NEIGHBORHOOD AND CLOSED NEIGHBORHOOD PRIME LABELING OF DECOMPOSED GRAPHS

K. Sunitha¹, T.Revathi^{2*}

 ¹Assistant Professor, Department of Mathematics Scott Christian College (Autonomous), Nagercoil, India - 629001. E-mail: ksunithasam@gmail.com
² Research Scholar, Scott Christian College (Autonomous), Nagercoil, India- 629001. Affiliated to Manonmaniam Sundaranar University, Tirunelveli- 627012. E-mail: revathinathan77@gmail.com

Abstract

A decomposition of a graph G is a collection ψ_{NP} of edge disjoint subgraphs $H_1, H_2, ..., H_r$ of G such that every edge of G belongs to exactly one H_i . If each H_i is a neighborhood prime graphs then ψ_{NP} is called a neighborhood prime decomposition of G. The minimum cardinality of a neighborhood prime decomposition of G is called a neighborhood prime decomposition number of G and it is denoted by $\pi_{NP}(G)$. In addition, If each H_i is a closed neighborhood prime graphs then ψ_{CNP} is called a closed neighborhood prime decomposition of G. In this paper, we investigate neighborhood prime decomposition of the W- graph W_n , generalized butterfly graph BF_n , regular caterpillar graph $P_m \Theta nK_1$ and closed neighborhood prime decomposition of cycle butterfly graph CB(n,m) and H- graph H_n .

Key words: Generalized butterfly, Regular caterpillar, Neighborhood and Decomposition.

Subject Classification : 05C78

1. Introduction

A vertex u is a neighbor v in G, if uv is an edge of G. The set of all neighbors of v is denoted by N(v); the set $N[v] = N(v) \cup \{v\}$ is the closed neighborhood of v in G. A graph is called finite if both V (G) and E(G) are finite. All graphs are considered as simple, finite, connected and undirected. Prime labeling was introduced by Tout at al [4]. Patel and Shrimali have introduced neighborhood prime labeling of graphs [6]. Rajeev Gandhi has introduced prime decomposition of graphs [5]. In this sequel, we investigate neighborhood prime decomposition of the W- graph, generalized butterfly graph BF_n , regular caterpillar graph $P_m \Theta nK_1$ and closed neighborhood prime decomposition of cycle butterfly graph CB(n,m) and H- graph H_n . **Definition 1.1** Consider the two copies of the star graph $K_{1,n}$. If the last pendant vertex in the first copy of $K_{1,n}$ is merged with the initial pendent vertex in the second copy of $K_{1,n}$. Then the resulting graph is called the W- graph W_n.

Definition 1.2 A generalized butterfly graph BF_n is a double shell in which each shell has any n order and every shell has the same order. It has 2n + 1 vertices and 4n - 2 edges.

Definition 1.3 The regular caterpillar graph $P_m \Theta nK_1$ is obtained from the path P_m by joining nK_1 vertices to each vertex of the path P_m .

Definition 1.4. A cycle butterfly graph CB(n,m) consists of two cycles of the same order n sharing a common vertex with an arbitrary number of m pendent vertices attached at the common vertex.

2. Main Results

Theorem 2.1 The decomposition of the W- graph W_n , $n \ge 3$ is a neighborhood prime graph.

Let $\psi_{NP} = \{SP(1^{n-1}, 2^1), K_{1,n-1}\}$ be a decomposition of W_n .

Let n be the positive integer and d be the decomposition number.

Let
$$\psi_{NP} = \begin{cases} (n-d-1) SP(1^{n-1}, 2^1) \& K_{1,n-1} & \text{if } n \equiv 1 \pmod{2} \& d = 1, 3, 5, \dots \\ (n-d-1) SP(1^{n-1}, 2^1) \& K_{1,n-1} & \text{if } n \equiv 0 \pmod{2} \& d = 2, 4, 6, \dots \end{cases}$$

The decomposition of the W- graph W_n contains a spider $SP(1^{n-1}, 2^1)$ and a star $K_{1,n-1}$.

This implies that $\psi_{NP} \supseteq \{SP(1^{n-1}, 2^1) \& K_{1,n-1}\}$

That is $|\psi_{NP}| \ge |SP(1^{n-1}, 2^1)| + |K_{1,n-1}|$

Hence $\pi_{NP}[W_n] \ge 2$.

We claim that ψ_{NP} is a neighborhood prime decomposition of W_n .

Let ' α ' be any vertex of $SP(1^{n-1}, 2^1)$ and $K_{1, n-1}$.

Case (i): Let $H_1 = SP(1^{n-1}, 2^1), n \ge 3$

Let $\{v_0, v_1, v_2, \dots, v_{n+1}\}$ be the vertices of H_1 .

Define a function $\phi^+: V(H_1) \rightarrow \{1, 2, 3, \cdots, n+2\}$ by

$$\phi^+(v_0) = 1$$

 $\phi^+(v_i) = i+1, \quad 1 \le i \le n+1$

Let $\alpha = v_0$ with deg $(\alpha) \ge 3$.

