above used presentation of the solution of problem (1.1), has been
chosen so that the construction Störmer-Verlet method should have been done
simply.
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It’s not hard to show that one can be receive the following from the proposed
above:

y(x) = y(x− h) + hy′(x− h) +

∫ x

x−h

(x− s)f(s)ds,

y(x+ h) = y(x− h) + 2hy′(x− h) +

∫ x+h

x−h

(x− s)f(s)ds+ h

∫ x+h

x−h

f(s)ds.

(1.3)
It’s obvious that there are many such representations. For example the follow-

ing:

y(x+ h) = y(x− h) + h(y′(x+ h) + y′(x− h)) +

∫ x+h

x−h

(x− s)f(s)ds.

By the application of some quadrature method to calculation of the definite
integrals participated above presented equalities and compares of these equalities,
receive that the numerical methods for solving of the problem (1.2) in one version
can be written as (integral participated in (1.3) can be take as the double integral):

k∑
i=0

αiyn+i = h

k∑
i=0

βiy
′
n+i + h2

k∑
i=0

γifn+i. (1.4)

Here k-is the order of the finite-difference equation of (1.4). This method has been
investigated by many authors (see for example [7, 8, 9, 10, 11]).

To verify this presentation let us use the equations of (1.3) to put x = xn. In
this case receive:

yn = yn−1 + hy′n−1 +

∫ xn

xn−1

(xn − s)f(s)ds,

yn+1 = yn−1 + 2hy′n−1 +

∫ xn+h

xn−h

(x− s)f(s)ds+ h

∫ xn+h

xn−h

f(s)ds.

(1.5)

If you use some quadrature formula to computation of definite integrals partici-
pated in the system of (1.5), then after generalization of which one can be received
the method of (1.4). Note that in the method (1.4) participated the values of the
function of y′(x).

For using method (1.4) it is necessary to find the values y′m (m = 0, 1, 2, ...) .
For this aim, let us consider the following:

y′(x+ h) = y′(x) +

∫ x+h

x

f(s)ds; y′(x+ h) = y′(x− h) +

∫ x+h

x−h

f(s)ds.

2. Construction of a Multistep Methods With the Special Structure

By using these and some other equality for the calculation of the value y′m one
can be recommended to use the following (by generalize many known quadrature
formulas):

k∑
i=0

α′
iy

′
n+i = h

k∑
i=0

β′
iy

′′
n+i. (2.1)
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This method can be derived from the known multistep method, which is applied
to solve ODE of the first order by the change of y(x) with the y′(x). Thus we
meet with a task in which the function F (x, y, y′) independent from the y′(x), it
is to say that F (x, y, y′) = ϕ(x, y) performed. In this case, it is not necessary to
use the method (2.1). For the shown this phenomena let us consider the following
equalities:

y(x+ h)− y(x− h) = 2hy′(x− h) +

∫ x+h

x−h

(x− s)f(s)ds+ h

∫ x+h

x−h

f(s)ds,

y(x+ h)− y(x) = 2hy′(x− h) +

∫ x+h

x

(x− s)f(s)ds+ h

∫ x+h

x−h

f(s)ds.

From these equalities it follows the next:

y(x+h)−2y(x)+y(x−h) =

∫ x+h

x

(x−s)f(s)ds−
∫ x

x−h

(x−s)f(s)ds+h

∫ x+h

x−h

f(s)ds.

(2.2)
Let us to put x = xn + (k − 1)h in the equality (2.2). Then receive:

yn+k − 2yn+k−1 + yn+k−2 =

∫ xn+k

xn+k−1

(xn+k−1 − s)f(s)ds− (2.3)

−
∫ xn+k−1

xn+k−2

(xn+k−1 − s)f(s)ds+ h

∫ xn+k

xn+k−2

f(s)ds.

And now let us consider the construction of a multistep method with a special
structure. For this aim, if here proposed to applied of some quadrature formula
for the calculation of definite integrals participated in equation (2.3), then receive

yn+k − 2yn+k−1 + yn+k−2 = h2
k∑

i=0

γifn+i, (2.4)

here the coefficients of γi(i = 0, 1, ..., k) are calculated by using the values of
the coefficients of quadrature formula which has been applied to calculation of the
definite integrals participated in the equality of (2.3).

After generalization of the linear part of the method (2.4), receive the following
multistep second derivative method with constant coefficients:

k∑
i=0

αyn+i = h2
k∑

i=0

βifn+i. (2.5)

By the comparison of the methods (1.4) and (2.5) received that method (2.5)
can be obtained from the method (1.4) as the partial case. It is not difficult to
show that these methods have different properties. As is known one of the basic
conceptions for comparison of numerical methods is the degree and the other is its
stability, which can be defined by the following way (see for example [7, 8, 9, 10]).
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Definition 2.1. The integer values p is called as the degree for the method of
(1.4) if the following asymptotic equality takes place:

k∑
i=0

(αiy(x+ ih)− hβiy
′(x+ ih)− h2γiy

′′(x+ ih)) = O(hp+1), h → 0. (2.6)

Definition 2.2. Method of (1.4) is called as stable if the roots of the polynomial
ρ(λ) = αkλk + αk−1λk−1 + ...+ α1λ+ α0 lie in the unit circle on the boundary of
which there is no multiply roots.

