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Abstract. In the paper we study Fredholm property of a boundary value

problem in a finite domain of a class of second-order differential equation of

elliptic type in a seperable Hilbert space. Sufficient conditions that provide
regular and Fredholm solvability of the given problem, are found. These

conditions are expressed only by the coefficients. The paper shows how the

regular and Fredholm solvability of the boundary value problem are related
with the norms of the intermediate derivative operators. Furthermore, the

property of the internal compactness of the homogeneous equation is proved.

1. Introduction

Solvability of operator-differential equations and related problems originate
from the works of E. Hille, K. Iosido, T. Kato and others. These authors have
mainly studied the Cauchy problem.

Further, boundary value problems and related problems have been studied by
many authors. Some of these results have found their reflection in the books of
A.A. Dezin [6], V.I. Gorbachuk and M.L. Gorbachuk [11], S.Ya. Yakubov [21] and
others. In an infinite domain, boundary value problems have been studied in the
important papers of Yu.A. Dubinsky [7], M.G. Gasymov [8 ], S.S. Mirzoev [19],
A.A. Shkalikov [20], A.R. Aliyev [4, 5], G.M. Gasymova [ 9, 10], S.S. Mirzoev,
A.R. Aliyev, L.M. Rustamov [17, 18], S.S. Mirzoev, A.R. Aliyev, G. M. Gasymova
[16] and others. In an finite domain, boundary value problems with variable coef-
ficients have been studied very little. We can note the works of S.S. Mirzoev with
G.A.Agayeva [14, 15 ], G.A.Agayeva [1, 2, 3].

Let H be a separable Hilbert space. Assume that C is a self-adjoint operator
with domain of definition D(C). Then for all γ ≥ 0 the domain of definition
of the operator Cγ will be a Hilbert space Hγ(γ ≥ 0) with a scalar product
(x, y)γ = (Cγx,Cγy). For γ = 0 we assume H0 = H and (x, y)0 = (x, y).

Denote by L2((0, 1) : H)a Hilbert space of vector –functions determined almost
everywhere in (0, 1) for which

∥f∥L2((0,1):H) =

(∫ 1

0

∥f(t)∥2 dt
)1/2
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Following the book [13], we determine the Hilbert space W 2
2 ((0, 1) : H) = {u :

u′′ ∈ L2((0, 1) : H), C2u ∈ L2((0, 1) : H)} with the norm

∥u∥W 2
2 ((0,1):H) =

(
∥u′′∥2L2((0,1):H) +

∥∥C2u
∥∥2
L2((0,1):H)

)1/2

.

We determine the subspace W 2
2,ψ((0, 1) : H) as follows

W 2
2,ψ((0, 1) : H) = {u : u′′ ∈W 2

2 ((0, 1) : H),

u(0) = eiψu(1), u′(0) = eiψu′(1), ψ ∈ R = (−∞,∞)}
From the trace theorem it follows that W 2

2,ψ is a complete Hilbert space [13, p.41].

Note that for ψ = 2π k (k = 0, 1, 2, ...) we obtain a subspace of periodic functions,
while for ψ = π(2k+1) (k = 0, 1, 2, ...) we obtain a space of anti periodic functions.

Consider in H the boundary value problem

L(d/dt)u(t) = −u′′(t) + ρ(t)A2u(t) + (A1 +K1)u
′(t)+

+(A2 +K2)u(t) = f(t) t ∈ (0, 1) (1.1)

u(0) = eiϕ u(1), u′ (0) = eiϕ u′ (1) (1.2)

where the operator coefficients of the equation (1.1) satisfy the conditions:
1) A is a positive-definite self-adjoint operator with a completely continuous

operator in H, whose set of spectra is contained in the angular sector

Sε = {λ : | arg λ < ε, 0 ≤ ε ≤ π/4}

2) ρ(t) is a scalar function defined in (0, 1), measurable and bounded, moreover
0 < α ≤ ρ(t) ≤ β <∞, where α, β ∈ R = (−∞,∞) ;

3) The operators B1 = A1A
−1 and B2 = A2A

−2 are bounded in H;
4) The operators T1 = K1A

−1 and T2 = K2A
−2 are completely continuous

operators in H.
Note that subject to the conditions 1), the operator A has an orthonormal

basis system in H, i.e. Aek = λkek (k = 1, 2, ...) 0 < |λ1| ≤ |λ2| ≤ ... ≤ |λk| < ...
moreover

(ek, ej) = δk,j =

{
0, k ̸= j
1, k = j

and λk = |λk|eiφk , φk ∈ Sε, k = 1, 2, ...

