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Abstract. In the paper, we survey modern numerical methods for solving
problems that arise in contemporary computational finance. We focus on op-

tion pricing problems in Lévy models of financial markets. We consider sev-

eral categories of numerical techniques: backward induction methods, meth-
ods for solving partial integrodifferential equations (PIDEs), approximate

Wiener-Hopf factorization methods, and Monte Carlo simulations. We briefly

review the main ideas of the methods of each group and give extended details
to the most efficient approaches that combine several numerical techniques.

Special attention is paid to a new promising category of hybrid methods that

combine standard numerical methods and machine learning tools. We justify
that the core of the latter category should be computational techniques that

admit the interpretability of artificial neural networks.

1. Introduction

In recent years, more and more attention has been paid to stochastic models of
financial markets that depart from the traditional Black-Scholes model. At this
time, a wide range of models are available. One of the tractable empirical models
are jump diffusions or, more generally, Lévy processes. For an introduction to
these applied models to finance, we refer to [19, 27]. More recently, Lévy pro-
cesses have also been extensively used in modern insurance risk theory; see, for
example, [5] and [74]. In insurance mathematics, it is the Lévy process itself that
models the surplus wealth of an insurance company until its ruin. There are also
extensive applications of Lévy processes in queuing theory, genetics, and mathe-
matical biology as well as in stochastic differential equations (see, e.g. [23], [66]).
A detailed review of recent developments in applications of Lévy processes can be
found in the book [90], which provides an extensive bibliography on the subject.
We restrict ourselves to the one-dimensional case.

Option pricing has a crucial priority in mathematical finance. Recall that op-
tions are financial derivatives that give their holders a right (not an obligation)
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to buy or sell the underlying asset under certain conditions (see details in [59]).
Exotic options form a broad class of derivatives that differ from classic American
and European options. Exotic derivatives include path-dependent options such
as lookback or barrier options. The value of exotic continuous-time derivatives
depends on the underlying asset’s path, provided the price monitoring is perma-
nent. From a probabilistic viewpoint, exotic option prices can be expressed in
terms of conditional expectation on a payoff function that depends on the under-
lying stochastic process and its extrema. However, joint probability distributions
of modeling process and its supremum and(or) infimum are unknown in explicit
form as well as distributions of Lévy extrema themselves.

From an analytical point of view, the option pricing problem under Lévy pro-
cesses can be reduced to solving a partial integrodifferential backward Kolmogorov
equation [46] subject to appropriate boundary and initial conditions.

By now, there exist several large groups of relatively universal numerical meth-
ods for pricing path-dependent options under Lévy driven financial models. The
number of publications in the field is so large that it is virtually impossible to
make a full reference list. However, due to its complexity, pricing exotic options
in exponential Lévy models remains a computational challenge.

Contemporary numerical methods in the literature can be categorized into sev-
eral groups: backward induction methods, methods for solving partial integrodif-
ferential equations (PIDEs), approximate Wiener-Hopf factorization methods, and
Monte Carlo simulations. We also mention a new category of hybrid methods that
combine standard numerical techniques and machine learning tools.

The remainder of the paper is organized as follows. In Section 2 we list the
necessary facts of the theory of Lévy processes. The backward induction methods
are reviewed in Section 3 with details of powerful tools of frame projection method
for option pricing in Subsection 3.2. Section 4 deals with numerical methods for
solving partial integrodifferential equations arisen in finance. Section 5 reviews
the approximate Wiener–Hopf factorization methods with special attention given
to the recently developed “Simplified Wiener–Hopf factorization method” in Sub-
section 5.3. Section 6 focuses on advanced Monte Carlo algorithms for pricing
options under general Lévy models including numerical methods that combine the
approximate Wiener–Hopf factorization technique and Monte Carlo simulations.
In Section 7 we give a short introduction to machine learning methods and con-
sider possibilities to combine standard numerical techniques with artificial neural
networks (ANN). Special attention is paid to the interpretability of ANNs in the
development of such hybrid methods in Subsection 7.2. Section 8 concludes.

2. Lévy processes: basic facts

A Lévy process is a stochastically continuous process with stationary indepen-
dent increments (for general definitions, see, e.g. [11, 27, 113]). A Lévy process
may have a Gaussian component and/or a pure jump component. The latter is
characterized by the density of jumps, which is called the Lévy density. A Lévy
process Xt can be completely specified by its characteristic exponent, ψ, definable
from the equality E[eiξX(t)] = e−tψ(ξ). If Xt has probability density pt, then we
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have

e−tψ(ξ) =

∫ +∞

−∞
eiξypt(y)dy (2.1)

The characteristic exponent is given by the Lévy-Khintchine formula:

ψ(ξ) =
σ2

2
ξ2 − iµξ +

∫ +∞

−∞
(1− eiξy + iξy1|y|≤1)F (dy), (2.2)

where σ2 ≥ 0 is the variance of the Gaussian component, and the Lévy measure
F (dy) satisfies ∫

R\{0}
min{1, y2}F (dy) < +∞. (2.3)

If the jump component is a process of finite variation, equivalently, if∫
R\{0}

min{1, |y|}F (dy) < +∞, (2.4)

then the last term in the integrand in (2.2) can be integrated out and added to
the drift term. Then we obtain

ψ(ξ) =
σ2

2
ξ2 − iµξ +

∫ +∞

−∞
(1− eiξy)F (dy), (2.5)

with a different µ, and the new µ is the drift of the Gaussian component.
Assume that under a risk-neutral measure chosen by the market, the price

process has the dynamics St = eXt , where Xt is a certain Lévy process. Then we
must have E[eXt ] < +∞, and therefore, ψ must admit the analytic continuation
into a strip Im ξ ∈ (−1, 0) and the continuous continuation into the closed strip
Im ξ ∈ [−1, 0].

The infinitesimal generator of X, denote it L, is an integro-differential operator
which acts as follows:

Lu(x) =
σ2

2

∂2u

∂x2
(x)+µ

∂u

∂x
(x)+

∫ +∞

−∞
(u(x+y)−u(x)−y1|y|≤1

∂u

∂x
(x))F (dy). (2.6)

The infinitesimal generator L can also be represented as a pseudo-differential
operator (PDO) with the symbol −ψ(ξ): L = −ψ(−i∂x). Recall that a PDO
A = a(−i∂x) acts as follows:

Au(x) = (2π)−1

∫ +∞

−∞
eixξa(ξ)û(ξ)dξ, (2.7)

where û is the Fourier transform of a function u:

û(ξ) =

∫ +∞

−∞
e−ixξu(x)dx.

Note that the inverse Fourier transform in (2.7) is defined in the classical sense
only if the symbol a(ξ) and the function û(ξ) are sufficiently nice. In general, one
defines the (inverse) Fourier transform by duality.

Furthermore, if the riskless rate, r, is constant and the stock pays dividends q,
then the discounted price process must be a martingale. Equivalently, the following
condition must hold

r − q + ψ(−i) = 0, (2.8)
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which can be used to express µ via the other parameters of the Lévy process:

µ = r − q − σ2

2
+

∫ +∞

−∞
(1− ey + y1|y|≤1)F (dy). (2.9)

Example 2.1 (Tempered stable Lévy processes). The characteristic exponent of
a pure jump KoBoL process of order ν ∈ (0, 2), ν 6= 1 is given by

ψ(ξ) = −iµξ + cΓ(−ν)[λν+ − (λ+ + iξ)ν + (−λ−)ν − (−λ− − iξ)ν ], (2.10)

where c > 0, µ ∈ R, and λ− < −1 < 0 < λ+. Formula (2.10) is derived in [18, 19]
from the Lévy-Khintchine formula with the Lévy densities of negative and positive
jumps, F∓(dy), given by

F∓(dy) = ceλ±y|y|−ν−1dy. (2.11)

Later, the same class of processes was used in [25] under the name CGMY-model.
The following relations between the parameters of the KoBoL model and the pa-
rameters C,G,M ,Y parameters of CGMY-model is valid:

C = c, Y = ν, G = λ+, M = −λ−.
More general version with c± instead of c, and the different exponents ν± are
known as a stable Tempered Lévy model [27]. In this case, we have for ν+, ν− ∈
(0, 2), ν+, ν− 6= 1

ψ(ξ) = −iµξ+c+Γ(−ν+)[λ
ν+

+ −(λ+ +iξ)ν+ ]+c−Γ(−ν−)[(−λ−)ν−−(−λ−−iξ)ν− ],
(2.12)

where c+, c− > 0, µ ∈ R, and λ− < −1 < 0 < λ+.

Example 2.2 (Normal Inverse Gaussian processes). A normal inverse Gaussian
process (NIG) [9] can be described by the characteristic exponent of the form

ψ(ξ) = −iµξ + δ[(α2 − (β + iξ)2)1/2 − (α2 − β2)1/2], (2.13)

where α > |β| > 0, δ > 0 and µ ∈ R.

Example 2.3 (Variance Gamma processes). The Lévy density of a Variance
Gamma process is of the form (2.11) with ν = 0, and the characteristic expo-
nent is given by (see [104])

ψ(ξ) = −iµξ + c[ln(λ+ + iξ)− lnλ+ + ln(−λ− − iξ)− ln(−λ−)], (2.14)

where c > 0, µ ∈ R, and λ− < −1 < 0 < λ+.