By the investigation of the method (2.4), receive that the method (2.4) can not
be stable (see definition 2), because the polynomial ρ(λ) for the method (2.4) has
the following form:

ρ(λ) = λ2 − 2λ+ 1.

How it follows from here, that characteristic polynomial for method (2.4) has the
multiple root on the boundary of the unique circle (λ = 1 double root). It follows
from here that the method (2.4) can not be stable. But it is not difficult to verify
that the exact solution of the problem (1.1) satisfies the equality of (2.3). Taking
into account this phenomena, some authors have used the following definition (see
for example [7, 8, 9, 10]):

Definition 2.3. Method (2.5) is called as the stable if the roots of the polynomial
ρ(λ) = αkλ

k + αk−1λ
k−1 + ...+ α1λ+ α0 lie in the unit circle on the boundary of

which there is no multiple roots, without double root λ = 1.

Definition 2.4. The integer values p is called as the degree for the method of
(10) if the following asymptotic equality holds:

k∑
i=0

(αiy(x+ ih))− h2βiy
′′(x+ ih)) = O(hp+2), h → 0. (2.7)

From here, receive that the method (2.5) is an independent object for the in-
vestigation. Note that method (2.5) was investigated by many authors (see for
example [4, 5, 6, 7, 8, 9, 10, 11, 12, 13]). And have defined the conditions which
must satisfy the coefficients of method (2.5) for its convergence. The aim of this
work is the definition of some relation between the exact and numerical solution
of the problem (1.1). As is known, usually, for finding numerical solutions of the
problem (1.1) have been used methods, which are called as multistep method with
constant coefficients or the finite difference methods. For construction more exact
methods here have proposed to use the forward-jumping (advanced) and hybrid
methods, so these methods have some advantages. For the construction methods
of type (2.5), let us use the formula which has used in the presentation of exact
solution of the following problem:

y′′(x) = ϕ(x, y(x)), y′(x0) = y′0, y(x0) = y0. (2.8)

For this aim, consider approximation of definite integrals participated in the
equality of (2.2). As is known there are class methods for the calculation of definite
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integrals. Here proposed to use the following method, which can compares with
the equality of (2.4):∫ xn+k

xn+1

(xn+1 − s)f(s)ds−
∫ xn+k−1

xn

(xn+1 − s)f(s)ds+ h

∫ xn+k

xn

f(s)ds =

h2
k∑

i=0

βifn+i + h2
k∑

i=0

γifn+i+νi , (|νi| < 1, i = 0, 1, ..., k). (2.9)

It is easy to understand that for the calculation one of the definite integral
participants in (14), has used Gauss or Chebishev method.

Note that for the calculation of definite integrals one can used the method
described in [12].

In the case νi = 0(i = 0, 1, ..., k) it follows from the formula (2.9) the known
quadrature methods. In other cases, the method (14) receives the new methods,
the properties of which are depending on the values of coefficients of the formula
(2.9) and from the values of νi(i = 0, 1, ..., k). It is evident that depending on the
method used for finding values of the coefficients of the formula (2.9), that can be
written in different forms.

Thus, we described one way to determine the value of the coefficients of the
multistep second derivative methods. However, the sequence of operations for
calculating the values of coefficients is very complicated. Therefore, we will try to
describe one way to determine the values of the coefficients of the method (2.5) or
(2.9).

For this aim, let us applied the method of unknown coefficients to determine the
values of the coefficients which are participated in the formula (2.5), then receive
methods which can usually be called as the finite-difference method. To determine
the values of coefficients, receive the nonlinear system of algebraic equations. For
construction of the named system, let us to use the following Taylor series:

y(x+ ih) = y(x) + ihy′(x) +
(ih)2

2!
y′′(x) + ...+

(ih)p+1

(p+ 1)!
yp+1(x) +O(hp+2),

y′′(x+ ih) = y′′(x) + ihy′′′(x) +
(ih)2

2!
yIV (x) + ...+

(ih)p−1

(p− 1)!
yp−1(x) +O(hp).

By using these equalities in the asymptotic equality of (2.7) one can receive:∑k
i=0 αiy(x) + h

∑k
i=0 iαiy

′(x) + h2
∑k

i=0 (
i2

2!αi − βi)y
′′(x) + ...

+hp+1
∑k

i=0 (
ip+1

(p+1)!αi − ip−1

(p−1)!βi)y
p+1(x) +O(hp+2) = O(hp+2), h → 0.

