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Abstract. This work is devoted to the study of the existence and uniqueness

of soft solutions of the Cauchy problem for stochastic equations of a porous

medium with a fractional Laplacian and white noise. The required results are
obtained using the technique of stochastic analysis, fractional calculus and

the theory of non-linear semigroups. The regularity properties of solutions for

the generalized stochastic equation of a porous medium are also established.

1. Introduction

The stochastic porous medium equation (SPME) as a filtration model is encoun-
tered in the modeling of various phenomena, such as fluid dynamics, stochastic
underground hydrodynamics, astrophysics and statistical physics (see, for example,
[1-4] and detailed bibliography therein). When the fractional Laplacian (−4)α/2

is taken instead of the Laplace operator in SPME, a new mathematical model
arises to describe diffusion processes in fractal and disordered media of fluid flows
and the propagation of thermal waves in a porous medium.

In a number of works by A. de Pablo at all. [5-9] developed the theory of
existence and uniqueness for the equation of a porous medium with a fractional
Laplacian of the form{

∂u
∂t + (−4)α/2(|u|m−1u) = 0, x ∈ RN , t > 0,

u(x, 0) = u0(x), x ∈ RN ,
(1.1)

for the initial function u0(x) ∈ L1(RN ), fractional order α ∈ (0, 2), and porosity
index m > 0. The existence and uniqueness theorem for a weak solution is proved
for m ≤ m∗ = (N − α)/N on the basis of the L1-contracting semigroup theory.

Cycle of works V.Barbu at all. [10-12] is devoted to stochastic equations of a
porous medium in RN of the form{

du−4Ψ(u)dt = udW (t), x ∈ RN , t ∈ (0, T ),

u(x, 0) = u0(x), x ∈ RN ,
(1.2)
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where Ψ is a monotone nondecreasing function on R (possibly multivalued) and
W (t) is a Wiener process

W (t) =

∞∑
k=1

µkekβk, t ≥ 0. (1.3)

Here {βk}∞k=1 are independent Brownian motions given on the probability space
{Ω,F ,Ft,P}, µk ∈ R and {ek}∞k=1 is an orthonormal basis in fractional Sobolev

dual space Hα/2(RN ). The existence and uniqueness theorem was proved in [12]
under the additional Lipschitz property with respect to the function g. It is noted
that despite the limitations of generality (the g-Lipschitz property requirement),
there exist physical models described by such equations. For example, the two-
phase transient Stefan problem perturbed by Gaussian white noise is such a model.

We also note the work of D. Conus, D. Khoshnevisan [13] devoted to the Cauchy
problem for the nonlinear stochastic heat equation{

∂u
∂t = Ln+ σ(u)Ẇ (x, t), x ∈ RN , t ≥ 0,

u(x, 0) = u0(x),
(1.4)

where L is the generator of the Levy process {Xt}t≥0 with the Levy exponent Ψ
normalized so that

EeiξXt = e−tΨ(ξ)

for each ξ ∈ R and t ≥ 0;σ : R→ R is a Lipschitz-continuous function; Ẇ - white
noise in time and space; the initial function u0(x) is the Borel measure on R. It
is well known [14] that the fractional Laplacian in the one-dimensional case is the
infinitesimal generator of the stable Lévy process. The existence and uniqueness
theorem for a weak solution to problem (1.4) was proved in [13]. More precisely,
it was established that from the condition

δ(β) =
1

2π

∞∫
−∞

dξ

β + 2ReΨ(ξ)
<∞, β > 0

it follows that if u0 = µ is a Borel measure on R that satisfies the integrability
condition

∞∫
0

e−βsds sup
z∈R

(

∞∫
−∞

|η(dx)|(Psµ)(x− z)2) < 0, (1.5)

where Ps(µ) ∈ Bkβ,η is the Banach space of predictable processes with norm

Nk
β,η(z) = (

∞∫
0

e−βsdt sup
z∈R

∞∫
−∞

η(dx)‖Z(x− z, t)‖2k)1/2,

and ‖X‖K = {E(|X|k)}1/k for all k ∈ [1,∞), X ∈ Lk(p), then there is a unique
element u ∈ Bkβ,η such that u(x, t) almost sure satisfies the relation

u(x, t) = (Ptu0)(x) + (p̃ ∗ (σ ◦ u))Ẇ (x, t).
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Here ” ∗ ” denotes the space-time type of ”stochastic convolution” p̃ with mar-
tingale measure (σ ◦ u)Ẇ and p̃(x, t) = p(−x, t) for all x ∈ R. Such a solution
is not a random field. Most likely, it takes values in some space of generalized
functions.