A(·) =
∞∑
k=1

λk(·, ek)ek,

C(·) =
∞∑
k=1

|λk|(·, ek)ek,

U(·) =
∞∑
k=1

eiφk(·, ek)ek, φk ∈ Sε, k = 1, 2, ...

In what follows, we will use the theorems on intermediate derivatives and from
the trace theorem [13 , p. 31, p. 41 ], i.e.

1. if u ∈W 2
2 ((0, 1) : H), then Cu′ ∈ L2((0, 1) : H) and

||Cu′|| ≤ const||u||W 2
2 ((0,1):H),
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2. if u(t) ∈W 2
2 ((0, 1) : H), then for any t0 ∈ [0, 1] u(t0) and u′(t0) these exists

u(t0) ∈ H3/ 2, u
′(t0) ∈ H1/ 2 and we have the inequality

||u(t0)||3/ 2 ≤ const||u||W 2
2 ((0,1):H) 0 ≤ t0 ≤ 1

and
||u′(t0)||1/2 ≤ const||u||W 2

2 ((0,1):H)

Lemma 1.1. Let condtions 1) and 2) be satisfied. Then for any∥∥A2u
∥∥
L2((0,T ):H)

≤ 1
min(α2,β2) ∥P0u∥L2((0,T ):H),∥∥Adu

dt

∥∥
L2((0,T ):H)

≤ 1
2min(α,β) ∥P0u∥L2((0,T ):H). For proof [15].

Definition 1.2. If for f(t) ∈ L2((0, 1) : H) there exist u(t) ∈ W 2
2 ((0, 1) : H),

then u(t) is called a regular solution of the equation (1.1)

Definition 1.3. If for any f(t) ∈ L2((0, 1) : H) there exists a regular solution of
equation (1.1) that satisfies the boundary conditions (1.2) in the sense of conver-
gence

lim
t→0

||u(t)− eiψu(1− t)||3/2 = 0 , lim
t→+0

||u′(t)− eiψu′(1− t)||1/2 = 0

and we have the estimates

||u(t)||W 2
2 ((0,1):H) ≤ const||f ||L2((0,1):H)

then problem (1.1) –(1.2) is called regularly solvable.

Denote by
Lu = Pu+ Tu, u ∈W 2

2,ψ((0, 1) : H), (1.3)

where
Pu = −u′′ + ρ(t)A2u+A1u

′ +A2u, u ∈W 2
2,ψ((0, 1) : H) (1.4)

and
Ku = K1u

′ +K2u, u ∈W 2
2,ψ((0, 1) : H) (1.5)

Definition 1.4. If the operator Lmapping u ∈W 2
2,ψ((0, 1) : H) into L2((0, 1) : H)

is Fredholm, we say that problem (1.1),(1.2) is Fredholm solvable.

2. Some results.

Thus, the set of spectra of the operator A is contained in the spectrum Sε, i.e.
there exists bounded spectra e−At(t ≥ 0) generated by the operator A

We have:

Lemma 2.1. For φ ∈ H3/2 the inequality

||e−tAφ||W 2
2 ((0,1):H) ≤

1√
cos ε

||φ||3/2 (2.1)

Proof. Since φ ∈ H3/ 2, then C
3/ 2φ = x ∈ H. Then

||e−tAφ||2W 2
2 ((0,1):H) = ||A2e−tAφ||2L2((0,1):H) + ||C2e−tAφ||2L2((0,1):H)

Since for y ∈ D(A2), |A2x|| = ||C2x||, then

||e−tAφ||2W 2
2 ((0,1):H) = 2||C2e−tAφ||2L2((0,1):H) = 2||C1/2e−tAx||2L2((0,1):H)
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Using spectral expansion of the operators A and C , we have:

||C1/2e−tAx||2L2((0,1):H) =

=

∫ 1

0

(C1/2e−tAx , C1/2e−tAx)dt =

∫ 1

0

(Ce−t(A+A∗)x, x)dt =

=

∫ 1

0

∞∑
k=1

|λk|e−2t|λk|Reφk |(x, ek|2dt =

=

∞∑
k=1

|λk| |(x, ek|2
1

2|λk|Reφk
e−2|λK | cosφkt|10 ≤

≤
∞∑
k=1

|(x, ek)|2
1

2 cos ε
(1− e−2|λ1| cos ε) ≤ 1

2 cos ε
||x||2 =

=
1

2 cos ε
||C3/2φ||2 =

1

2 cos ε
||φ||23/2.