(2.10)
It follows from here that if the method of (2.5) has the degree of p, then by the

comparison of the asymptotic equalities (2.7) and (2.10) receive that the following
must satisfy (see for example [16, 17, 18, 19, 20, 21]):∑k

i=0(αiy(x) + ihαiy
′(x) + h2( i

2

2!αi − βi)y
′′(x) + ...

+hp+1( ip+1

(p+1)!αi − ip−1

(p−1)!βi)y
(p+1)(x)) = 0.

(2.11)
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By taking into account that the systems 1, x, x2, ..., xp+1 or y(x), y′(x
y(p+1)(x) (yj(x) ̸= 0, j = 0, 1, ..., p + 1) is independent, receive that for satisfy-
ing the equality of (2.11) the following system must be has the solution (see for
example, [13], [18, 19, 20, 21, 22, 23, 24, 25]):

k∑
i=0

αi = 0;

k∑
i=0

iαi = 0;

k∑
i=0

(
ij

j!
αi −

ij−2

(j − 2)!
βi) = 0, j = 2, 3, ..., p+ 1. (2.12)

Thus, for finding the coefficients of the method (2.5) receive the linear system of
algebraic equations. It is clear that the error for the method (2.5) can be estimated
by the error of the quadrature methods. For the sake of objectivity let us note
that at the application of the method (2.5) to solving initial-value problems some
errors arise.

If method (2.5) is stable, then all the errors that arise in using method (2.5)
are bounded. Therefore, let us investigate the system of (2.12). In this system the
amount of the unknowns equal to 2k + 2, but the amount of the equations equals
p + 2. It is not difficult to prove that the linear system has the unique solution
for the case p = 2k. But this equality for the stable methods of type (2.5) can
be written as: p ≤ 2[k/2] + 2. And also the constant k must satisfy the condition
k ≥ 2. This condition follows from the equality (2.4).

Thus proved the next lemma:

Lemma 2.5. If method (2.5) has the degree of p, then satisfies its coefficients
the system of (2.12) is necessary and sufficient. If the coefficient of method (2.5)
satisfies the condition (2.12), then the method (2.5) will have the degree p, which
satisfies the condition p ≤ [k/2] + 2 for the stable and the condition p ≤ 2k for
other methods.

These boundaries have been obtained by various authors (see for example [7, 5,
8, 11, 12, 14, 16, 17]).

And now let us to consider investigation of the following method:

k∑
i=0

αiyn+i = h2
k∑

i=0

βifn+i + h2
k∑

i=0

γifn+i+νi
(|νi| < 1, i = 0, 1, ..., k). (2.13)

For investigation method (2.13) let us describe the way for finding the values of
the coefficients αi, βi,γi,νi (i = 0, 1, 2, ..., k). For this aim, one can use the above
presented Taylor series with the following:

y′′(x+ lih) = y′′(x) + lihy
′′′(x) +

l2i
2!
h2yIV (x) + ...+

(lih)
p+1

(p− 1)!
yp+1(x) +O(hp+2),

here, li = i+ νi (i = 0, 1, ..., k).
By repeating the above using description for finding of the coefficients αi,

βi,γi,νi (i = 0, 1, 2, ..., k) receive the following nonlinear system of algebraic equa-
tions:
k∑

i=0

αi = 0;

k∑
i=0

iαi = 0;

k∑
i=0

(
ij

j!
αi −

ij−2

(j − 2)!
βi −

lj−2
i

(j − 2)!
γi) = 0; j = 2, 3, .., p+1.

(2.14)
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And now consider the explanation of the condition k ≥ 2.
From the first two equations of the system (2.12) or (2.14), we see that λ = 1

is the double root of the polynomial ρ(λ). Noted that this condition is necessary
for convergence of the method (2.13), therefore ρ(λ) can be written as:

ρ(λ) = (λ− 1)2(αk−2λ
k−2 + αk−3λ

k−3 + α1λ+ α0). (2.15)

By taking into account this in the system of (2.14) receive that the amount of
the unknowns equal to 4k+2, but amount of the equations equal to p+2 and the
received system will be linear nonhomogeneous, which will be have unique solution
in the case p = 2k and γi = 0 (i = 0, 1, ..., k). From here it follows that p ≤ 2k, if
γi = 0 (i = 0, 1, 2, .., k).