In this paper, we consider the generalized stochastic equation of a porous
medium with a fractional Laplacian and multiplicative white noise

∂u

∂t
+ (−4)α/2(|u|m−1u) = g(u)Ẇ (t), x ∈ RN , t > 0, (1.6)

with initial condition

u(x, 0) = u0(x), x ∈ RN . (1.7)

The term on the right side of equation (1.6), i.e.

g(u)Ẇ (t) = g(u)
dW (t)

dt
, (1.8)

describes random noise W (t), t > 0 depending on the state of the system and is
L2(RN )-valued Ft-adapted Wiener process defined on the complete probability
space (Ω,F ,P) with expectation E and normal filtering Ft = σ(W (s) : 0 ≤ s ≤ t).
The operator (−4)α/2, α ∈ (0, 2) denotes the fractional power of the Laplacian
given on RN [6]. The number m > 0 is an indicator of the porosity of the medium.

The main contribution of the work is the establishment of properties of exis-
tence, uniqueness and regularity of soft (strong) solutions of fractional stochastic
equations of porous media. The obtained statements are generalizations of the
results of works [6-9], [11-14]. The article has the following structure. In the next
section, we introduce the Sobolev function spaces of integer and fractional orders
needed below and give a definition of a soft solution to problem (1.6)–(1.7). In
Section 3, fractional functional inequalities relevant for this work are presented.
Section 4 is devoted to the main results of the existence, uniqueness, and regularity
of solutions to problem (1.6)–(1.7).

2. Preliminaries

The fractional Laplace operator (−4)α/2, 0 < α < 2, is an infinitesimal gen-
erator of isotropic stable Lévy processes. Using the fractional diffusion operator
instead of the normal (standard) Laplace operator, we significantly expand the the-
ory of partial differential equations, taking into account the presence of interactions
with long tails. Let Z+ = {n ∈ Z, n ≥ 0} denote non-negative integers. Let the
multi-index α = (α1, ..., αn) ∈ Zn+ be composed of n non-negative integers αi ≥ 0.

For multi-indices α = (α1, ..., αn), define |α| =
n∑
i=1

di. If x = (x1, ..., xn) ∈ Rn and

α = (α1, ..., αn) ∈ Zn+ then the partial derivative of order |α| is defined as follows

Dα = ∂α = (
∂

∂x1
)α1 · · · ( ∂

∂xn
)αn =

∂|α|

∂xα1
1 · · · ∂x

αn
n
.

Let Ω ⊂ RN and C∞(Ω) be the space of infinitely differentiable functions in Ω,
i.e., set of functions with continuous partial derivatives of any order and C∞0 (Ω)
functions of class C∞(RN ) with compact support in Ω.

173



MAMADSHO ILOLOV, JAMSHED SH. RAHMATOV, AND SUHROB LASHKARBEKOV

Let u ∈ L1(Ω) be the space of integrable functions on Ω ⊂ Rn and α =
(α1, ..., αn) ∈ Zn+. We say that a function u has a weak derivative Dαu if there
exists a function v ∈ L1(Ω) such that∫

Ω

uDαϕdx = (−1)|α|
∫
Ω

vϕdx, ϕ ∈ C∞0 (Ω),

where v = Dαu.
Schwartz spaces S(RN ) are function spaces ψ ∈ C∞(RN ) such that

sup
x∈RN

|xα∂βxψ(x)| <∞∀α, β ∈ ZN+ .

If we take ϕ ∈ S, then for each N ∈ N and α ∈ ZN+ there exists a constant CN,α
such that

|Dαϕ(x)| ≤ CN,α
(1 + |x|2)N/2

,∀x ∈ RN .