Then

||e−tAφ||2W 2
2 ((0,1):H) ≤ 2

1

2 cos ε
||φ||23/2 =

1

cos ε
||φ||23/2

□

The lemma is proved .

Lemma 2.2. Let x ∈ D(A), then

Re(A∗x,Ax) ≥ cos 2ε||Cx||2 (2.2)

Proof. From spectral expansion of the operator Ait follows that

(A∗x,Ax) = (

∞∑
k=1

λ̄k(x, ek)ek,

∞∑
p=1

λp(x, ep)ep) =

∞∑
k=1

λ̄k(x, ek)(ek, λk(x, ek)ek) =

=

∞∑
k=1

λ̄2k|(x, ek)|2 =

∞∑
k=1

|λk|2e−2φk |(x, ek)|2 , φk ∈ Sε

then Re(A∗x,Ax) =
∞∑
k=1

|λk|2Ree−2φk |x, ek|2 ≥ cos 2ε||Cx||2 □

The lemma is proved.
The operator P : W 2

2,ψ((0, 1) : H) → L2(R+;H) determined by the equality

(1.4) are represented in the form

P = P0 + P1,

where

P0u = −u′′(t) + ρ(t)A2u(t) , u ∈W 2
2,ψ((0, 1) : H) (2.3)

P1u = A1u
′ +A2u, u ∈W 2

2 ((0, 1) : H) (2.4)

We have
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Theorem 2.3. Let conditions 1) and 2) be fulfilled. Then for any u ∈W 2
2,ψ((0, 1) :

H) we have the inequality

∥Au′∥L2((0,1):H) ≤ d1(ε) ∥P0u∥L2((0,1):H) (2.5)

and ∥∥A2u
∥∥
L2((0,1):H)

≤ d0(ε) ∥P0u∥L2((0,1):H) , (2.6)

where

d1(ε) =
1

2
√
α

1

cos ε
, d0 =

1

α
.

Proof. Obviously,

||ρ−1/2P0u||2L2((0,1):H) = ||−ρ−1/2u′′+ρ1/2u||2L2((0,1):H) = ||−ρ−1/2u′′||2L2((0,1):H)+

+||ρ1/2A2u||2L2((0,1):H) − 2Re(ρ−1/2u′′, ρ1/2A2u) = ||ρ−1/2u′′||2L2((0,1):H)+

+||ρ1/2A2u||2L2((0,1):H) −Re(u′′, A2u)L2((0,1):H) (2.7)

□

On the other hand, integrating by parts and considering u ∈ W 2
2,ψ((0, 1) :

H) , u(0) = eiψu(1), u′(0) = eiψu′ we obtain

(u′′, A2u)L2((0,1):H) =

∫ 1

0

(u′′(t), A2u(t))Hdt =

∫ 1

0

(u′′(t), U2C2u(t))Hdt =

= (C1/2u′(t), U2C3/u(1))|10 −
∫ 1

0

U∗Cu′(t), UCu′(t))dt =

= (C1/2u′(1), U2C3/2u(1))−
−(C1/2u′(0), U2C3/2u(0))− (A∗u′(t), Au′(t))dt (2.8)

Since u(0) = eiψu(1), u′(0) = eiψu′(1), then

C1/2u′(1), U2C3/2u(1))− (C1/2eiψu′(1), U2C3/2e−iψu(1)) = 0

Then it follows from the equality (2.8) that

−(Reu′′, A2u) = (A∗u′(t), Au(t))

Applying the inequality (2.2) from lemma (2.2) from the equality (2.7) we obtain

||ρ−1/2P0u||2L2((0,1):H) ≥ ||ρ−1/2u′′||2L2((0,1):H)+

+||ρ1/2A2u||2L2((0,1):H) + 2 cos 2ε||Cu′||2L2(R+:H) (2.9)

It follows from inequality (2.9) that

||ρ1/2A2u||2L2((0,1):H) ≤ ||ρ−1/2P0u||2L2((0,1):H)

then
||A2u||2L2((0,1):H) = ||ρ1/2ρ−1/2A2u||2L2((0,1):H) ≤

≤ 1

α
||ρ−1/2P0u||2 =

1

α2
||P0u||2L2((0,1):H)

i.e.