Example 2.4 (Kou model). If F∓(dy) are given by exponential functions on the
negative and positive axis,

F∓(dy) = c±(±λ±)eλ±y,

where c± ≥ 0 and λ− < 0 < λ+, then we obtain the Kou model. The characteristic
exponent of the process is of the form

ψ(ξ) =
σ2

2
ξ2 − iµξ +

ic+ξ

λ+ + iξ
+

ic−ξ

λ− + iξ
. (2.15)

The version with one-sided jumps is due to [32], the two-sided version was intro-
duced in [36], see also [77].
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3. Backward induction methods

3.1. General approaches in backward induction methods. Backward in-
duction methods are based on the fact that the risk neutral valuation formula for
the European option can be seen as a convolution of the payoff function with the
transition density. The key idea is to set up a time lattice and view the option
as European type between two adjacent dates. Therefore, the backward induction
methods [62,63,68,69] recurrently solve the option pricing problem step by step in
short time intervals using an approximation for the probability density of a mod-
eling Lévy process. Hence, the backward induction method requires the transition
density to be known in closed form, which is the case, e.g. in the Black-Scholes
model and Merton’s jump-diffusion model.

The approximation proposed by [44] uses the discretization of the time parame-
ter and the backward induction to price American options in the GBM model. The
method was extended in [19] for some Lévy models, and its applications can be
founded, e.g., in [86,98]. If there is no explicit formula for the probability density,
it can be recovered by inverting the characteristic function, so the method can be
used for a wide range of Lévy models.

Since convolutions can be handled very efficiently using the Fast Fourier Trans-
form (FFT), the overall complexity of the method is O(mn lnn), where m and n
are the numbers of points on the grid in time and space, respectively. The FFT-
based backward induction method was applied in [63], see also [103]. In terms of
the theory of pseudodifferential operators (PDOs), at each time step, the FFT-
based backward induction method implements action of the PDO, which symbol
is the characteristic function.

The method suggested in [60,61] solves the backward jump-diffusion PIDEs for
the option prices by splitting the related operator into differential and jump parts.
The key idea behind the approach involves representing a jump operator as a PDO
with subsequent transformation into an operator exponential.

In a series of papers [67–69] a backward induction method based on the frame
projection approach (PROJ) was developed. In particular, in [69] the approach
was applied for discretely monitored barrier derivatives with robust pricing under
exponential Lévy models. The coefficient functionals of the orthogonally projected
transition density are given by its convolution with a dual B-spline scaling function
of the first order, using the characteristic function of the underlying asset.

The method’s efficiency is derived in part from the use of frame projected
transition densities, which transform the problem into the Fourier domain and
accelerate the convergence of intermediate expectations. These expectations are
approximated by Toeplitz matrix-vector multiplications, resulting in a fast im-
plementation by means of the Fast Fourier Transform. Additionally, the method
includes proper truncating support of the transition density. In [68], the frame pro-
jection approach is generalized to the case of B-spline scaling functions of arbitrary
order.

3.2. The frame projection method. We briefly describe the numerical frame-
work of [69] to value exotic options in exponential Lévy models. Throughout, the
riskless rate r and the dividend rate q are assumed to be constant. We consider
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here the special case of frame projection onto a linear spline basis, and more the-
oretical details and general results for the B-spline basis can be found in [67, 72].
After reviewing the implementation for European options, we consider the case of
knock-out barrier options in Section 3.2.2, and Bermudan options.

Let T,K be the contract maturity and strike, and the stock price St = S0e
Xt be

an exponential Lévy process under a chosen risk-neutral measure (see (2.8)). We
seek to value an option with European-style payoff of G(x) at time T . Recall that
for the call optionG(x) = (S0e

x−K)+, and for the put optionG(x) = (K−S0e
x)+.

Then the price of the European option without arbitration at time t0 = 0 is
given by

f(x, t0) = Ex
[
e−rTG(XT )

]
(3.1)

For consistency in notation with exotic options below, let ∆τ denote the increase
in time between monitoring dates of the contract. For a European option, ∆τ =
T − t0.

To calculate the price in (3.1), note that in the general case, p∆τ can be ex-
pressed in terms of the characteristic exponent ψ(ξ), using the Fourier transform

p∆τ (ν) = (2π)−1

∫ +∞

−∞
e−ixξ−∆τψ(ξ)dξ. (3.2)

For a fixed resolution a > 0 and a generator φ(ν) = (1− |ν|)1[−1,1], we obtain
the following analytical representation of the orthogonally projected density

p∆τ (ν) ≈
N∑
k=1

(∫ +∞

−∞
p∆τ (y)φ̃a,k(y)dy

)
φa,k(ν) (3.3)

onto a space of compactly supported basis elements φa,k(ν) := a1/2φ(a(ν − νk)),
where νk are the points on a uniformly spaced grid of width ∆ν = 1/a. Using the
Fourier transform technique and (3.2), one may rewrite (3.3) as follows

p∆τ (ν) ≈
N−1∑
k=0

a−1/2

π
Re
(∫ +∞

0

exp[iνkξ −∆τψ(ξ)]ha(ξ)dξ
)
φa,k(ν)

≈ a5/2

N

N−1∑
k=0

βa,kφa,k(ν), (3.4)

where νk = ν1 + k∆ν, k = 0, . . . , N − 1,

ha(ξ) =
sin2(ξ/2a)

ξ2(2 + cos(ξ/2a))
.

We choose ν1 in order to cover the support of the transition density (see [68] for
several viable approaches).

To evaluate European options, we have the valuation formula

f(x, t0) ≈ e−rT a
5/2

N

N−1∑
k=0

βa,k

∫ νk+1

νk−1

G(ν)φa,k(ν)dν,
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where the coefficients
∫ νk+1

νk−1
G(ν)φa,k(ν) are easy to evaluate numerically for arbi-

trary payoffs (see [68]), and are available in closed form for many standard payoffs
(see [67]).

3.2.1. Projection Coefficients by FFT. Approximation for the coefficients βa,k
can be efficiently computed by using the Fast Fourier Transform (FFT). Consider
the algorithm (the discrete Fourier transform (DFT)) defined by

Gk = DFT [g](k) =

N−1∑
j=0

gje
−2πikj/N , k = 0, ..., N − 1. (3.5)

The DFT maps N complex numbers (the gj ’s) into N complex numbers (the Gk’s)
(see [109] Press, W. et al. (1992) for technical details). The formula for the inverse
DFT which recovers the set of gj ’s exactly from Gk’s is:

gj = iDFT [G](j) =
1

N

N−1∑
k=0

Gke
2πikj/N , j = 0, ..., N − 1. (3.6)

In our case, the input data consist of the following complex-valued array {gj}Mj=0:

g0 = 1/24a2, gj = exp(−iν1ξj) exp[−∆τψ(ξj)]ha(ξj), j > 0. (3.7)

Then we obtain

βa,k = Re(DFT [g](k)), k = 0, . . . , N − 1. (3.8)

3.2.2. Barrier Options. As a basic example to illustrate the method we consider
pricing discretely monitored down-and-out call and put options under the CGMY
(KoBoL) model. Let T,K,H be the maturity, strike, and barrier, and the stock
price St = S0e

Xt be an exponential Lévy process under a chosen risk-neutral
measure (see (2.8)). Denote by M the number of equally spaced monitoring dates
tk, k = 0, 1, . . . ,m, where t0 = 0 and tM = T .

Set h = lnH/S0 and ∆τ := T/M . Then the no-arbitrage price of the barrier
option at time t0 = 0 and Xt = x > h is given by

f(x, t0) = Ex
[
e−rT1m1>h1m2>h . . .1mM>hG(XT )

]
, (3.9)

where mn = mink=0,1,...,nXtk is the processes of the minimum up to the nth
monitoring date, G(x) is the payoff at maturity. Recall that for the call option
G(x) = (S0e

x −K)+, and for the put option G(x) = (K − S0e
x)+.

We have

f(x, tM ) = G(x), x > h, (3.10)

and for all m,

f(x, tm) = 0, x ≤ h. (3.11)

For m = M − 1,M − 2, . . . , 0, and x > 0, the price f(x, tm) can be found as
the price of the European option with the terminal payoff f(Xtm+1

, tm+1) and the
expiry date tm+1:

f(x, tm) = E[e−r∆τf(Xtm+1
, tm+1) | Xtm = x], x > h. (3.12)
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If an explicit formula for the probability density p∆τ of X∆τ under EMM is known
(e.g., GBM or NIG model), we can use it to write (3.12) in the form

f(x, tm) = e−r∆τ
∫ +∞

−∞
p∆τ (y − x)f(y, tm+1)dy, x > h. (3.13)

We will evaluate f(x, tm) along a grid of points in log asset space, xn = lnH/S0 +
n∆x, n = 0, . . . , N/2− 1, where ∆x = ∆ν, using the frame projection approxima-
tion of p∆τ defined in (3.4).

If the payoff G decays at +∞, then by truncating the integration domain in
(3.13) above by u = xN/2−1 (see details in [69]), we can rewrite (3.13) by using
(3.4), and for xn, n = 0, . . . , N/2− 1:

f(xn, tm) ≈ 24a2e−r∆t

N

N/2−1∑
k=0

βa,N/2+k−na
1/2

∫ u

h

f(y, tm+1)a1/2φ(a(y − yk))dy

= C

N/2−1∑
k=0

βa,N/2+k−nθm,k (3.14)

where

θm,k = a1/2

∫ u

h

f(y, tm+1)a1/2φ(a(y − yk))dy, C =
24a2e−r∆t

N
. (3.15)

Convolution (3.14) can be computed quickly by using the fast Fourier transform
and the Toeplitz matrix theory. Set a−N/2 = 0, and

aj = βa,N+l−1, j = −N/2 + 1 . . . ,−1; aj = βa,N/2−j−1, j = 0, . . . N/2− 1.