Next, denote by S′(RN ) the space of temporary growing distributions on RN
and by H the space

H = {ϕ ∈ S′(RN ); ξ → |ξ|F(ϕ)(ξ) ∈ L2(RN )} (2.1)

where F is the Fourier transform of the function ϕ. Let L2(RN ) be the space of
square-integrated functions on R with norm | · | and inner product < ·, · >2. In
general, by | · |p we denote the norm in Lp(RN ) or Lp(RN ,RN ), 1 ≤ p < ∞. The
dual space H−1 for H is given by the equality

H−1 = {η ∈ S′(Rn); ξ → F(n)(ξ)|ξ|−1 ∈ L2(RN )}. (2.2)

The duality relation between H−1 and H denoted by < ·, · > is given by

< ϕ, η >=

∫
RN

F(ϕ)(ξ)F(η)(ξ)dξ, (2.3)

and the norm H denoted as ‖ · ‖1 is given as

‖ϕ‖1 = (

∫
RN

|F(ϕ)(ξ)|2|ξ|2dξ)1/2 = (

∫
RN

|∇ϕ|2dξ)1/2. (2.4)

The norm H−1 denoted as ‖ · ‖−1 is given as

‖η‖−1 = (

∫
RN

|ξ|2|F(η)(ξ)|2dξ)1/2 = (< (−4)−1η, η >)1/2. (2.5)

Note that the operator −4 is an isomorphism from H to H−1. The scalar
product on H−1 is defined as follows

(η1, η2)−1 =< (−4)−1η1, η2 > . (2.6)

Regarding the relation between H and Lp(RN ), the space of p - summable
functions on RN we have a next statement.
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Lemma 2.1. Let N ≥ 3. Then we have an inclusion

H ⊂ L
2N
N−2 (RN ) (2.7)

in both algebraic and topological sense.

Indeed, from the Sobolev embedding theorem [15] we obtain

|ϕ| 2N
N−2
≤ C|∇ϕ|2,∀ϕ ∈ C∞0 (RN ),

and, based on the density properties, (2.7) follows from this.
It should be noted that (2.7) does not hold for 1 ≤ N ≤ 2. However, due to the

duality relation, we have

L
2N
N−2 (RN ) ⊂ H−1,∀N ≥ 3. (2.8)

Denote by H ′(RN ) the Sobolev space

H1(RN ) = {u ∈ L2(RN );∇u ∈ L2(RN )} =

= {u ∈ L2(RN ); ξ → F(u)(ξ)(1 + |ξ|2)1/2 ∈ L2(RN )}
with the norm

|u|H−1(RN ) = (

∫
RN

(u2 + |∇u|2)dξ)1/2 = (

∫
RN

|Fu(ξ)|2(1 + |ξ|2)dξ)1/2

and H−1(RN ) denoted by | · |−1 and its inner product < ·, · >−1.
There are continuous and dense embeddings

H1(RN ) ⊂ H,H−1 ⊂ H−1(RN ).

It should be emphasized, however, that H is not a subspace of L2(RN ) and thus
L2(RN ) is the corresponding space with respect to the duality < ·, · > given by
(2.3).

Taking the Banach space Y , denote by L2(0, T, Y ) the space of all Y - valued
Bochner measurable p-integrable functions on (0, T ) and by C([0, T ], Y ) is the
space of all continuous Y -valued functions on [0, T ].

For two Hilbert spaces H1, H2 let L(H1, H2) and L2(H1, H2) denote sets of all
linear bounded operators and Hilbert-Schmidt operators, respectively.

3. Fractional equation of a porous medium (FEPM). Deterministic
case

In this section, we present the necessary information about the existence and
uniqueness of solutions to nonlinear diffusion equations for a porous medium with
a fractional Laplacian.

Consider the Cauchy problem of the form

∂u

∂t
+ (−4)α/2(|u|m−1u) = f, x ∈ RN , t > 0 (3.1)

u(x, 0) = u0(x), x ∈ RN
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where f ∈ H−1, u0(x) ∈ L1(RN ) and the unknown function u can be any sign.
We will assume that the fractional degree is α ∈ (0, 2), the degree of porosity is
m > 1. In the limiting case α→ 1 we obtain the standard FEPM

∂u

∂t
−4(|u|m−1u) = f

which is the main model for nonlinear and degenerate diffusion (see, for example,
[5] and the detailed bibliography therein).

The nonlocal operator (−4)α/2 known as the Laplacian of order α is defined
for any function g from the Schwartz class via the Fourier transform.

If

(−4)α/2g = h,

then

ĥ(ξ) = |ξ|αĝ(ξ). (3.2)

If 0 < α < 2, then we can also use the representation in the sense of the
hypersingular kernel

(−4)α/2g(x) = CN,αP · V ·
∫
RN

g(x)− g(z)

|x− z|N+α
dz,

where CN,α = 2α−1αΓ((N+α)/2)
πN/2Γ(1−α/2)

[7].