||A2u||L2((0,1):H) ≤
1

α
||P0u|||L2((0,1):H)
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Inequality (2.6) is proved. We now prove inequality (2.5)
Obviously, for u ∈W 2

2,ψ((0, 1) : H) integrating by parts, we obtain:

||Au′||2L2((0,1):H) = ||Cu′||2L2((0,1):H) = (Cu′, Cu′)L2((0,1):H) =

= −(u′′, C2u)L2((0,1):H) ≤ −(ρ−1/2u′′, ρ1/2C2u)L2((0,1):H) ≤

≤ 1

2
(||ρ−1/2u′′||2L2((0,1):H) + ||ρ1/2C2u||2L2((0,1):H) (2.10)

Using inequality (2.9) in inequality (2.10), we obtain:

||Au′||2L2((0,1):H) ≤
1

2
(||ρ−1/ 2P0u||2L2((0,1):H) − 2 cos 2ε||Au′||2L2((0,1):H))

or

(1 + cos 2ε)||Au′||2L2((0,1):H) ≤
1

2
(||ρ−1/ 2P0u||2L2((0,1):H)

i.e.

2 cos2 ε||Au′||2L2((0,1):H) ≤
1

2
(||ρ−1/ 2P0u||2L2((0,1):H)

Hence we obtain

||Au′||2L2((0,1):H) ≤
1

4 cos2 ε
||ρ−1/ 2P0u||2L2((0,1):H)

Hence we obtain

||Au′||L2((0,1):H) ≤
1

2 cos ε
||ρ−1/ 2P0u||L2((0,1):H) (2.11)

or

||Au′||L2((0,1):H) ≤
1

2 cos ε

1

α
||P0u||L2((0,1):H) (2.12)

Inequality (2.5) is also proved.
Considering the operator P0 in L2((0, 1) : H with domain of definition D(P0) =

W 2
2,ψ((0, 1) : H) we obtain that the adjoint

P0
∗u = −u′′ + ρ(t)A∗u

has the domain of definition W 2
2,ψ((0, 1) : H) and A and A∗ have the same prop-

erties, we obtain the corollary.

Corollary 2.4. For u ∈W 2
2,ψ((0, 1) : H) we have the inequalities

∥A∗u′∥L2((0,1):H) ≤ d1(ε) ∥L∗u∥L2((0,1):H) (2.13)

and ∥∥A∗2u
∥∥
L2((0,1):H)

≤ d0(ε) ∥L∗u∥L2((0,1):H) (2.14)
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3. Main results

There we show the conditions for regular and Fredholm solvability of problem
(1), (2).

Theorem 3.1. The operator L0 isomorphically maps the space W 2
2,ψ((0, 1) : H)

onto the space L2((0, 1) : H

Proof. From the inequalities (2.5) and from (2.13) it follows KerP0 = {0} and
KerP∗

0 = {0}.
Indeed, if Pu = 0, then from inequality (2.5) it follows that A2u = 0, i.e. u = 0

since KerP ∗
0 = {0}, then ImP is everywhere dense in L2(R : H). On the other

hand, for u ∈ D(P )

||P0u||L2((0,1):H) = ||ρ1/2P0u||L2((0,1):H) ≤

≤ β1/2P0u||2L2((0,1):H)) ≤ β1/22(||ρ−1/2u′′||2L2((0,1):H))+

+||ρ1/2A2u||2L2((0,1):H)) ≤ const||u||2W 2
2 ((0,1):H)

i.e. P0 is a continuous operator . On the other hand ,

||ρ1/2P0u||2L2((0,1):H) ≥ ||ρ1/2u′′||2L2((0,1):H) + ||ρ1/2A2u||2L2((0,1):H)) ≥

≥ const||u||2W 2
2 ((0,1):H) ≥ const||u||2L2((0,1):H)

then
||P0u||2L2((0,1):H) = ||ρ1/2ρ−1/2P0u||L2((0,1):H) ≥

≥ α||ρ−1/2P0u||2L2((0,1):H)) ≥ const||u|L2((0,1):H)

Thus, there exists P−1
0 and it is bounded. □

The theorem is proved.