The system (2.14) is different from the systems (2.12), so as the system (2.14)
is nonlinear and from the system (2.14) follows the system (2.12) in the case of
γi = 0 (i = 0, 1, ..., k). As was noted above in the system of (2.14) the amount of
the unknowns equals to 4k + 4, but the amount of the equations equals to p+ 2.
Here, also by using the properties of the first two equations, the amount of the
equation can be taken as p + 1 and in this case, the homogeneous system (2.14)
becomes a non-homogeneous system. In this case, receive that the system (2.14)
can have the solution by which the methods will be constructed with the degree
p ≤ 4k + 2. And by construction the concrete stable methods with the degree
p = 3k + 3 prove the existence of the stable methods of type (2.13) having the
degree p = 3k + 3 . Note that, if βi = 0 (i = 0, 1, ..., k), then there exist stable
methods with the degree p = 2k + 2 . For the shown this here have constructed
stable methods with the degree p = 2k + 2 for the concrete values of k (see for
example [9, 10, 11, 12], [22, 23, 24, 25, 26, 27, 28]). Let us note that the methods
(18) are hybrid and advantages of which is known ( see for example [9, 10, 11, 12],
[20],[23],[27], [29, 30, 31]). It is not difficult to prove that if method (1.4) has
the degree p, then there exists methods of type (1.4) with the degree p ≤ 3k + 1.
But if the method (1.4) has the degree p and stable then its degree satisfies the
condition: p ≤ 2k+2 (see for example [7],[8], [14], [29, 30, 31, 32]). By taking into
account the above mentioned, one can take methods (1.4) and (2.13) (in the case,
when βi = 0, i = 0, 1, ..., k) as the equivalent in some means. It follows from here
that the methods of type (2.13) can be taken as the better, so as they are more
exact than the methods of type (1.4).

By comparison of all the above described advantages and disadvantages prop-
erties of the suggested methods, receive that the methods of type (2.13) have some
advantages. Therefore, they can be taken as the perspective.

3. On Some Necessary Conditions for the Convergence of the Method
(2.13)

For this aim, let us assume that method (2.13) is convergence and that by using
the shift operator E can be written as the following:

ρ(E)yn − h2δ(E)y′′n − h2γ(E)y′′n = 0, (3.1)
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here the polynomials are defined as:

ρ(λ) =

k∑
i=0

αiλ
i; δ(λ) =

k∑
i=0

βiλ
i; γ(λ) =

k∑
i=0

γiλ
i+νi ; Ei+νi(yn) = yn+i+νi

.

From the equality of (3.1) the latter can be written:

ρ(E)y(x) = O(h2). (3.2)

From here, it follows that lim
h→0

ρ(E) = ρ(1). By taking into account this, receive

that ρ(1)y(x) = 0 and if use y(x) ̸= 0, then it follows that λ = 1 is the root of
the polynomial ρ(λ). By taking into account ρ(1) = 0, the equality (3.1) can be
written as:

ρ1(E)(E − 1)yn − h2(δ(E) + γ(E))y′′n = 0, (3.3)

Here, ρ1(λ) =
ρ(λ)
λ−1 = ρ(λ)−ρ(1)

λ−1 . From here for λ → 1 receive that ρ1(1) = ρ′(1).

By using this, the equality (3.3) can be written in the following form:

ρ′(E)(yn+1 − yn)

h
= h(δ(E) + γ(E))y′′n. (3.4)

Here, by passing to the limit for h → 0, receive:

ρ′(1)y′(x) = h(δ(E) + γ(E))y′′(x), (3.5)

here x = x0 + nh is fixed, point.
By assumption, the method (2.13) is convergence. Therefore, from the equality

of (3.5) receive:

ρ′(1) = 0. (3.6)

By using asymptotic equality (3.2) and the equality of (3.6), receive that

ρ(1) = ρ′(1) = 0.

From here it follows that λ = 1 is the double root for the ρ(λ).
By using the condition (3.6) in the equality of (3.5) receive:

ρ(E)(y′n+1 − y′n)

h
= (δ(E) + γ(E))y′n, ρ′′(λ) = lim

λ→1

ρ′(λ)− ρ′(1)

λ− 1

(from h → 0 it follows E → I, here E – is the single operation).
By passing to limit for h → 0, receive the following:

ρ′′(1) = δ(1) + γ(1).

It follows from here that, if method (2.13) is convergence then the following
take place:

ρ(1) = 0, ρ′(1) = 0, ρ′′(1) = δ(1) + γ(1) ̸= 0. (3.7)

Thus receive that if method (2.13) is convergence, then λ = 1 must be double
root for the polynomial ρ(λ) and the condition ρ′′(1) = δ(1) + γ(1) ̸= 0 or p ≥ 1
must be done.
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Remark 3.1. Let us consider the construction and application of some concrete
stable methods of type (2.13). For this aim to put k = 2. In this case for βi = 0
(i = 0, 1, ..., k) from the (2.13) can be received the following method, which is
stable and has the degree p = 6 (pmax = 2k + 2):

yn+2 = 2yn+1 − yn + h2(5y′′n+1−γ + 14y′′n+1 + 5y′′n+1+γ)/24, γ =

√
10

5
. (3.8)