Then gcd {
$$\phi^+(w)/w \in N_V(\alpha)$$
 } = 1

Let $\alpha = v_n$ with deg $(\alpha) = 2$.

Then gcd { $\phi^+(w)/w \in N_v(\alpha)$ } = 1

Thus ϕ^+ admits neighborhood prime labeling.

Case (ii): Let $H_2 = K_{1,n-1}, n \ge 3$ Let $\{u_0, u_1, u_2, \dots, u_{n-1}\}$ be the vertices of H_2 . Define a function $\phi^+ : V(H_2) \rightarrow \{1, 2, 3, \dots n\}$ by $\phi^+(u_0) = 1$ $\phi^+(u_i) = i+1, \quad 1 \le i \le n-1$ Let $\alpha = u_0$ with deg $(\alpha) \ge 2$. Then gcd $\{\phi^+(w)/w \in N_V(\alpha)\} = 1$ Thus ϕ^+ admits neighborhood prime labeling. Hence ψ_{NP} is a neighborhood prime decomposition of W_n .

Therefore the decomposition of the w- graph W_n is a neighborhood prime graph.

Theorem 2.2 The decomposition of the generalized butterfly graph BF_n , $n \ge 3$ is a neighborhood prime graph.

Proof.

Let $\psi_{NP} = \{ F_n, F_n \}$ be a decomposition of BF_n .

Let n be the positive integer and d be the decomposition number.

Then $\Psi_{NP} = \begin{cases} (n-d) F_n & \text{if } n \equiv 1 \pmod{2} \& d = 1, 3, 5, ... \\ (n-d) F_n & \text{if } n \equiv 0 \pmod{2} \& d = 2, 4, 6, ... \end{cases}$

The decomposition of the generalized butterfly graph BF_n contains a Fan F_n .

This implies that $\Psi_{NP} \supseteq \{F_n, F_n\}$

That is $|\psi_{NP}| \ge |F_n| + |F_n|$

Hence $\pi_{NP}(BF_n) \ge 2$.

We claim that ψ_{NP} is a neighborhood prime decomposition of BF_n .

Let ' α ' be any vertex of F_n .

Case (i): Let $H_1 = F_n$, $n \ge 3$

Let $\{v_0, v_1, v_2, \dots, v_n\}$ be the vertices of H_1 .

Define a function
$$\phi^+$$
: $V(H_1) \rightarrow \{1, 2, 3, \dots, n+1\}$ by

 $\phi^+(v_0) = 1$

 $\phi^+(v_i) = i+1, \quad 1 \le i \le n$

Let $\alpha = v_0$ with deg $(\alpha) \ge 3$.

Then gcd { $\phi^+(w)/w \in N_V(\alpha)$ } = 1

Let $\alpha = \{v_i / 1 \le i \le n\}$ with deg $(\alpha) = 2$ (or) 3.

Then gcd { $\phi^+(w)/w \in N_V(\alpha)$ } = 1

Thus ϕ^+ admits neighborhood prime labeling.

Hence ψ_{NP} is a neighborhood prime decomposition of BF_n .

Therefore the neighborhood prime decomposition of the generalized butterfly graph $BF_n, n \ge 3$ is neighborhood prime graph.

Theorem 2.3 The decomposition of the regular caterpillar graph $P_m \Theta nK_1, m \ge 3, n \ge 2$ is a closed neighborhood prime graph.

Proof.

Let $\psi_{CNP} = \{ P_m, K_{1,n}, K_{1,n}, \dots, K_{1,n} (m \text{ times}) \}$ be a decomposition of $P_m \Theta nK_1$. Let m, n be the positive integers and d be the decomposition number.

Then $\Psi_{CNP} = \begin{cases} (n+m-d-1) K_{1,n} \& Pm & \text{if } m \equiv 1 \pmod{2}, n = 2, 3, \dots \& d = 1, 2, 3, \dots \\ (n+m-d-1) K_{1,n} \& Pm & \text{if } m \equiv 0 \pmod{2}, n = 2, 3, \dots \& d = 1, 2, 3, \dots \end{cases}$

The decomposition of the regular caterpillar graph $P_m \Theta nK_1$ contains a star graph $K_{1,n}$ and a path graph P_m .

This implies that $\psi_{CNP} \supseteq \{P_m, K_{1,n}, K_{1,n}, \dots, K_{1,n} (m \sim times)\}$ That is $|\psi_{CNP}| \ge |P_m| + m |K_{1,n}|$

Hence $\pi_{CNP}(BF_n) \ge m+1$.

We claim that ψ_{CNP} is a closed neighborhood prime decomposition of $P_m \Theta nK_1$. Let ' α ' be any vertex of $K_{1,n}$ and P_m .