An equation of the form (3.1) can be considered as a fractional-diffusion version
of the FEPM. At the same time, equations of this kind can be considered as a non-
linear version of linear fractional diffusion equations obtained for m = 1, which
have the following solution representation

u(x, t) =

∫
RN

Kα(x− z, t)f(z)dz, (3.3)

where Kα has the Fourier transform K̂α(ξ, t) = e−|ξ|
αt. This means that the Kα

kernel has the form

Kα(x, t) = tN/αF (|x|t−1/α)

for some profile positive and decreasing function F that behaves at infinity ac-
cording to the rule

F (r) ∼ r−(N+α).

When α = 1, F is defined explicitly, if α = 2 then the function K will be the
Gaussian heat kernel. The linear model has been well studied from the standpoint
of probability theory, since the fractional Laplacian is an infinitesimal generator
of stable Lévy processes [7]. However, integral representations of the type (3.3) do
not exist in the nonlinear case. This is the main motivation for our work.

Note that in the case of FEPM, a theory of the existence and uniqueness of a
weak solution is developed in the case when the degree of porosity m is greater
than the critical value m∗ = (N − α)/N, 0 < α < 2. The linear case m = 1 also
fits into the framework of this theory.
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Theorem 3.1. Let m > m∗ and α ∈ (0, 2). For each f ∈ H−1 and each u0 ∈
L1(RN ) there exists a unique weak solution to problem (3.1 ).

The exact definition of a unique weak solution will be given below. The con-
struction of the solution indicated in Theorem 3.1 will be based on the double
limit procedure. First, an initial function from L2(RN ) is approximated by a se-
quence of bounded functions, and then RN is approximated by bounded domains
with zero boundary data. In this connection, we will show the existence of a weak
solution to the associated Cauchy-Dirichlet problem.

In the case of the homogeneous problem (3.1) (that is, f = 0), the layer solution
has some good qualitative properties, which are stated in the following statement.

Theorem 3.2. Let the conditions of Theorem 3.1 be satisfied and let u be a weak
solution of Problem 3.1 for f = 0. Then

(i) ∂tu ∈ L∞C(T,∞), L1(RN ) for each T > 0;
(ii) Mass is conserved:∫

RN

u(x, t)dx =

∫
RN

u0(x)dx for all t ≥ 0;

(iii) Let u1, u1 be weak solutions to problem (3.1) with initial data u01 , u02 ∈
L1(RN ). Then ∫

RN

(u1 − u1)+(x, t)dx ≤
∫
RN

(u01
− u02

)+(x)dx;

(iv) Any Lp is the solution norm, 1 ≤ p ≤ ∞ non-increasing in time;
(v) The solution is limited to RN × [τ,∞) for every τ > 0. Moreover, for all

p ≥ 1

‖u(·, t)‖L∞(RN ) ≤ ctγp‖u0‖
δp
Lp(RN )

,

where γp = (m− 1 + αp/N)−1, δp = αpγp|N and C = C(m, p,N, α);
(vi) If u0 ≥ 0 then the solution is positive for all x and t > 0;
(vii) If either m ≥ 1 or u0 ≥ 0 then u ∈ Cβ(RN × (0,∞)) for some 0 < β < 1;
(viii) The solution depends continuously on the parameters α ∈ (0, 2),m > m∗

and u0 ∈ L1(RN ) in the norm of the space C([0,∞), L1(RN )).

We note an alternative approach to the question of the existence and uniqueness
of a strong or soft solution. Using the results of [10], one can find conditions for
the existence and uniqueness of a soft solution for u0 ∈ L1(RN ) for arbitrary m
and α thanks to abstract theory of accretive operators.

Next, we present an equivalent problem for weak solutions of problem (3.1).
If ψ and ϕ belong to the Schwartz class, then the formulae (3.2) of the fractional

Laplacian together with the Plancherel theorem implies∫
RN

(−4)α/2ψϕ =

∫
RN

|ξ|αψ̂ϕ̂ =

=

∫
RN

|ξ|α/2ψ̂|ξ|α/2ϕ̂ =

∫
RN

(−4)α/4ψ(−4)α/4ϕ. (3.4)
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After that, if we multiply the equation in (3.1) by the test function ϕ and
intervene by parts, we get

∞∫
0

∫
RN

u
∂ϕ

∂t
dxdx−

∞∫
0

∫
RN

(−4)α/4(|u|m−1u)(−4)α/4ϕdxdx = 0. (3.5)

Identity (3.5) underlies our definition of a weak solution.
The integrals in (3.5) make sense if u and |u|m−1u belong to the corresponding

spaces. The correct space for |u|m−1u is the fractional Sobolev space Ḣα/2(RN )
defined as the completion of C∞0 (RN ) with norm

‖ψ‖Ḣα/2 = (

∫
RN

|ξ|α|ψ̂|2dξ)1/2 = ‖(−4)α/4ψ‖2.