For application of the method to solve some problems we must propose any
methods to calculate of the values yn+1±γ with the transaction error O(h6). For
this, let us consider the following method:

yn+1+α = 2yn − yn+1−α + α2h2(ŷ′′n+1+α + 10ŷ′′n+1 + ŷ′′n+1−α)/12, (3.9)

one can calculated the values yn+1+α with the error lte = O(h6). For the simplifi-
cation of the above mentioned sequence of the methods, the hybrid method let us
construct in the form:

yn+2 = 2yn+1 − yn + h2(4y′′n+γ2
+ y′′n+1 + 4y′′n+γ0

)/9,

γ0 = 1−
√
3/4, γ1 = 1 +

√
3/4,

(3.10)

which is stable and has the degree p = 4. For the calculation of the values yn+γ2

and yn+γ0
with the order of exactness O(h4) , here proposed to use the following

formulas:

yn+γ0
= yn+1 −

√
3
4 (yn+1 − yn) +

36+7
√
3

384 h2y′′n+1 − 61
√
3

384 h2y′′n,

yn+γ2
= yn+1 +

√
3
4 (yn+1 − yn) +

36−7
√
3

384 h2y′′n+1 +
61

√
3

384 h2y′′n.

(3.11)

For the comparison of Störmer-Verlet and (2.13) methods, let us consider the
construction of the stable methods of type (2.13) in the case k = 2 . In this case by
using the solution of the above-mentioned systems of the algebraic equation, one
can construct stable methods with the degree p ≤ 9. But here we have constructed
the stable method with the degree p = 8 , which can be written as:

yn+2 = 2yn+1 − yn + h2(19y′′n+2 + 870y′′n+1 + 19y′′n)/1740+

+h2(1323y′′n+1−γ + 58y′′n+1 + 1323y′′n+1+γ)/5655, γ =
√
13/42.

(3.12)

As is seen from the above-constructed methods, it is possible to construct more
exact methods by using the methods of type (2.13).

Let us note that similar methods have been constructed by some authors for
solving some different problems (see for example [22, 23, 24, 25]).

And now let us discuss the estimation of the error received in application of
method (2.13). Let us suppose that the method of (2.13) has the degree of p
and is stable. For the estimation of the error in the method (2.13), let us in the
equality of (3.1) to change the approximate values of the solution of the problem
(1.1) by its corresponding exact values. In this case the equality of (3.1) can be
written as following:

ρ(E)y(xn)− h2δ(E)y′′(xn)− h2γ(E)y′′(xn) = Rn, (3.13)

here, Rn = O(hp+2), h → 0.
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By subtracting equality (3.1) from the equality (3.13) receive:

ρ(E)εn − h2δ(E)ε′′n − h2γ(E)ε′′n = Rn. (3.14)

Here, εn = y(xn)− yn, ε
′′
n = y′′(xn)− y′′n. By using the condition ρ(1) = 0 (see

equality of (3.7)) the equality (3.14) can be written as following:

ρ(E)− ρ(1)

E − 1
(εn+1 − εn)h

−1 − h(δ(E)− γ(E))ε′′n =
Rn

h
. (3.15)

By taking into account that

lim
λ→1

(ρ(λ)− ρ(1))/(λ− 1) lim
h→0

(εn+1 − εn)/h = ρ′(1)ε′n,

from the equality of (35) for the case h → 0, receive:

ρ′(1)ε′n − h(δ(E)− γ(E))ε′′n = Rnh
−1.

Let us denote ε′n by the εn, then without breaking the generality, the latter can
be written:

εn+1 = εn + hεn. (3.16)

From here, receive the following estimation:

εn+1 = εn + hεn = εn−1 + hεn−1 + hεn = εn−2 + hεn−2 + hεn−1 + hεn.

By continuing this process receive the following:

εn+1 = εn + hεn

or

εn+1 = ε0 + h

n∑
j=0

εn.

From the last equality it follows that:

|εn+1| ≤ h(n+ 1)ε; ε = max
n

|εn|. (3.17)

Similarly estimation for the method of (3.16) has been received by some authors
in the investigation of the multistep methods. And have shown that if the method
receiving for the magnitude εn is stable and has the degree of p (λ1 = 1 is not
multiple), then following takes place (see for example [13], [26]):

max
n

|εn| = O(hp), h → 0.

From this rate of approaches it follows that method (2.13) has the degree of p.
This result one can be received in another way. It is known that the solution of the
nonhomogeneous finite-difference equation by using the (3.14) can be presented as

following εm = ε
(1)
m + ε

(2)
m , here ε

(1)
m is the general solution of the corresponding

homogeneous equation, but ε
(2)
m is one of partial solution of the equation of (3.14).