The sequence {aj}N/2−1
j=−N/2+1 generates the truncated Toeplitz matrix T (a):

TN/2(a) =


a0 a−1 a−2 ... a−N/2+1

a1 a0 a−1 ... a−N/2+2

a2 a1 a0 ... a−N/2+3

... ... ... ... ...
aN/2−1 aN/2−2 aN/2−3 ... a0

 . (3.16)

Then
N/2−1∑
k=0

βa,N/2+k−nθm,k = TN/2(a)θ̃m,

where θ̃m = {θm,0, θm,1, ...θm,N/2−1, 0, 0, ..., 0, 0︸ ︷︷ ︸
N/2 times

}.

The symbol a(η) =
∑j=N/2−1
j=−N/2+1 aje

iηj of the Toeplitz matrix T (a) can be com-

puted at the points ηk = −2πk/N, k = 0, ..., N − 1 using the discrete Fourier
transform (3.5):

a(ηk) = DFT [ã](k) =

N/2∑
j=0

aje
−2πikj/N+

N/2−1∑
j=N/2+1

aj−Ne
−2πikj/N , k = 0, ..., N−1.

(3.17)
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where ã = {a0, a1, ...aN/2, a−N/2+1, a−N/2+2, ..., a−2, a−1}.
It is easy to show that

TN/2(a)θ̃m = iDFT [DFT [ã] ∗DFT [θ̃m]],

where u ∗ v is the element-wise product of vectors u with v.
Notice that θM,k could be computed explicitly, while the other coefficients θm,k,

m < M , are computed using polynomial interpolation (see details in Kirkby
(2017a)).

3.2.3. Treatment for Unbounded Payoffs. In the case of an unbounded payoff
function G(x) in +∞ (e.g., in the case of the call option), as in [81] we choose
real ω in a way such that eωxG(x) is absolutely integrable. In the case of the
down-and-out call option and typical parameters of the Lévy model ω = −2 is a
good choice.

Then we can rewrite the algorithm in terms of new functions:

fω(x, tm) = eωxf(x, tm),m = 0, 1, . . . ,M. (3.18)

In this case, the frame projection method should be applied to the weighted tran-
sition density e−ωxp∆τ (x) instead of the function p∆τ (x).

Then taking into account that due (2.1)∫ +∞

−∞
eiξye−ωxpt(y)dy = e−tψ(ξ+iω),

we may rewrite the formulas for (3.7) in (3.8) as follows:

g0 = 1/24a2 exp[−∆τψ(iω)], gj = exp(−ix1ξj) exp[−∆τψ(ξj + iω)]ha(ξj), j > 0.

If in the cross-barrier event, the knock-out option provides the rebate R > 0
to holders, one can represent f(x, tm) as v(x, tm) + R and adjust the algorithm
accordingly.

3.2.4. American Options. The frame projection method is extended to Bermu-
dan/American options in [70] for Lévy processes, and [73] for stochastic volatility
models. The approach is based on a value recursion, in terms of the frame pro-
jected approximation of the transition density p∆τ as follows:

f(x, tM ) = G(x)

C(x, tm) = e−r∆τ
∫
f(y, tm+1)p∆τ (y − x)dy, m = M − 1, ..., 0 (3.19)

f(x, tm) =

{
max{C(x, tm), G(x)} m = M − 1, ..., 1

C(x, tm) m = 0

where C(x, tm) is the continuation value at time tm. We will again use the frame
projection method with a discrete log-asset grid {xk}Nk=1 over [l, u], which is chosen
to ensure that xk̄ = ln(K/S0) for some fixed index k̄, so that the payoff kink is
aligned with the grid. The recursive valuation proceeds in a similar manner as
for Barrier options described previously and exploits the Toeplitz structure of the
convolution with respect to the projected transition density.

223



O. KUDRYAVTSEV, N. DANILOVA, AND A. GRECHKO

To compute the recursive valuation, we use formula (3.14) where the value
coefficients θm,k are computed in a similar manner as in (3.15), using

θm,k = a1/2

∫ u

l

f(y, tm+1)a1/2φ(a(y − yk))dy

= a

∫ u

l

max{C(y, tm+1), G(x)}φ(a(y − yk))dy. (3.20)

To avoid a loss in convergence order due to the non-smoothness introduced by
the max{·} operation (and to determine the explicit optimal exercise policy), we
estimate the early-exercise point directly before computing the integral. This
point, xm∗ , should satisfy G(xm∗ ) = C(xm∗ , tm). For a Bermudan put option, we
first note that the left bracketing index and grid point can be found easily (by
binary search at a cost of O(log(N))) using

k∗ = max{1 ≤ k ≤ k̄ : G(xk)− C(xk, tm) ≥ 0}, xk∗ = x1 + (k∗ − 1)∆, (3.21)

so the early exercise point satisfies xk∗ ≤ xm∗ < xk∗+1. Once k∗ is found, we
approximate xm∗ by

xm∗ ≈ xk∗ + ∆
G(xk∗)− C(xk∗ , tm)

(G(xk∗)− C(xk∗ , tm))− (G(xk∗+1)− C(xk∗+1, tm))
. (3.22)

We can then compute the integral in (3.20) with high accuracy by splitting the
domain at the point xm∗ and preserve the natural convergence rate (see [70] for more
details and closed-form algebraic expressions for θm,k). Note that this procedure
extends naturally to multi-early exercise contracts, as demonstrated in [71] for
swing option pricing.

4. Option pricing by solving partial integrodifferential equations

4.1. Numerical methods for solving PIDEs in finance. The next large
group deals with numerical methods to solve the generalized Black–Scholes equa-
tion or approximate computing of the corresponding expectation. There are three
main approaches to solving PIDEs: finite difference schemes, Galerkin methods,
and integral transform methods. The methods start by reducing a boundary prob-
lem for the generalization of the Black–Scholes equation (backward Kolmogorov
equation); in the case of American options, a free boundary problem arises. In [19],
the equation for the price of derivative security is derived in the sense of the the-
ory of generalized functions. Later, in [28], prices of European and barrier options
are expressed as solutions of partial integrodifferential equations (PIDEs) that in-
volve, in addition to a (possibly degenerate) second-order differential operator, a
nonlocal integral term (see also [27]).

The theory of pseudo-differential operators (PDO) extends the notion of a dif-
ferential operator and is widely used to solve integrodifferential equations. The
essential idea is that a differential operator with constant coefficients can be rep-
resented as a composition of a Fourier transform, multiplication by a polynomial
function, and an inverse Fourier transform. Moreover, the PDO technique based
on the Fourier transform and the operator form of the Wiener–Hopf method is
much more powerful than the method based on the study of the PIDE kernel.
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This was why the theory of PDO was invented in the first place; see, e.g., [38]
and [55].

The straightforward idea of applying PDO theory in the context of option pric-
ing has been systematically pursued in a series of publications summarized in three
monographs [19,21,62]. However, the general formulas for the prices involve a dou-
ble Fourier inversion (and one more integration needed to calculate the factor in
the Wiener–Hopf factorization formula). Hence, it is not easy to implement them
in practice except in the particular case where there are explicit formulas for the
factors.

If the characteristic exponent of the underlying Lévy process is rational, then
one can apply Laplace transform methods. The primary examples of this are
Brownian motion, Kou’s model, and its generalization, the hyperexponential jump-
diffusion model (HEJD).

First, we find the Laplace transform of a given option’s value function with
respect to the time to maturity. In [6, 8, 78, 100, 114], the Laplace transform is
derived from the distribution of the first passage time; the distribution is calculated
applying the Wiener–Hopf factorization method in the form used in probability.
See also [93] and [3, 52]. Once the Laplace transform is calculated, a suitable
numerical Laplace inversion algorithm is used to recover the option price. In other
cases, one can approximate the initial process by Kou’s model or by the HEJD
process, and then use the Laplace transform method (see, e.g., [29, 64]).

However, the problem of the Laplace transform inversion is non-trivial from the
computational point of view. There are many different numerical Laplace inversion
methods, but some procedures, such as the popular Gaver-Stehfest algorithm in
computational finance, usually require high precision. Notice that the latter is
based on the Post–Widder inversion formula, which involves differentiation instead
of integration.

For more information on a general framework for numerical Laplace inversion
that includes an optimized version of the one-dimensional Gaver–Stehfest method,
refer to [2]. Notice that [29, 81, 114] found that the choice of 12–14 terms in the
Gaver–Stehfest formula may result in satisfactory accuracy for Kou and HEJD
models. In this case, the standard double-precision gives good results.

Another feature that often slows down the calculations is the fact that the values
of the Laplace transform must first be found at several (at least a dozen) different
points. Apart from a few cases where an explicit formula gives the transform
function, the calculation of these values is time-consuming.

Galerkin methods are based on the variational formulation of PIDEs. While
implementation of finite-difference methods requires only moderate programming
knowledge, Galerkin methods use specialized toolboxes [27]. Finite difference
schemes use less memory than Galerkin methods since there is no overhead for
managing grids, but a refinement of the grid is more complicated. A wavelet
Galerkin method is constructed to price American options under exponential Lévy
processes in [106]. Notice that applying variational methods for finite variation
processes, one can prove convergence in the Hs–norm only, where s < 1/2. There-
fore, convergence cannot be guaranteed in the C–norm.
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In a finite difference scheme, derivatives are replaced by finite differences. In
the presence of jumps, one needs to discretize the integral term as well. Finite
difference schemes are applied to pricing barrier options in [28, 80] and to pricing
American options in [26,53,80,98].