Theorem 3.2. Let conditions 1)-4) be fulfilled and we have the inequality

q =
1

2
√
α

1

cos ε
||B1 + T1||

1

α
||B2 + T2|| < 1 (3.1)

Then problem (1.1)-(1.2) is regularly solvable.

Proof. We write the problem (1.1)-(1.2) the form of the equation, Lu = f , where
u ∈ W 2

2,ψ((0, 1) : H),f ∈ L2((0, 1) : H while Lu = P0u + P1u + Ku, where

P0u = −u′′ + ρ(t)u, P1u = A1u
′ +A2u, Ku = K1u

′ +K2u.
Since the operator implements isomorphism between the spacesW 2

2,ψ((0, 1) : H)

and L2((0, 1) : H, then for any w ∈ L2((0, 1) : H there exists, u ∈W 2
2,ψ((0, 1) : H),

where Lu = w. Then from the equation Lu = f we obtain the equation

w + (P1P
−1
0 +KP−1

0 )w = f

In the space L2((0, 1) : H, we estimate the norms of the operator P1P
−1
0 +KP−1

0

||P1P
−1
0 +KP−1

0 ||L2((0,1):H) = ||P1u+Ku||L2((0,1):H) ≤

≤ ||(A1 +K1)A
−1Au′||L2((0,1):H) + ||(A2 +K2)A

−2A2u||L2((0,1):H) ≤
≤ ||B1 + T1|| ||Au′||L2((0,1):H) + ||B2 + T21|| ||A2u||L2((0,1):H) (3.2)
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Considering the of inequalities (2.11) and (2.12) in inequality (3.2), we obtain.

||P1P
−1
0 +KP−1

0 w||L2((0,1):H) ≤ ||( 1

2
√
α

1

cos ε
||B1+

+T1||
1

α
||B2 + T2||)||P0u||L2((0,1):H) = q||w||L2((0,1):H)

Since q < 1, the operator E+(P1+K)P−1
0 is invertible in the space L2((0, 1) : H,

then

w = (E + (P1 +K)P−1
0 )−1f

while

u = P−1
0 (E + (P1 +K)P−1

0 )f

Hence it follows that

||u||W 2
2 ((0,1):H) ≤ cons||f ||L2((0,1):H)

□

The theorem is proved.
Note that when proving the theorem, wedid not use complete continuity of the

operators T1 = K1A
−1 and T ′

2 = K2A
−2, we used their boundedness in H.

Corollary 3.3. If the conditions 1)-3) are fulfilled, and

q1 =
1

2
√
α

1

cos ε
||B1||

1

α
||B2|| < 1 (3.3)

where Bj = AjA
−j (j = 0, 2), the problem (1.1), (1.2) is regularly solvable for

T1 = 0, T2 = 0.

We now prove a theorem on Fredholm solvability of problem (1.1)-(1.2).

Theorem 3.4. Let the conditions 1)-4) and inequality (3.3) be fulfilled. Then
problem (1.1)-(1.2) is Fredholm solvable.

Proof. It suffices to prove the operator L = P +K is a Fredholm operator, where
the operators P K and are determined from the equalities (1.4) and (1.5).

Corollary 3.1 yields that the operator P isomorphically maps the space
W 2

2,ψ((0, 1) : H) onto the space L2((0, 1) : H. At first we show that for rather
small ε > 0 the following inequality is fulfilled.

||Ku||L2((0,1):H) ≤ ε||u||W 2
2 ((0,1):H) + η(ε)||u||L2((0,1):H) (3.4)

Since

Ku = K1u
′ +K2u = K1A

−1u′ +K2A
−2u = T1Au

′ + T2A
2u,

where T1 8 T2 are completely continuous operators in H. Therefore, they can
be represented in the form of a finite-dimensional operator of the poles of the
operators with rather small norms: i.e.

K1 = S1 + F1, K2 = S2 + F2
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moreover S1(·) =
m∑
k=1

(·, φ(1)
k )ψ1

k , S2(·) =
p∑
j=1

(·, φ(1)
k ψ

(1)
k , φ1

k, ψ
1
k, φ

2
j , ψ

2
j ∈ H,

(k = 1, ...,m, j = 1, .., p), a ||F1|| < ε and ||F2|| < ε. Then obviously it follows
from the theorem on intermediate derivatives, that

||F1(Cu
′)||L2((0,1):H) ≤ ε||Cu′||L2((0,1):H ≤ ε||u||2W 2

2 ((0,1):H),

||F2(C
2u)||L2((0,1):H) ≤ ε||C2u||L2((0,1):H ≤ ε||u||2W 2

2 ((0,1):H).