It is not difficult to understand that lim
h→0

ε
(2)
m = 0 is satisfied. Let us noted that the

general solution of corresponding equation to (3.14) can be presented as following
(if there is λi ̸= λj for i ̸= j):

ε(1)m = C1λ
m
1 + C2λ

m
2 + C3λ

m
3 + ...+ Ckλ

m
k (3.18)
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By assumption receive that the roots of the polynomial ρ(λ) satisfies the next
condition, λ1 = 1 is double root, λi (i = 3, 4, .., k) satisfies the condition of stability
(the roots λi (i = 3, 4, .., k)) that is lies in the unite circle on the boundary of which
there is not multiple roots. In the case m = lh−1 , from the equality of (3.18)

receive that the magnitude ε
(1)
m can be presented as follows:

hε(1)m = c1h+ c2l + h(c3λ
m
3 + ..+ ckλ

m
k ).

It follows that hε
(1)
m is bounded for h → 0.

From here it is reported that in order for the rate of approaches for the multistep
methods to be equal to p, the polynomial ρ(λ) must have the double root λ = 1.
For the comparison of multistep methods, let us to consider following multistep
multiderivative methods (MMM):

k∑
i=0

αiyn+i =

s∑
j=1

hj
k∑

i=0

β
(j)
i y

(j)
n+i. (3.19)

Note that the multiplicity of the root λ1 = 1 for the method (2.13) equals 2
(two), but for the method (2.1) the root λ1 = 1 is single. Let us note that this
condition is the necessary and sufficient for the convergence of the method (2.13)
(if j = 2 , but for the method (2.13), if l = 1 ) to the solution of the following
initial-value problem:

y(j)(x) = f(x, y), y(x0) = y0, y(ν)(x0) = y
(ν)
0 , (ν = 0, 1, 2, .., j − 1).

Remark 3.2. Let us consider the following equalities:

ρ′(E)y′n − h(δ(E) + γ(E))y′n = 0,

or

ρ(E)yn − h2(δ(E) + γ(E))y′′n = 0.

If ρ′(1) = 0, then from here receive:

((ρ′(E)− ρ′(1))/(E − 1))(y′n+1 − y′n)/h− (δ(E) + γ(E))y′′n = 0.

This equality can be written as:

ρ′(E)y′′n − (δ(E) + γ(E))y′′n = 0.

It follows from here that ρ′′(1) = δ(1) + γ(1).
These equalities for the following method, which corresponds to a method (2.1):

k∑
i=0

(αiyn+i − hβiy
′
n+i) = 0

can be written as:

ρ(E)yn − hδ(E)y′n = 0.

It is not difficult to prove that ρ(1) = 0. In this case, from here the latter can be
written:

ρ′(E)y′n − δ(E)y′n = 0,

or

ρ′(1) = δ(1).
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If λ = 1 is the double root for the polynomial ρ(λ), then δ(1) = 0 and receive
that the polynomials ρ(λ) and δ(λ) have the common factor different from con-
stant, which can be written as: ϕ(λ) = λ − 1. This is corresponding to equality
ρ′(1) = δ(1), where (λ = 1 is the double root). In this case the general solution
of the corresponding homogeneous finite difference equation which corresponds to
the method of (2.1), can be written as:

ym = c1 + c2m+ c3λ
m
3 + ..+ ckλ

m
k .

As follows from here, the proposed method is not convergence, because the poly-
nomials ρ(λ) and δ(λ) have the common factor different from the constants. This
result has been received by Dahlquist, which follows from our result as the par-
tial case. Therefore, the result received here can be taken as the development of
Dahlquist’s result. It follows from here that the solution of homogeneous finite –
difference equations with constant coefficients will be unbounded if λ = 1 is double
root for the polynomial ρ(λ). In this case, the method (2.1) is not convergent. By
the above described way, prove that if the method (2.13) is convergence, then its
coefficients satisfies the following conditions:

A. Coefficients αi, βi, γi, νi (i = 0, 1, .., k) some real numbers, moreover αk ̸= 0.
B. Characteristic polynomials ρ(λ), δ(λ) and γ(λ) have not common factor

different from constant.
C. The condition δ(1) + γ(1) ̸= 0 and p ≥ 1 are satisfied.
It is not difficult to prove that all the methods, which have been constructed

here, obeys the above described law. Let us note that the conditions A, B and C
for the method of (2.1) can be written as follows (see [19]):

A. The coefficients α′
i, β

′
i (i = 0, 1, .., k) are real numbers and α′

k ̸= 0.

B. Characteristic polynomials ρ′(λ) and δ
′
(λ) have not common factor different

from constant.
C. δ(1) ̸= 0 and p ≥ 1.

Here ρ′(λ) ≡
k∑

i=0

α′
iλ

i, δ
′
(λ) ≡

k∑
i=0

β
′
iλ

i .

4. Numerical results.

And now let us consider the application of some specific methods to solving
model problems.