Construction of any finite difference scheme involves discretization in space and
time, truncation of large jumps, and small jumps approximation. Truncation of
large jumps is necessary because we cannot calculate an infinite sum; approxima-
tion of small jumps is needed when the Lévy measure diverges at zero. The result
is a linear system that needs to be solved at each time step, starting from the
payoff function. In the general case, the system solution in each time step by a
linear solver requires O(m2) operations (m is the number of space points), which
is too time consuming. In [26, 28, 53], the integral part is calculated using the
solution of the previous time step, while the differential term is treated implicitly.
This leads to the explicit-implicit scheme, with a tridiagonal system that can be
solved in O(m lnm) operations. The authors of [98] use the implicit scheme and
the iteration method at each time step.

The methods in [26,53,98] apply to processes of infinite activity and finite varia-
tion; the part of the infinitesimal generator corresponding to small jumps is approx-
imated by a first-order differential operator (additional drift component). In [28],
an approximation using a differential operator of second order (additional diffu-
sion component) was used. The Wiener–Hopf factorization method for Toeplitz
matrices is suggested for implicit schemes in [80].

As a theoretical background behind the procedure, the methods of the third
group use the method of horizontal lines [111] which includes a time discretization
while a space variable remains continuous. P. Carr suggested an important prob-
abilistic interpretation of the method in [24], which we call a time randomization
technique or Carr randomization.

After the time discretization, a sequence of certain stationary boundary prob-
lems arises for integrodifferential equations on a half-line. To solve them, one may
apply finite-difference methods like in [28, 80] or the Wiener-Hopf factorization
method (see, for example, [15, 81, 87]). We will consider the Wiener-Hopf factor-
ization technique in Section 5. In the case of continuously monitored options, one
can also reduce the initial Kolmogorov backward equation to the Wiener-Hopf one
applying the Laplace transform in time variable (see, e.g. [81, 96, 108]). It can
be shown (see, e.g. [79,88,95]) that Carr’s randomization or a time discretization
is equivalent to the Laplace transform inversion in the Post-Widder formula. A
discrete monitoring case can be treated analogously using the z-transform (see,
e.g., [42, 43]).

The method suggested in [60, 61] solves the backward jump-diffusion PIDEs
for the option prices by splitting the related operator into differential and jump
parts. The key idea behind the approach involves representing a jump operator as
a PDO with subsequent transformation into an operator exponential. The method
combines backward induction approach and finite difference schemes techniques.
We give the details of this approach in the next subsection.
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4.2. The method of pseudodifferential operators. We shortly describe a
numerical framework of [60,61] to value options in exponential Lévy models. As a
basic example to illustrate the method, we consider pricing European put options
under Tempered stable Lévy processes. Let T,K be the maturity, strike, and the
stock price St = eXt be an exponential Lévy process under a chosen risk-neutral
measure. The riskless rate is assumed constant r > 0.

Then the payoff at maturity is G(x) = (K − ex)+, and the no-arbitrage price
of the European option at time t < T and Xt = x is given by

V (t, x) = V (T,G; t, x) = Et,x
[
e−r(T−t)G(XT )

]
. (4.1)

It is well known that V (t, x) is the solution to the following problem.

(∂t + L− r)V (t, x) = 0, t < T ; (4.2)

V (T, x) = G(x). (4.3)

It follows from (2.6), that the infinitesimal generator of a Lévy process is the sum
of the infinitesimal generator of the diffusion component (with drift) and the pure
jump component, which we denote by LG and LJ , respectively. Then we can
rewrite (2.6) as

Lu = LGu+ LJu. (4.4)

Consider equally spaced dates tk, k = 0, 1, . . . ,m, where t0 = 0, tm = T . Set ∆τ :=
T/m. Using the splitting technique (for further reading see [105]) as described
in [60,61], we approximate V (x, t) in the correspondent discrete time model (4.1)
as follows. We have

V (x, tm) = (K − ex)+. (4.5)

For k = m− 1,m− 2, . . . , the numerical scheme includes three steps.

V1(x, tk+1) = exp

(
∆τ

2
(LG − r)

)
V (x, tk+1); (4.6)

V2(x, tk+1) = exp (∆τLJ)V1(x, tk+1); (4.7)

V (x, tk) = exp

(
∆τ

2
(LG − r)

)
V2(x, tk+1). (4.8)

Thus, instead of an unsteady PIDE, we obtain one PIDE with no drift and diffusion
(the second equation in (4.7) and two unsteady PDEs ((4.6) and (4.8)). Recall
that exp (τL) is the exponential operator, which acts exactly like the Taylor series
expansion of exp (τL) around τ = 0. Let ψG and ψJ be the Gaussian and jump
parts of the characteristic exponent ψ in (2.2). Hence, we have

LGu(x) = −ψG(−i∂x)u(x) =
σ2

2

∂2u

∂x2
(x) + µ

∂u

∂x
(x), (4.9)

LJu(x) = −ψJ(−i∂x)u(x). (4.10)

The steps (4.6)–(4.8) can be numerically implemented by using the finite differ-
ence method. Let ∇x denote the discrete analogue of ∂x obtained by discretizing
the finite difference of ∂x in the space grid x = {xl}. Consequently, let us define
the matrix AG = −ψG(−i∇x) and AJ = −ψJ(−i∇x) to be the discrete analogues
of the operators LG and LJ , respectively.
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Let A be a matrix that represents a differential or jump operator. It follows
from [61] that the finite difference scheme

V (x, t) = exp (∆τA)V (x, t+ ∆τ)

is unconditionally stable in time τ and preserves the non-negativity of the vector
V (x, t) if there exists a M -matrix B such that ∆τA = −B, where τ is the time step
of the scheme. Once the discretization is performed, we need to compute a matrix
exponential exp (∆τA), and then a product of this exponential with V (x, t+ ∆τ).

This statement gives us a recipe for the construction of the appropriate dis-
cretization of the operators LG and LJ . Notice that (4.6) and (4.8) can be reduced
to implicit finite difference schemes(

1 +
∆τ

2
(r −AG)

)
V1(x, tk+1) = V (x, tk+1); (4.11)(

1 +
∆τ

2
(r −AG)

)
V (x, tk) = V2(x, tk+1); (4.12)

Since a constant time step is used for computations, the matrix exp (∆τAJ) can
be precomputed once the space grid.

In order to reach the unconditional stability of the finite difference scheme in
time τ in (4.11)-(4.12), we need to approximate ∂2

x using the central difference
and choose an approximation for the first spatial derivative depending on the drift
sign. If µ > 0, we use the forward differences; otherwise, we use the backward
ones.

Let AG = (dij) and h be the uniform space step. In the case of tempered stable
Lévy models (see Example 1), σ = 0, therefore, we need to approximate in LG
only the first spatial derivative. In particular, if µ > 0, we set

di,i = 1 + µ
∆τ

2h
+ r

∆τ

2
;

di,i+1 = −µ∆τ

2h
;

di,i+j = 0, j 6= 0, j 6= 1;

otherwise, we set

di,i = 1− µ∆τ

2h
+ r

∆τ

2
;

di,i−1 = µ
∆τ

2h
;

di,i+j = 0, j 6= 0, j 6= −1;

Consider a finite difference approximation for LJ in the case of ν± ∈ (0, 1). .
We represent the correspondent matrix AJ as follows

AJ = c+Γ(−ν+)[(λ+I+AB)ν+ −λν+

+ I] + c−Γ(−ν−)[(−λ−I−AF )ν− − (−λ−)ν−I],
(4.13)

where AB and AF are the backward and forward first order differences, respec-
tively. It can be shown that AJ is the negative of an M -matrix and gives a O(h)
approximation of the operator LJ .
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Calculating a real power of a matrix Aν by definition uses the formula Aν =
exp(ν lnA), which involves the implementation of exponential matrix and loga-
rithmic matrix functions and can be computationally expensive.

5. Wiener-Hopf factorization methods

5.1. The Wiener-Hopf factorization. A property that is common to all Lévy
processes is the so-called Wiener-Hopf factorization. There are several forms of
Wiener-Hopf factorization. Suppose that for any q > 0, Tq ∼ Exp q is an indepen-
dent of X exponentially distributed random variable with mean q−1. Recall that
Xt = sups≤tXs and let Xt := infs≤tXs. The following useful relations hold for
any t > 0 (see [113]):

X̄t
d∼ Xt −Xt (5.1)

Xt
d∼ Xt − X̄t. (5.2)

Here, we use the notation
d∼ to mean equality in distribution.

It follows that the random variables XTq
and XTq

−XTq
are independent and

XTq −XTq is of the same distribution as XTq
.

The Wiener-Hopf factorization formula used in probability reads:

E[eiξXTq ] = E[eiξX̄Tq ]E[e
iξXTq ], ∀ ξ ∈ R. (5.3)

Equivalently,

XTq

d∼ Sq + Iq, (5.4)

where Sq and Iq are independent and equal in distribution to XTq
and XTq

,
respectively.