Therefore, we must prove the inequality (3.4) for the operators S1 and S2. Since
S1 and S2 is the sum of the finite number of finite -dimensional operators of the
form T0 (·) = (·, φ)ψ,φ, ψ ∈ H , we prove inequality (3.4) for the operators T0
Since

φ =

∞∑
k=1

(φ, ek)ek =

N∑
k=1

(· , φ)ek +
∞∑
N+1

(· , φ)ek

we choose N rather large so that ||φ̃|| =
∑∞
k=1(· , φ)ek|| < ε.Thus

φ =

N∑
k=1

(φ, ek) + φ̃ , ||φ̃|| < ε

Then, obviously it follows from the theorem on intermediate derivatives that

||Au′, φ̃)ψ||L2((0,1):H) ≤ ||Au′||L2((0,1):H)||φ̃|| ||ψ|| ≤

≤ ||Cu′|| ||φ̃|| ||ψ|| ≤ ε1||u||W 2
2 ((0,1):H) (3.5)

In a similar way, we have

||A2u, φ̃)ψ||L2((0,1):H) ≤ ε1||u||W 2
2 ((0,1):H)

On the other hand,

||S1(Au
′)||L2((0,1):H) =

h∑
k=1

((Au′, ek)ek, ek)ψ)L2((0,1):H) =

= ||
h∑
k=1

((u′, λ̄kek)ek, ek)ψ)L2((0,1):H) ≤ |λN |
h∑
k=1

||u′||L2((0,1):H)||ψ||

Since A−1 is a completely continuous operator, then the imbedding W 2
2 ((0, 1) :

H) →W 1
2 ((0, 1) : H) → L2((0, 1) : H) is compact in finite interval (0,1), applying

theorem (16.4 p. 126 from the book [13] we obtain

||u||W 1
2 ((0,1):H) ≤ ε||u||W 2

2 ((0,1):H) + η(ε)||u||L2((0,1):H)

Hence it follows that

||u′||L2((0,1):H) ≤ ε||u||W 2
2 ((0,1):H) + η(ε)||u||L2((0,1):H)

i.e.

||S1(Au
′)||L2((0,1):H) ≤ ε||u||W 2

2 ((0,1):H) + η(ε)||u||L2((0,1):H) (3.6)

In a similar way we have

||S2(A
2u)||L2((0,1):H) ≤ ε||u||W 2

2 ((0,1):H) + η(ε)||u||L2((0,1):H) (3.7)
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It follows from the inequalities (3.4)-(3.7) that for ε > 0 the inequality (3.4) is
valid. We now prove that the operator T is a compact operator acting from
W 2

2 ((0, 1) : H), L2((0, 1) : H). Let M > 0 while

QM =
{
u : u ∈W 2

2,ψ((0, 1) : H), ||u||W 2
2 ((0,1):H) ≤M

}
Since the imbeddings W 2

2 ((0, 1) : H) → L2((0, 1) : H), then there exists such a
sequence
un ∈ QM (||u||W 2

2 ((0,1):H) ≤ M) that un converges in L2((0, 1) : H). Then,

using inequality (3.4) we have

||Kun −Kum||L2((0,1):H) ≤ ε||un − um||W 2
2 ((0,1):H) + η(ε)||un − um|||L2((0,1):H) ≤

≤ ε(||un|||W 2
2 ((0,1):H) + ||um|||W 2

2 ((0,1):H) + η(ε))||un − um|||L2((0,1):H) ≤
≤ |2εM + η(ε)||un − um||L2((0,1):H)

Now, choosing rather large n and m, we obtain

||Kun −Kum||L2((0,1):H) ≤ δ

where δ is a rather small number. Thus, the operator K is a compact operator
acting from W 2

2 ((0, 1) : H) to the space L2((0, 1) : H)
On the other hand,

Lu = Pu+Ku = P (E + P−1K)u

the operator E + P−1K is a Fredholm operator, the operator P isomorphic, the
operator L is a Fredholm operator and for solving the equation Lu = f be have
the estimates

||u||W 2
2 ((0,1):H) ≤ const||f ||L2((0,1):H)

□

The theorem is proved.
Acknowledgements: The author expresses her gratitude to Prof. S.S. Mir-

zoev for valuable discussions.
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