Let’s move on to the local problem
Lαω = 0, (x, y) ∈ RN+1

+ , t > 0,

∂ω
∂yα −

∂|ω|
1
m
−1ω

∂t = 0, x ∈ RN , y = 0, t > 0,

ω = |f |m−1|f |, x ∈ RN , y = 0, t > 0.

(3.6)

To determine a weak solution to this problem, we formally multiply the equation
in (3.6) by the test function ϕ and integrate by parts to obtain

∞∫
0

∫
RN

u
∂ϕ

∂t
dxds− µα

∞∫
0

∫
RN−1

+

y1−α < ∇ω,∇ϕ > dxdyds = 0, (3.7)

where u = |Tr(ω)|1/m−1Tr(ω). This is true provided that ϕ vanishes at t = 0

and also for large |x|, y, t. Then we introduce the energy space Xα(RN+1
+ ) as a

completion of C∞0 (RN+1
+ ) with norm

‖v‖Xα = (µα

∫
RN+1

+

y1−α|∇v|2dxdy)1/2.

Definition 3.3. A pair of functions (u, ω) will be a weak solution to problem (3.6)
if:

u = |Tr(ω)|1/2−1Tr(ω) ∈ C([0,∞);L1(RN )),

ω ∈ L2
loc((0,∞);Xα(RN+1

+ ));

Definition 3.4. The function u is a weak solution to Problem 3.1 if:
1) u ∈ C|[0,∞), L1(RN ), |u|n−1u ∈ L2

loc|(0,∞), Ḣ
α/2

(RN )
;

2) identity (3.5) is true for every ϕ ∈ C1
0 (RN × (0,∞));

3) u(·, 0) = u0 almost everywhere.

The main disadvantage of applying this definition is that there is no formula
for the fractional Laplacian of the product or composition of functions. Moreover,
there is no benefit in using test functions with compact supports, since their frac-
tional Laplacians do not preserve this property. To overcome these difficulties, we
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will use the fact that our solution u is the trace solution of the local problem found
by extending |u|m−1u to half-spaces whose boundary is our original space.

Here is the corresponding extension method.
Let g = g(x) be a smooth bounded function defined on RN and let its α-

harmonic extension to the upper half-space v = E(g) be the only smooth bounded
solution v = v(x, y) of the next problem{

∇ · (y1−α∇θ) = 0, in RN+1
+ ≡ {(x, y) ∈ RN+1 : x ∈ RN , y > 0},

v(x, 0) = g(x), x ∈ RN .
(3.8)

Then, due to the results of [13], we get

−µα lim
y→0+

y1−α ∂v

∂y
= (−4)α/2g(x), µα = 2α−1Γ(α/2)Γ(1− α/2). (3.9)

In (3.6) the operator ∇ on all (x, y) variables, although in (3.7) (−4)α/2 only
on x = (x1, ..., xN ) variables. Next, we introduce the notation

Lαv ≡ ∇ · (y1−α∇v),
∂v

∂yα
≡ µα lim

y→0+
y1−α ∂v

∂y
.

Operators of the form Lα with coefficients y1−α belonging to the Mackenhoupt
space with weights A2 if 0 < α < 2 were studied in [6]. Taking this into account,
we rewrite problem (3.1) as a quasistationary problem for ω = E(|u|m−1u) with a
dynamic boundary condition of the form

Lαω = 0, (x, y) ∈ RN+1
+ , t > 0,

∂ω
∂yα −

∂|ω|
1
m
−1ω

∂t = 0, x ∈ RN , y = 0, t > 0,

ω = |u0|m−1u0, x ∈ RN , y = 0, t > 0.

(3.10)

To determine a weak solution to problem (3.8), we formally multiply the equa-
tion in (3.10) by a test function and integrate by parts. Then

∞∫
0

∫
RN

u
∂ϕ

∂t
dxds− µα

∞∫
0

∫
RN+1

+

y1−α < ∇ω,∇ϕ > dxdyds = 0, (3.11)

where u = |Tr(ω)|1/m−1Tr(ω).
Equality (3.9) is satisfied under the condition that ϕ vanishes at t = 0 and at

large |x|, y and t.