Introducing the notation

φ+
q (ξ) = qE

[∫ ∞
0

e−qteiξX̄tdt

]
= E

[
eiξX̄Tq

]
,

φ−q (ξ) = qE

[∫ ∞
0

e−qteiξXtdt

]
= E

[
e
iξXTq

]
we can rewrite (5.3) as

q

q + ψ(ξ)
= φ+

q (ξ)φ−q (ξ). (5.5)

Introduce the normalized resolvent of X or the expected present value operator
(EPV–operator) under X. The name of the latter operator was suggested in [20]
due to the observation that, for a stream g(Xt),

Eqg(x) = E

[∫ +∞

0

qe−qtg(Xt)dt | X0 = x

]
. (5.6)

Replacing in (5.6) process X with the supremum and infimum processes X̄ and
X, we obtain the EPV operators E±q under the supremum and infimum process.
Equivalently,

E+
q u(x) = E[u(x+ X̄Tq

)], E−q u(x) = E[u(x+XTq
)]. (5.7)
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Hence, Eq and E±q admit interpretation as expectation operators:

Eqg(x) =

∫ +∞

−∞
g(x+ y)Pq(dy), E±q g(x) =

∫ +∞

−∞
g(x+ y)P±q (dy),

where Pq(dy), P±q (dy) are probability distributions with the characteristic func-

tions q(q + ψ(ξ))−1 and φ±q (ξ), respectively. Notice that

P±q (y) = 0, ∀ ± y < 0.

5.2. Overview of approximate Wiener–Hopf factorization methods. The
Wiener-Hopf method is a general tool for solving integrodifferential equations with
convolution-type kernels on a half-line. In application to finance, as we men-
tioned above, the Wiener-Hopf method was widely used to solve 2-dimensional
initial boundary value problems for pricing path-dependent options under Lévy
processes. However, in the case of general Lévy models, the Wiener-Hopf factors
are not available in a closed form and should be approximated by using special
numerical tricks. In particular, an approximate Wiener-Hopf factorization was
suggested in [87] as the main ingredient of the fast, accurate and universal nu-
merical method for pricing barrier options under Lévy models. We will refer to
that method as “The Fast Wiener-Hopf factorization method” (FWHF method).
In [81] the approximate factorization was generalized; convergence of the method
was accelerated. Alternative methods that use various approximate techniques for
Wiener-Hopf factorization can be found in [15,17,37,42,96,97,108] among others.

In [87], a fast and accurate numerical method was developed to price barrier
options in a broad class of Lévy processes by using an efficient approximation
of the Wiener–Hopf factors in the exact formula for the solution. In contrast
to finite difference schemes, where the method’s application involves a detailed
analysis of the underlying Lévy model, the FWHF method deals with the process’s
characteristic exponent. The method starts with discretization of time, which
can be interpreted as Carr’s randomization (see [24]). A sequence of stationary
boundary problems for a PDO on the line results. Each problem is solved by using
the Wiener–Hopf approach.

The methods developed in [79, 81, 82] generalize and enhance the approach of
approximate factorization introduced in [87]. The author of the papers prove the
convergence of Carr’s randomization for different types of option and suggest an
acceleration of the method convergence. The enhanced methods can be applied
to pricing options with barrier and look-back features under broad classes of Lévy
processes.

The idea behind the approaches in [79, 81] is to transform the problem to a
space where the solution is relatively easy to obtain by using the FWHF method.
Apart from particular cases where an explicit expression gives the Laplace trans-
form, one can apply the methods developed in the paper for the general case.
The Laplace transform maps the generalized Black–Scholes equation with the ap-
propriate boundary conditions into the one-dimensional problem on the half-line,
parametrically dependent on the transform parameter.

The first approach (see, e.g., [79]) is based on the Post–Widder formula. Find
the nth derivative of the transformed function at the value of the specific transform
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parameter by using an iterative procedure, which is simply Carr’s randomization
in the FWHF method. Repeat the operation several times for different values of
n and apply the convergence acceleration algorithm of [1].

In the second approach (see, e.g. [81]), we solve the problems obtained using
the FWHF-method at real positive values of the transform parameter specified by
the Gaver–Stehfest algorithm (see, e.g. [1]). Then the option prices are recovered
via the numerical inversion formula.

In the recent paper [88], a new simple approximate Wiener–Hopf factorization
method was developed. The new approach can be applied to pricing barrier op-
tions under pure non-Gaussian Lévy models with jumps of finite variation (2.5).
The key idea of the method is to represent an Lévy process as a difference of
two subordinators (increasing Lévy processes). Applying such a splitting rule to
the process at exponentially distributed randomized time moments, we can find
the option price by solving a cascade of simple Wiener–Hopf equations explicitly.
We will refer to the mentioned simplified approximate Wiener–Hopf factorization
method as the SWHF-method.

In the next Subsection, we consider details of the SWHF-method to pricing
barrier options under Lévy processes.

5.3. A simplified Wiener–Hopf factorization method. Let T,K,H be ma-
turity, strike and barrier, and the price of the stock St = S0e

Xt under a chosen
risk neutral measure (see (2.8)) is an exponential Lévy process that has no dif-
fusion component (σ = 0) and only jumps of finite variation (see (2.5)). As a
basic example to illustrate our method, we consider pricing continuously moni-
tored down-and-out put options without rebate under the Tempered Stable Lévy
model with jumps of finite variation (see Example 2.1). This implies that the
parameters ν+ and ν− which characterize the activity of jumps should satisfy the
following inequalities:

0 < ν+ < 1, 0 < ν− < 1. (5.8)

The risk-free rate r and the dividend rate d are assumed to be constant. Set
h = lnH/S0.

Consider the no-arbitrage price of the barrier option at the beginning of a period
under consideration (t = 0), see e.g. [87])

V (T, x) = Ex
[
e−rTG(XT )1XT>h

]
, (5.9)

where T is the final date, and G(x) = (K−S0e
x)+ is the payoff at time T . Short-

hand notation Ex[·] means that we take the expectation conditioned on the event
X0 = X0 = X̄0 = x.

The following theorem follows from the results of [88] and justifies the iterative
numerical scheme to calculate V (T, x).

Theorem 5.1. Let N be a positive integer. For q > 0 and n = 1, 2, . . . , N , we
define the the following sequence of functions

Vn(q, x) =
1

(1 + r/q)
Ex[Vn−1(q,XTq+r

)1XTq+r
>h], (5.10)

where V0(q, x) = G(x). Then vN (N/T, x) converges to V (T, x) defined by (5.9) as
N → +∞.
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Proof. Denote by V̂ (q, x) the Laplace transform of V (T, x) w.r.t. T . Applying

Fubini’s theorem, we obtain that V̂ (q, x) is the discounted expected value of the
payoff function G(Xt)1Xt>h

at exponentially distributed time Tq+r:

V̂ (q, x) =

∫ +∞

0

e−qtEx
[
e−rtG(Xt)1Xt>h

]
dt

= Ex
[∫ +∞

0

e−(q+r)tG(Xt)1Xt>h
dt

]
(5.11)

=
1

q + r
Ex
[
G(XTq+r

)1XTq+r
>h

]
. (5.12)

Differentiating n − 1 times the expression (5.11) w.r.t q and multiplying it by
(−1)n−1qn

(n−1)! , we obtain

vn(q, x) :=
(−1)n−1qn

(n− 1)!
∂n−1
q V̂ (q, x) (5.13)

=
qn

(n− 1)!

∫ +∞

0

tn−1e−(q+r)tEx
[
G(Xt)1Xt>h

]
dt

=
1

(1 + r/q)n
Ex[G(XΓ(n,q+r))1XΓ(n,q+r)>h

], (5.14)

where Γ(n, q) is a Gamma random variable with the shape parameter n > 0 and
the rate parameter q > 0.

Using the relation Γ(n, q) ∼ Γ(n− 1, q) + Tq, and taking into account that

1XΓ(n,q+r)>h
= 1XTq+r

+XΓ(n−1,q+r)>h
1XTq+r

>h,

we conclude that for n = 1, 2, . . .

vn(q, x) =
1

(1 + r/q)
Ex[vn−1(q,XTq+r )1XTq+r

>h], (5.15)

where v0(q, x) = G(x). Comparing (5.10) and (5.15), we see that the sequences
{Vn} and {vn} coincide.

If f(t) is a non-negative function of a real variable t, and it’s Laplace transform
Lf(q) =

∫∞
0
e−qtf(t) dt, is known, then the approximate Post-Widder formula for

f(t) reads as follows (see e.g. [2])

f(t) = lim
N→∞

fN (t); (5.16)

fN (t) :=
(−1)N

N !

(
N

t

)N+1

Lf (N)

(
N

t

)
,

where Lf (N)(q) – Nth derivative of f̃ at the point q.
Hence, we see that due to the Post-Widder formula, for a fixed x, vN (N/T, x)

converges to V (T, x) as N → +∞. �

The procedure (5.15) with q = N/T is equivalent to Carr’s randomization,
introduced in [24] for the case of American call options. Later, it was generalized
to a wider class of stochastic control problems in the paper [13]. In [16, 87] the
technique was successfully used to price barrier options in Lévy models. The proofs
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of the convergence of Carr randomization in the case of similar problems for Lévy
processes are presented in [79, 95]. Notice that in [88] the different technique was
applied.

The state-of-the-art implementation of the Wiener-Hopf method in option pric-
ing (see, e.g. [16,87,96,108]) leads to factorization (5.5) of (q + r)/(q + r + ψ(ξ)),
where ψ(ξ) is the characteristic exponent of the Lévy process Xt. Then using (5.1)-
(5.2) and (5.7) one can calculate the sequence (5.15) with q = N/T as follows: for
n = 1, . . . , N

vn(q, x) =

1

(1 + r/q)
E[vn−1(q, (x+XTq+r −XTq+r

) +XTq+r
)1x+XTq+r

>h]

=
1

(1 + r/q)
E−q+r1(h,+∞)E+

q+rvn−1(q, x). (5.17)

Alternatively, we can calculate the Laplace transform V̂ (q, x) using the formula
(5.12) similar to (5.17) at a number of points q specified by a numerical algorithm
of Laplace transform inversion:

V̂ (q, x) =
1

(q + r)
E−q+r1(h,+∞)E+

q+rG(x). (5.18)

Then we can recover V (T, x) from (5.18) using the inversion algorithm chosen.
Let the characteristic exponent ψ(ξ) of the Tempered Stable Lévy model Xt

be defined by (2.12) and let the parameters ν± satisfy (5.8). The new approach
to calculating (5.15) requires the following steps. First, we represent Xt as a
difference between two subordinators X+

t and −X−t :

Xt = X+
t − (−X−t ).