For the illustration of the results receiving here, let us applied Störmer-Verlet
method and the methods (3.8), (3.10) to solve following problem:

y′′ = (2 + 4xλ)exp(λx) + λ2y(x), y(0) = 0, y′(0) = 0, 0 ≤ x ≤ 1, (4.1)

The exact solution of this problem can be presented as following:

y(x) = x2exp(λx).

Note that the problem (4.1) was recently investigated by some authors using
any modifications of midpoint and Euler’s methods and some symmetric methods.
In the work [34], above-mentioned has been applied to solve systems of ODE of
the first and second order, where they have received interesting results.
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A well known method is chosen here: the Störmer method (with step size h)
and method Störmer 1 (with the step size h/2). These methods have different
properties. Let us note that the solution of the problem (4.1) also has different
properties. For example, if the argument x increases according to the solution, it
also increases for the λ > 0, but for the λ < 0 the solution will decrease. Taking
into account this, here have considered the cases when λ and h get different values.
Note that here methods Störmer and Störmer 1 applied to solve problem (4.1) and
the following:

y′′ = λ2y(x), y(0) = 1, y′(0) = λ. (4.2)

In this case receiving results denoted through Störmer and Störmer 1. The
exact solution of the problem (4.2) can be presented as the y(x) = exp(λx).
Note that all the methods in application of solving problem (4.2) give almost
the same results. Therefore the results received in the application of the above
named methods to solve problem (4.1) are not presented here. Note that in the
construction of the algorithms, which applied to solve problem (4.1) have used
some recommendations from the work [33]. In tables 1-4 have been tabulated the
results received in solving problems (4.1) for the cases: h = 0.1; h = 0.05 and
λ = ±1; λ = ±5.

Table 1. Results for h = 0.1 and λ = 1.
x Method (3.10) Method Störmer Method (3.8) Method Störmer 1

0.2 5.1E-08 1.4E-07 8.0E-12 3.1E-09
0.4 3.4E-07 9.5E-07 5.3E-11 2.0E-08
0.6 9.3E-07 2.6E-06 1.4E-10 5.4E-08
0.8 1.9E-06 5.5E-06 3.0E-10 1.1E-07
1.0 3.5E-06 9.8E-06 5.3E-10 2.0E-07

Table 2. Results for h = 0.1 and λ = −1.

x Method (3.10) Method Störmer Method (3.8) Method Störmer 1

0.2 3.8E-08 1.1E-07 6.2E-12 2.5E-09
0.4 2.1E-07 6.0E-07 3.4E-11 1.4E-08
0.6 4.8E-07 l.4E-06 8.0E-11 3.4E-08
0.8 8.3E-07 2.4E-06 1.4E-10 6.1E-08
1.0 1.2E-06 3.5E-06 2.0E-10 9.6E-08

From here the results received by the method (3.8) are better. Note that method
(3.8) is more accurate than others. As is known if λ < 0, then the solution of the
investigated problem will satisfy the condition lim

x→∞
y(x) = 0. Therefore, the

following tables are contained by the results obtained for h = 0.1 and λ = ±5.
Table 3. Results for h = 0.1 and λ = 5.
x Method (3.10) Method Störmer Method (3.8) Method Störmer 1

0.2 5.6E-05 1.5E-04 2.1E-07 7.2E-05
0.4 6.0E-04 1.7E-03 2.1E-06 7.6E-4
0.6 2.9E-03 8.2E-03 10.0E-06 3.7E-3
0.8 1.1E-02 3.2E-02 3.7E-05 1.5E-2
1.0 1.2E-02 1.2E-01 1.3E-04 5.2E-2

Table 4. Results for h = 0.1 and λ = −5.
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x Method (3.10) Method Störmer Method (3.8) Method Störmer 1

0.2 1.4E-05 4.0E-05 5.8E-08 2.6E-05
0.4 5.7E-05 1.6E-04 2.5E-07 1.5E-04
0.6 1.1E-04 3.0E-04 4.7E-07 4.7E-04
0.8 1.6E-04 4.5E-04 7.1E-07 1.3E-03
1.0 2.1E-04 6.0E-04 9.4E-07 3.6E-03

According to the results of this table, results received by the method of (3.8)
are better. To confirm this let us consider the decreasing step-size.

Table 5. Results for h = 0.05 and λ = 1.

x Method (3.10) Method Störmer Method (3.8) Method Störmer 1

0.2 4.7E-09 1.3E-08 1.8E-13 2.8E-10
0.4 6.8E-08 6.8E-08 9.4E-13 1.4E-09
0.6 6.3E-08 1.8E-07 2.4E-12 3.7E-09
0.8 1.3E-07 3.6E-07 4.9E-12 7.4E-09
1.0 2.2E-07 6.3E-07 8.5E-12 1.3E-08

Table 6. Results for h = 0.05 and λ = −1.

x Method (3.10) Method Störmer Method (3.8) Method Störmer 1

0.2 3.7E-09 1.0E-08 1.5E-13 2.4E-10
0.4 1.6E-08 4.5E-08 6.4E-13 1.7E-09
0.6 3.4E-08 9.7E-08 1.4E-12 2.4E-09
0.8 5.7E-08 1.6E-07 2.3E-12 4.2E-09
1.0 8.4E-08 2.4E-07 3.5E-12 6.5E-09

If we compare the results received by the methods of (3.10) and Störmer then
we obtain that the method (3.10) gives the best result, but the results received by
the Störmer 1 are better than the results received by method (3.10).