Case (i): Let $H_1 = K_{1,n}, n \ge 2$ Let $\{u_1, u_2, u_3, \dots, u_{n+1}\}$ be the vertices of H_1 . Define a function $\phi^+ : V(H_1) \rightarrow \{1, 2, 3, \dots, n+1\}$ by $\phi^+(u_1) = 1$ $\phi^+(u_{i+1}) = i+1, \quad 1 \le i \le n$ Let $\alpha = u_1$ with deg $(\alpha) \ge 2$. Then gcd $\{\phi^+(\alpha), \phi^+(w) / w \in N_V[\alpha]\} = 1$ Thus ϕ^+ admits closed neighborhood prime labeling.

Hence ψ_{CNP} is a closed neighborhood prime decomposition of $P_m \Theta nK_1$.

Therefore the closed neighborhood prime decomposition of $P_m \Theta nK_1, m \ge 3, n \ge 2$ is closed neighborhood prime graph.

Theorem 2.4. The decomposition of the cycle butterfly graph $CB(n,m), m \ge 2, n \ge 3$ is a closed neighborhood prime graph. Proof.

Let $\psi_{CNP} = \{ C_n, C_n, K_{1,m} \}$ be a decomposition of CB(n,m). Let m, n be the positive integers and d be the decomposition number.

Then $\Psi_{CNP} = \begin{cases} (m-d+1) C_n \& K_{1,m} & \text{if } m \equiv 0 \pmod{2}, n = 3, 4, 5, \dots \& d = 1, 2, 3, \dots \\ (n+m-d-1) K_{1,n} \& Pm & \text{if } m \equiv 1 \pmod{2}, n = 3, 4, 5, \dots \& d = 1, 2, 3, \dots \end{cases}$

The decomposition of the cycle butterfly graph CB(n,m) contains a cycle graph C_n

and a star graph $K_{1,m}$.

This implies that $\psi_{CNP} \supseteq \{C_n, C_n, K_{1,m}\}$

That is $|\psi_{CNP}| \ge 2 |C_n| + |K_{1,m}|$

Hence $\pi_{CNP}(CB(n,m)) \ge 3$.

We claim that ψ_{CNP} is a closed neighborhood prime decomposition of CB(n,m).

Let α be any vertex of C_n and $K_{1,n}$.

Case(i): Let $H_1 = C_n, n \ge 3$

Let $\{v_1, v_2, v_3, \dots, v_n\}$ be the vertices of H_1 .

Define a function
$$\phi^+: V(H_1) \rightarrow \{1, 2, 3, \dots, n\}$$
 by

$$\phi^+(v_i) = i, \quad 1 \le i \le n$$

Let $\alpha = \{v_i / 1 \le i \le n\}$ with deg $(\alpha) = 2$.

Then $gcd\{\phi^+(a), \phi^+(w) / w \in N_V[\alpha]\} = 1$

Thus ϕ^+ admits closed neighborhood prime labeling.

Case(ii): Let $H_2 = K_{1,m}, m \ge 2$

Let $\{w_0, w_1, w_2, \dots, w_m\}$ be the vertices of H_2 .

Define a function $\phi^+: V(H_2) \rightarrow \{1, 2, 3, \cdots, m+1\}$ by

$$\phi^+(w_0) = 1$$
,

 $\phi^+(w_i) = i+1, \quad 1 \le i \le m$

Let $\alpha = w_0$ with deg $(\alpha) \ge 2$.

Then gcd { $\phi^+(a)$, $\phi^+(w)/w \in N_v[\alpha]$ } = 1

Thus ϕ^+ admits closed neighborhood prime labeling.

Hence ψ_{CNP} is a closed neighborhood prime decomposition of CB(n,m).

Therefore the closed neighborhood prime decomposition of CB(n,m), $m \ge 2$, $n \ge 3$ is a closed neighborhood prime graph.

3. Conclusion

In this paper, we investigate neighborhood and closed neighborhood prime decomposition of some graphs. In future, we will investigate various types of labeling using various graphs.

References

- [1] Joseph .A. Gallian, "A dynamic survey of graph labeling", The Electronic Journal of Combinatorics (2018), #DS6.
- [2] Sugumaran .A and Mohan .V ,Further Results on Prime Cordial Labeling, Annals of Pure and Applied Mathematics- Vol.14, No. 3, 2017, 489-496.
- [3] Uma .R and Amuthavalli .D, Fibonacci Graceful Labeling of some Star Related Graphs , International Journal of Computer Applications-Volume 134-No.15,2016.
- [4] Tout. A, Dabboucy and Hawalla . K, Prime labeling of graphs, Nat. Acad. Sci. Letters11(1982).
- [5] Dr.Rajeev Gandhi .S, Decomposition of various graphs in to prime graphs, Mathematical Statistician and Engineering Applications-Vol.71 No.4(2022).
- [6] S.K. Patel, N.P. Shrimali, "Neighborhood Prime labeling", International Journal of Mathematics and Soft Computing, Vol. 5, No. 2(2015),135-143.
- [7] Sugumaran .A and Suresh .K ,A special class of prime cordial graphs, , International Journal of Pure and Applied Mathematics- Vol.114, No. 6, 2017.