Recall that a subordinator is a Lévy process with sample paths being almost
surely non-decreasing. According to [27, Proposition 3.10], a subordinator has no
diffusion component, only positive jumps of finite variation and non-negative drift.
X+
t and X−t are Lévy processes with the characteristic exponent ψ+(ξ) and

ψ−(ξ), respectively. If µ ≥ 0 we define ψ+(ξ) and ψ−(ξ) as follows

ψ+(ξ) = −iµξ + c+Γ(−ν+)[λ
ν+

+ − (λ+ + iξ)ν+ ],

ψ−(ξ) = c−Γ(−ν−)[(−λ−)ν− − (−λ− − iξ)ν− ],

otherwise

ψ+(ξ) = c+Γ(−ν+)[λ
ν+

+ − (λ+ + iξ)ν+ ],

ψ−(ξ) = −iµξ + c−Γ(−ν−)[(−λ−)ν− − (−λ− − iξ)ν− ].

Notice that X−t almost surely has nonincreasing sample paths. Hence we have
that

X̄+
t = X+

t , (5.19)

X−t = X−t . (5.20)
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Second, we approximation XTq+r
in (5.15) as subsequent movements: upward

by X+,1
Tq+r/2

, then downward by X−,1Tq+r
, and finally upward by X+,2

Tq+r/2
. where X+,1

t ,

X−,1t , X+,2
t are independent, X−,1t

d∼ X−t , and X+,1
t , X+,2

t
d∼ X+

t .
This representation can be considered as similar to the operator splitting method

suggested in [62] where the backward jump-diffusion PIDE for option prices is
solved by splitting the related operator into differential and jump parts. Details
of the approach are presented in Section 4.2.

Then we may approximate 1x+XTq+r
>h with 1x>h1X+,1

Tq+r/2
+X−,1

Tq+r
>h.

Notice that Tq+r/2 is also an exponentially distributed random variable, but
with the intensity parameter equal to 2(q + r).

Introduce the following operators:

E+
2(q+r)u(x) = E[u(x+ X̄+

Tq+r/2
)], (5.21)

E−q+ru(x) = E[u(x+X−Tq+r
)]. (5.22)

Set

φ+
2(q+r)(ξ) =

2(q + r)

2(q + r) + ψ+(ξ))
, (5.23)

φ−q+r(ξ) =
q + r

q + r + ψ−(ξ))
. (5.24)

Taking into account (5.19)-(5.20), we can rewrite the operators E+ and E− in
(5.21)-(5.22) with symbols (5.23)-(5.24) as follows

E+
2(q+r)u(x) = E[u(x+X+

T2(q+r)
)] = F−1

ξ→xφ
+
2(q+r)Fx→ξu(x),

E−q+ru(x) = E[u(x+X−Tq+r
)] = F−1

ξ→xφ
−
q+rFx→ξu(x).

Now, we may approximate vn(q, x) in (5.15)

vn(q, x) =

1

(1 + r/q)
E[vn−1(q, x+X+,1

Tq+r/2
+X−,1Tq+r

+X+,2
Tq+r/2

)1x+XTq+r
>h]

≈ 1

(1 + r/q)
1(h,+∞)E+

2(q+r)E
−
q+r1(h,+∞)E+

2(q+r)vn−1(q, x). (5.25)

For technical details on the derivation of (5.25), we refer the reader to [88].
EPV operators E− and E+ can be efficiently implemented using the fast Fourier

transform (FFT) for functions with real value. Recall that the discrete Fourier
transform (DFT) is defined by

Fl = DFT [f ](l) =

M−1∑
k=0

fke
2πikl/M , l = 0, ...,M − 1.

The inverse DFT recovers the set of fk’s exactly from Gl’s. The correspondent
formula reads:

fk = iDFT [F ](k) =
1

M

M−1∑
l=0

Fle
−2πikl/M , k = 0, ...,M − 1.
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If the data consist of a real-valued array {fk}Mk=0, then the resulting transform
satisfies FM−l = F̄l. Since F0 and FM/2 are real, the transformed complex-valued
array has the same “degrees of freedom” as the original real data set {fl}. In this
case, it is efficient to use the FFT algorithm for real-valued functions (see [109] for
technical details). To distinguish DFT of real functions we will use the notation
RDFT.

Fix the spatial step h > 0 and the number of space points M = 2m. Define
the partitions of the normalized log-price domain [−Mh

2 ; Mh
2 ) by points xk =

−Mh
2 +kh, k = 0, ...,M−1, and the frequency domain [−πh ; πh ] by points ξl = 2πl

hM ,
l = −M/2, ...,M/2. Then the Fourier transform of a function u on the real line
can be approximated as follows:

û(ξl) ≈ h(−1)lRDFT [u](l), l = 0, ...,M/2.

Here and below, z denotes the complex conjugate of z. Using the notation (5.23)-
(5.24), we can approximate E± as follows:

(E±u)(xk) = iRDFT [φ±. ∗RDFT [u]](k), k = 0, ...,M − 1,

where .∗ is the element-wise multiplication of arrays that represent the functions.
The main parameters of the algorithm for evaluating the function V (T, x) is

the number of time steps N , the step h of the mesh and the localization interval
(−L ln(2);L ln(2)), where L is the scaling factor (for more details about the choice
of the corresponding parameters of the algorithm, see [81], [87]).

We will refer to the method developed as “The simplified Wiener-Hopf factor-
ization method” (SWHF method); see details in [88].

If in the cross-barrier event, the down-and-out option provides the rebate R > 0
to the holders, one can represent vn(q, x) as un(q, x) +R and adjust the algorithm
accordingly.

6. Monte Carlo methods

6.1. Overview of Monte Carlo methods: standard and advanced ap-
proaches. Monte Carlo methods are well known to perform well to price path-
dependent options in jump-diffusion models when jump activity is finite. In this
case, one can control the behavior of the process between the jump times when the
log price follows a Browning bridge process (for details, see [107] or [27]). In the
infinite activity case, Monte Carlo methods are much less accurate and more time-
consuming. Evaluation of American option prices by Monte Carlo simulation faces
additional difficulties: it involves the computation of conditional expectations, see,
e.g., [102]. The reader can find an overview of Monte Carlo-based methods for op-
tion pricing under Lévy processes in [7, 12, 14, 45, 94]. Generally, Monte Carlo
methods consume much more time than other numerical methods.

Recent developments in advanced Monte Carlo techniques in the framework
of traditional computational mathematics can be found in [10, 22, 40, 41, 82, 92].
The authors of [92] suggest a more effective method for simulating the joint dis-
tribution of the terminal position of the Lévy process and its supremum. Their
approach involves randomizing the time to expiry and representing it as a sum of
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independent and identically distributed exponential random variables. At random-
ized time points, Wiener–Hopf factorization is applied to determine the positions
of the supremum and infimum and then construct the desired joint distribution.
However, one can only apply this approach to a limited class of models that admit
an explicit factorization (the Black–Scholes model, Kou [77], β-class of Lévy pro-
cesses [91]). On the other hand, [82] shows that many time steps are still needed to
achieve good computational accuracy. In the papers [40] and [41], the method [92]
was improved using the multilevel Monte Carlo algorithm. The article [82] sug-
gests a theoretical basis for a general approach to the construction of Monte Carlo
methods to price exotic options under a broad class of Lévy processes.

6.2. Approximate Wiener–Hopf factorization Monte Carlo method. It
is shown in [82] that the Monte Carlo method constructed in [92] admits an inter-
pretation as the Laplace transform inversion with the Post–Widder formula (5.16),
where N is the number of independent and identically distributed exponential ran-
dom variables whose sum approximates the time to expiration T . It is well known
(see [2]) that convergence in the Post–Widder formula fN (τ) to f(τ) is rather slow
– O(N−1).

The paper [82] proposes two generalized approaches to construct the Monte
Carlo method for general Lévy models that do not admit explicit Wiener–Hopf
factorization.

The first uses, as in [92], the randomization of time, but the simulation of
the supremum and infimum processes at exponentially distributed moments is
based on the inversion of their cumulative distribution functions. The latter can
be estimated with approximate Wiener–Hopf factorization formulas for one-touch
options (see, e.g., [81]).

The second approach developed in [82] involves a direct simulation of the ter-
minal values of the infimum (supremum) process. It will be more efficient in
calculating the expected payoff value, which depends on the maximum or min-
imum process. Using the second approach, we do not need to divide a sample
path of the Lévy process into parts (for example, for lookback options with fixed
or floating strikes). The method provides an efficient estimate of the joint distri-
bution function of the values of the supremum and infimum processes at a given
time. One can also use this approach to simulate the joint distribution of the Lévy
process’s terminal position and the corresponding supremum (infimum) process.