Table 7. Results for h = 0.05 and λ = 5.

x Method (3.10) Method Störmer Method (3.8) Method Störmer 1

0.2 4.8E-06 1.4E-05 4.5E-09 6.6E-06
0.4 4.3E-05 1.1E-04 3.6E-08 5.5E-05
0.6 1.8E-04 5.3E-04 1.6E-07 2.6E-04
0.8 7.3E-04 2.1E-03 6.0E-07 9.9E-04
1.0 2.6E-03 7.3E-03 2.0E-06 3.5E-03

Table 8. Results for h = 0.05 and λ = −5.

x Method (3.10) Method Störmer Method (3.8) Method Störmer 1

0.2 1.5E-06 4.2E-06 1.5E-09 2.9E-06
0.4 4.9E-05 1.4E-05 5.2E-09 1.4E-05
0.6 8.7E-05 2.4E-05 9.4E-09 4.1E-05
0.8 1.2E-05 3.5E-05 1.4E-08 1.1E-04
1.0 1.6E-05 4.6E-05 1.8E-08 3.1E-04

From the above-mentioned it follows that the results received by the method
(3.8) are better in all the cases. Note that, here have used some results from the
works [35] and [36] in the construction of predictor-corrector methods and used
some connections between the Cauchy problem and Volterra integral equations.
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The Cauchy problem for matrix factorization of the Helmholtz equation are con-
sidered in papers [36]-[38]. As is known there are methods applied to solve this
equation by using nonlinear methods. For example in [39] proposed to use a finite
difference Scheme based on the Rosenbrock method. Note that the Rosenbrock
method is nonlinear but the finite-difference method is linear. By taking into ac-
count this, here by using linear multistep method of hybrid type, have constructed
a method which can be written as the method of (2.13). Note that the method
(2.13) in [40] has been applied to solve the initial value problem for ODE and
receive a good result. And in the work [41] had considered comparing the Rosen-
brock method with the advanced method. In considering the case the advanced
method gives the best result, than the Rosenbrock.

Note that there are different ways to construct multistep methods of the hybrid
type for solving the different problems (see for example [42, 43, 44, 45, 46, 47]).

5. Conclusion

Hybrid methods, which have been constructed here, are simple and have a
higher order of accuracy. Here, have investigated some of generalization of the
Störmer – Verlet method and considered the application of that to solve initial-
value problem for ODE of the second order with the special structure, from which
one can be receive many known equations as Scrhrödinger, Shturm-Liouville and
others. As is known there are some classes of methods constructed for solving the
initial-value problem for ODEs of the second order. One of the effective methods
for solving problem (1.1) is method (1.4), so that is more accurate than the others.
Here, it has been proven that one of the efficient methods for solving problem (1.2)
and (2.8) is the hybrid method of Störmer-Verlet type, which can be received from
the method (2.13) as the partial case.

By using the Dahlquist laws, we can see the method (1.4) is more exact than
the others. But here, have shown that the hybrid method is more exact than
the method of (1.4). By taking into account this, here for solving the considering
problems with the high order of accuracy, suggested to investigate hybrid methods,
which constructed by using formula (2.13) and have proved that if method defined
by the formula (2.13) is stable and has the degree of p, then their degree will
satisfy the condition as p ≤ 3k + 3. It follows from here that the hybrid methods
are more exact than the others, therefore these methods are perspective. Here
have defined the necessary conditions imposed on the coefficients of the method
(2.13), which is very important for the application of these methods to solve some
problems and also for defining the necessary conditions for the convergence of the
method (2.13).

Note that depending on the properties of the solution of the investigated prob-
lem, the methods with fractional step-size can give the results, which are worse
than the results obtained by the nonfractional methods. It is not difficult to obtain
that methods with the fractional step-size are also a part of the class of hybrid
methods. As follows from here, obtaining results here has a significant advantage
in solving many applied physical problems including above-mentioned problems
such as Scrhrödinger, Shturm-Liouville etc. As is known often there is a need to
study the numerical solution of integral equations of the Volterra type by taking
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into account connection between ordinary differential equations of the Volterra
type. The papers [48, 49, 50, 51, 52, 53, 54] explored the application of hybrid
methods to solve the Volterra integral equations, where the stability region for
some methods was studied.
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