Let X̃ be a random variable identically distributed with XT , and F−(x) =

P(X̃ < x), p− = d
dxF−(x) stand for the cumulative distribution function (cdf)

and the probability distribution function (pdf) of X̃, respectively. If F−(x) is
continuous, then

F−(x) =

∫ x

−∞
p−(y)dy, x ≤ 0. (6.1)

If the variable X is continuous, then the cumulative distribution function F−
has an inverse F−1

− : (0, 1) → R. Once we have approximated the c.d.f. F−, we

may simulate X̃ by using samples from F−1
− (U), where U is a uniform distribution

on (0, 1). To approximate F−1
− (U) with the p.d.f. supported on a half-line, we

choose a uniformly spaced grid x0, . . . , xM ∈ R subject to conditions F−(x0) < ε,
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xM = 0 (since p− is supported at a subset of (−∞, 0]), where ε is the desired
precision. Then for arbitrary u ∈ (0, 1), we define F−1

− (u) using linear or quadratic
interpolation.

If the probability density p− is known, one can apply a quadrature rule to (6.1)
to numerically compute the c.d.f. F−. However, in the case of infinitely divisible
distributions, explicit analytical formulas for the p.d.f. are not available as a rule.
To recover the p.d.f. p−, one can use approximate Wiener-Hopf factorization
formulas for the characteristic function φ−XT

(ξ) (see, e.g. [81,82]). Recall that the

p.d.f. p−(x) can be expressed in terms of the characteristic function φ−XT
(ξ), by

using the Fourier transform

p−(x) = (2π)−1

∫ +∞

−∞
e−ixξφ−XT

(ξ)dξ. (6.2)

The formula (6.2) as well as (3.2) can be efficiently implemented by employing
the FFT algorithm. The approximation of the cdf of XTT

is treated analogously.

6.3. Approximate Wiener–Hopf factorization Monte Carlo method. Let
us consider the algorithm of the approximate Wiener–Hopf factorization Monte
Carlo (AWHF&MC method) method for the case of seasoned European lookback
options developed in [85]. Let the stock price St = eXt be an exponential Lévy
model. A seasoned European floating strike lookback put is defined as follows:

V (T1, T2;S,H) = ET1

[
e−r(T2−T1)(eX̄T2 − eXT2 )|XT1

= logS, X̄T1
= logH

]
,

where S is a spot price at time T1, H(= Seh) is a predefined maximum.
Set T = T2−T1. Then the option and can be priced as the function V (T, S, h):

V (T, S, h) = E
[
e−rTS(emax{X̄T ,h} − eXT )]. (6.3)

Notice that due to (2.8),

E
[
e−rT eXT

]
= 1.

Hence, we may efficiently apply the AWHF&MC method to (6.3) to simulate X̄T

directly.
Let F+(x, T ) = P(X̄T < x) be the cdf’s of X̄T . Applying the Laplace transform

L with respect to time T to F+(−x, T ) = P(x+ X̄T < 0), we have, for x ≤ 0,

F̂+(x, q) := LF+(−x, ·) = q−1E
[
1(−∞,0)(x+ X̄Tq

)
]
. (6.4)

Then we apply the algorithm of the AWHF&MC method as follows:

• input a set of stock prices S1, S2, ..., SL and fix the number n of sample
paths;
• use the method of approximate factorization (see [81,82,85] or Section 5.3)

to estimate the characteristic function φ+
q (ξ);

• define a fine uniform mesh {xj} in the log-price space;
• evaluate the function

F̂+(xj , qk) = q−1
k E

+
qk

1(−∞,0)(xj), xj ≤ 0

at points qk, as specified by the Gaver–Stehfest algorithm or the Post–
Widder formula (5.16);
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• recover the c.d.f. F+(xj , T ) using a numerical algorithm of Laplace trans-
form inversion (the Gaver–Stehfest algorithm, the Post–Widder formula,
or others);
• simulate X(i), i = 1, ..., n, from the law X̄T , using F−1

+ (U, T ), where U
is an independent uniform distribution on (0, 1) (see details in Subsection
6.1;

• calculate the values Sje
max{X(i),h}, j = 1, ..., L;

• find an estimate to V (T, Sj , h) as e−rT
(

1
n

∑
k Sje

max{X(i),h} − Sj
)

.

Numerical experiments [81] show that functions similar to F+(x, T ) can be
evaluated on a fine uniform mesh in fractions of a second.

The algorithm of the AWHF&MC method for pricing options whose pay-off
depends on the terminal value of the infimum process can be written analogously.
The values of X̄T are simulated on the same mesh on which the probabilities were
evaluated; here, we can consider only those xj such that F+(xj , T ) ≤ 1− 1/N .

Note that by simulating XT , X̄T , we simultaneously simulate SeXT , SeX̄T for
any spot price S. The key advantage of this approach over the modifications of
the methods from [92] and the standard Monte Carlo methods is that the former
does not require simulation of the path of the process’s extrema by splitting it into
parts.

7. Hybrid methods: machine learning and standard numerical
methods

7.1. Machine learning in finance. Feedforward neural networks (FF) are a
form of supervised machine learning that uses hierarchical layers of abstraction
to represent high-dimensional, nonlinear predictors. These networks are quite
straightforward as they feed information from the front to the back, i.e., input and
output, respectively. A simple example of the architecture of the neural network
of the FF can be found in Figure 1.

The primary decision-making units of neural networks are activation functions.
Therefore, it is critical to choose the most appropriate activation function. The
chosen activation function has to be (piecewise) differentiable, since the backprop-
agation algorithm [112] uses the derivatives of the activation function.

Further, we give the list of commomnly used activation functions:

• Step function

φ(x) =

{
1, x > 0;

0, x ≤ 0.

• Linear activation function:

φ(x) = ax+ b, a ∈ R.

• Sigmoid activation function:

φ(x) =
1

1 + e−x
.
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Figure 1. Simple network structure.

• Hyperbolic tangent activation function:

φ(x) = tanh(x) =
ex − e−x

ex + e−x
.

• Softsign activation function:

φ(x) =
x

1 + |x|
.

• Basic rectified linear unit (ReLU):

φ(x) = max(x, 0).

• Leaky (ReLU):

φ(x) = max(x, αx), 0 < α < 1.

• Softplus activation function:

φ(x) = ln(1 + ex).

The advances in machine learning and artificial intelligence are having a ma-
jor impact on the way researchers and engineers work in this field, and machine
learning models are increasingly being incorporated into computational finance.
In earlier applications, the researchers applied artificial neural networks and other
machine learning tools directly in almost any field of computational finance [34,51],
including asset price prediction [35,99], market calibration [33], and portfolio man-
agement [39,50]. The finance industry is increasingly dependent on computational
methods. One of the reasons that computer algorithms for learning called “ma-
chine learning” have been successful is that they can model complex and high-
dimensional data generation processes, operate through millions of model configu-
rations, and then quickly and robustly evaluate and correct the models in response
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to new information. This fact makes them a valuable instrument in addition to the
existing algorithms and established practices. However, machine learning methods
suffer from a lack of interpretability.

The idea that artificial neural networks can be efficiently used to solve model
calibration problems, which describe asset price behavior, is presented, e.g., in [57].
The approach proposed is as follows. After the appropriate model has been chosen,
the calibration problem essentially becomes a search for optimal model parameters,
in the sense that the optimal parameters can be used to minimize the value of an
error functional, which is interpreted as a distance between the historical market
prices and the prices generated by the model. With respect to ANNs, the idea
is to train the ANN using the available historical data and synthetic dataset,
if needed, replace the existing calibration method with the trained ANN, and
compare the results in terms of speed and accuracy. In some cases, a trained
ANN can outperform traditional calibration methods in speed by an order of
magnitude [57]. Among the drawbacks of this approach, there is low accuracy
when the training data set is not large enough and does not represent important
market patterns, the ability to generate jumps in continuous derivative pricing
models, and the need to specifically handle non-arbitrage conditions.

In [58], a special ANN is developed to predict the parameters of the Lévy process
and methods to increase the volume of training datasets. In papers [57,101] ANNs
are used for option price evaluation in Black-Scholes and Heston models.

7.2. Hybrid methods. In state-of-the-art machine learning approaches to op-
tion pricing, artificial neural networks are used as function approximators (see,
e.g. [49,54,58,101]). In particular, the authors of [54] apply supervised deep neural
networks to price vanilla and exotic options under the Lévy processes. The labeled
dataset for machine learning model training can be obtained via standard numer-
ical methods (Fast Fourier Transform algorithm using the characteristic function
of the log-price process, Monte Carlo simulations, etc.).

The theoretical background for using neural networks for functions approxima-
tion is given by the Kolmogorov–Arnold representation theorem [4, 75]. A naive
formulation of the result reads: If f is a multivariate continuous function, then f
can be written as a finite composition of continuous functions of a single variable
and the binary operation of addition. In [56] the authors show how neural net-
works with one hidden layer are universal approximators to nonlinear functions.
FF ANNs are often described as having layers in which each layer consists of in-
put, hidden, or output cells in parallel. Two adjacent layers are fully connected
(every neuron forms one layer with every neuron in another layer). The simplest,
somewhat practical network has two input cells and one output cell, which can be
used to model logic gates. The Kolmogorov-Arnold result gave the basis for devel-
oping the so-called universal approximation theorems that justify approximating
properties of neural networks of different architecture (see, e.g. [30, 56].

From a theoretical point of view, functions can be modeled using machine learn-
ing methods due to Cybenko’s theorem presented in [30]. According to this theo-
rem, a feedforward artificial neural network with one hidden layer and the same-
type sigmoidal activation functions can approximate any continuous function of
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multiple variables with any accuracy. This theorem belongs to the class of universal
approximation theorems that establish the approximation capabilities of different
neural networks (see also [55]). Let us reformulate this theorem (Theorem 2, [30])
for the simplest univariate case.

Theorem 7.1. Let s(x) be an arbitrary continuous sigmoidal function, and the
real numbers a, b be such that a < b. For a given ε > 0 and a given F (x) ∈ C[a, b]
there is a sum of the form

G(x) =

N∑
j=1

ωjs(αjx+ βj), ωj , αj , βj ∈ R, (7.1)

such that
|G(x)− F (x)| < ε, for all x ∈ [a, b]. (7.2)

On the other hand, artificial neural networks can be efficient in solving compu-
tational finance problems as an auxiliary ingredient of a numerical method that
deals with a repeatable typical part of the algorithm. Natural candidates for im-
plementing ANNs in this sense are Monte Carlo algorithms for pricing options.
Recall that from the probabilistic viewpoint, an option price is the expectation of
a certain pay-off function dependent on the modeling process final position and/or
its extrema. Concerning hybrid Monte Carlo methods Monte Carlo methods (i.e.
combined wialgorithms), we would like to mention the work [48], in which Gaussian
process regression was used to evaluate American options in multivariate Markov
and non-Markov models.

For example, using Theorem 7.1, we can approximate the cumulative distribu-
tion functions of continuous random variables with a simple ANN of the form (7.1)
in any closed interval. Since any increasing continuous sigmoidal function s(x) is
a cumulative distribution function itself, we expect that the number of terms in
(7.1) will be reasonable for such s(x).

The recent paper [47] studies the expression rates of deep learning neural net-
works with the ReLU activation function for pricing options written in baskets
of several risky assets whose logarithmic returns are modeled by a multivariate
Lévy process with a general correlation structure of jumps. As a particular case,
the pricing of the European option in the univariate exponential Lévy model is
considered.

In the article [115], deep learning neural networks are used to solve the Black-
Scholes equation by minimizing the highly nonlinear loss function defined as a
weighted sum of the L2-errors for the PDE and the boundary/initial conditions.
For standard activation functions, the derivatives in the loss function are eval-
uated by the automatic differentiation provided by the Tensorflow library. The
hybrid methods constructed in [47,115] combine neural networks and the P(I)DE
technique.

We briefly describe an example of the hybrid method that combines the approx-
imate Wiener-Hopf technique and ANNs for model calibration presented in [110].
The paper considers a method for calibrating a CGMY model by fitting the fre-
quencies of crossing a set of fixed barriers by the process associated with a cryp-
tocurrency rate to theoretical probabilities. Such probabilities can be interpreted

241



O. KUDRYAVTSEV, N. DANILOVA, AND A. GRECHKO

as prices of synthetic one-touch digital options. To prepare synthetic historical
data, one should generate the parameters of the CGMY model and calculate the
probabilities of crossing barriers as prices of one-touch digital options by using
the Wiener-Hopf factorization method developed in [81]. Hence, the commonly
used approach based on simulating random-walk trajectories is avoided, and the
computational time required to prepare synthetic data is avoided. The choice of
model and the technique for preparing the input data makes the approach signifi-
cantly different from similar research in the area [58,101]. As a result, a calibration
scheme is obtained that allows evaluating the risks of price movements above and
below certain defined levels.

The following theorem proved in [85] will allow us to simulate the supremum of
a Lévy process that has a continuous distribution.

Theorem 7.2. Let s(x) be an arbitrary sigmoid function. For any ε > 0, given
confidence level γ ∈ (0, 1) and given cdf F (x) jf continuous nonnegative random
variable X, there exists a finite sum.

G(u) =

N∑
j=1

ωjs(αju+ βj), ωj , αj , βj ∈ R, (7.3)

such that
Pr(|G(U)− F−1(U)| < ε) ≥ γ, (7.4)

where U – uniformly distributed on (0, 1).

Using Theorem 7.2, one can develop hybrid Monte Carlo methods that combine
fast computation of cdf and its approximation with ANN for fast simulation. How-
ever, as the numerical experiments in [85] show, an approximation of the inverse
function of a cdf with ANNs is involved rather than the approximation of the cdf
itself. The next theorems help to handle this problem.

In [84] a new probabilistic form of universal approximation theorems (similar
to [31,65]) is given.

Theorem 7.3. Let X be an arbitrary continuous random variable distributed on
[a, b], a < b. For a given ε > 0 and a given continuous random variable Y there is
a random variable of the form

Z =



α1Y1 + β1, with probability p1;

. . .

αjYj + βj , with probability pj ;

. . .

αNYN + βN , with probability pN ,

(7.5)

where Yj
d∼ Y are independent, pj > 0, αj > 0, βj ∈ R, such that

N∑
j=1

pj = 1; (7.6)

|FX(x)− FZ(x)| < ε, for all x ∈ R, (7.7)

FX(x) and FZ(x) are cdfs of X and Z, respectively.
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In the following theorem, the result of Theorem 7.3 is extended to the case of
an arbitrary continuous random variable X (see the proof in [84]).

Theorem 7.4. Let X be an arbitrary continuous random variable. For a given
ε > 0 and a given continuous random variable Y there is a random variable of the
form

Z =



α1Y1 + β1, with probability p1;

. . .

αjYj + βj , with probability pj ;

. . .

αNYN + βN , with probability pN ,

(7.8)

where Yj
d∼ Y are independent, pj > 0, αj > 0, βj ∈ R, such that

N∑
j=1

pj = 1; (7.9)

|FX(x)− FZ(x)| < ε, for all x ∈ R, (7.10)

FX(x) and FZ(x) are cdfs of X and Z, respectively.

Theorems 7.3 and 7.4 can be considered as universal approximation theorems
in probabilistic form. By using these theorems, we can develop hybrid Monte
Carlo methods combined with artificial neural networks. Thus, in practice, for a
given precision, we can approximate the cdf of a Lévy process with a monotonous
feedforward ANN with one input neuron, one output neuron, and one hidden layer
with N neurons and with the standard logistic function as an activation function.

As the required ANN is constructed, we may extract from its weight struc-
ture the probabilistic characteristics of each random component in the mix (7.8).
Therefore, we do not need an involved approximation of the inverse cdf with neural
networks as in straightforward approaches to hybrid Monte Carlo methods, but
just an inversion of the activation function that is known in explicit form. It makes
this approach rather more efficient.

The progress in computational power and open-access availability of special
libraries like Keras and Tensorflow made it possible to solve high-dimensional
problems of this kind numerically in a reasonable amount of time.

8. Conclusion

The review of modern numerical methods for solving contemporary computa-
tional finance problems shows the trend to develop hybrid approaches that combine
elements of different techniques. During the last 10 years, many efficient hybrid
numerical methods were designed for pricing various options under Lévy processes.
For instance, the combination of frame projection, integral transforms of chfs and
Toeplitz matrices computation (Subsection 3.2) led to a family of PROJ-methods
applied for a wide class of option pricing problems.
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The approximate Wiener-Hopf factorization methods described in Subsection
5.2 can be efficiently combined with Monte Carlo methods, as shown in Subsec-
tion 6.3. We also consider possible combinations of an approximate Wiener-Hopf
factorization with a frame projection method to be quite promising.

We consider a recently developed SWHF method [88] described in Subsection
5.3 as a prospective approach to pricing exotic options whose payoff depends on the
infimum or supremum of Lévy processes at expiry. Mixing the Wiener-Hopf fac-
torization method with splitting a Lévy process into positive and negative jumps
has made it easy to implement such a complex tool as the Wiener-Hopf factoriza-
tion for general Lévy models with jumps of finite variation. The key ideas of the
simplified Wiener-Hopf factorization can be extended in several directions. First,
the efficiency of the method can be improved by increasing the number of terms in
the splitting rule or changing the order of the ones. Second, the approach can be
extended to the problem of pricing double-barrier options and other exotic options
(the first steps in this direction can be found in [83]). Finally, the Wiener-Hopf
factorization procedure can be generalized for the case of general Lévy models
with jumps of infinite variation.

The most recent development in computational finance is related to incorporat-
ing machine learning tools into numerical methods. In particular, we considered
new approaches to designing hybrid Monte Carlo methods based on probabilistic
analogues of universal approximation theorems (see Theorems 7.3, 7.4). In partic-
ular, Theorems 7.3 and 7.4 show that any continuous infinitely divisible random
variable can be successfully approximated with a mix of logistic distributions or
other one-type continuous distributions. In contrast to a direct approximation of
the solution to the option pricing problem with neural networks, the approach
described in Subsection 7.2 admits a clear probabilistic interpretation. Note that
this method can be applied to Lévy processes whose increments have probability
density. It would be interesting to extend the results of Theorems 7.3, 7.4 (with
some modifications) to more general random variables.

Therefore, in the near future we can expect the development of hybrid numerical
methods with interpretable machine learning elements.
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towards simulation, J. Appl. Prob. 38 (2) (2001) 482–493.

244



SOLVING CONTEMPORARY COMPUTATIONAL FINANCE PROBLEMS

8. Avram, F., Chan, T., Usabel, M.: On the valuation of constant barrier options under
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Mathematics Research Developments, (2021) 33–81, Nova Science Publishers, Inc., New
York, USA.

111. Rothe, E.: Zweidimensionale parabolische Randwertaufgaben als Grenzfall eindimensinaler
Randwerttaufgaben, Math. Ann. 102 (5) (1930).

112. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by backpropagat-

ing errors, Nature 323 (6088) (1986) 533–536.
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