Then we introduce the energy space Xα(RN+1
+ ), which is the completion of

C∞0 (RN+1
+ ) in norm

‖v‖αX = (µα

∫
RN+1

+

y1−α|∇v|2dxdy)1/2.

Definition 3.5. A pair of functions (u, ω) is a weak solution to problem (3.7) if:

1) u = |Tr(ω)| 1m−1Tr(ω) ∈ C[0,∞), L1(RN ), ω ∈ L2
locC(0,∞), Xα(RN+1

+ );

2) identity (3.5) holds for each ϕ ∈ C1
0 (RN+1

+ × (0,∞));
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3) (Cu(·, 0)) = u almost everywhere.

The extension operator is well defined in Ḣα/2(RN ). It will get an explicit
expression when using the Poisson kernel. It was proved in [13] that the mapping

E : Ḣα/2(RN )→ Xα(RN+1
+ )

is an isometry. Trace operator

Tr : Xα(RN+1
+ )→ Ḣα/2(RN )

is surrective and continuous.
Indeed, for every Φ ∈ Xα(RN ) there is a trace embedding

‖Tr(Φ)‖Ḣα/2 = ‖E(TrΦ)‖Xα ≤ ‖Φ‖Xα .
The main result of the above reasoning is the following statement about the

equivalence of the two definitions of a weak solution.

Theorem 3.6. The function u is a weak solution to problem (3.1) if and only if
the pair (u,E(|u|m−1u)) is a solution to problem (3.8).

Proof. Since the mapping

E : Ḣα/2(RN )→ Xα(RN+1
+ )

is an isometry, then we have

µα

∫
RN+1

+

y1−α < ∇E(Ψ),∇E(ϕ) >=

∫
RN

(−4)α/4Ψ(−4)α/4ϕ

for each Ψ, ϕ ∈ Ḣα/2(RN ). Further, the result immediately follows from the follow-
ing lemma, in which it is established that any α-harmonic function is orthogonal
to every function with trace 0 on RN in Xα(RN+1

+ ). �

Lemma 3.7. Let Ψ ∈ Ḣα/2(RN ) and Φ1,Φ2 ∈ Xα(RN+1
+ ) such that Tr(Φ1) =

Tr(Φ2). Then

µα

∫
RN+1

+

y1−α < E(Ψ),Φ1(ϕ) >= µα

∫
RN+1

+

y1−α < ∇E(Ψ),Φ2 > .

Proof. Let h = Φ1 − Φ2. Since E(Ψ) is smooth for y > 0, taking ε > 0 we obtain
after integration by parts

µα

∞∫
ε

∫
RN

y1−α < ∇E(Ψ),∇h > dxdy = µα

∫
RN

ε1−α ∂E(Ψ)

∂y
(x, ε)h(x, ε)dx.

�

Left part of the last equality converges to µα
∫

RN+1
+

y1−α < E(Ψ),∇h >, while

the right side tends to 0 since identity (3.5) holds in the weak sense in H−α/2(RN ),
and Tr(h) = 0

The lemma is proven.

180



STOCHASTIC EQUATION OF A POROUS MEDIUM...

4. Some functional inequalities

In this section, we present some functional inequalities related to the fractional
Laplacian defined in RN . The first inequality, called the Struk-Varopoulos inequal-
ity, was established in [9]. For the sake of completeness, we give a brief proof of
it.

Lemma 4.1. Let 0 < γ < 2, q > 1. Then∫
RN

(|v|q−2v)(−4)γ/2v ≥ 4(q − 1)

q2

∫
RN

|(−4)γ/4|v|q/2|2 (4.1)

for all v ∈ Lq(RN ) such that (−4)γ/2v ∈ Lq(RN ).

Proof. Using equalities (3.5) and Lemma 3.7 we obtain∫
RN

(|v|q−2v)(−4)γ/2v =

∫
RN

|(−4)γ/4(|v|q−2v)(−4)γ/4v =

= µα

∫
RN+1

+

y1−α < ∇(|E(θ)|q−2E(v)),∇E(v) >=

= µα
y(q − 1)

q2

∫
RN+1

+

y1−α|∇(|E(v)q/2|)|2 ≥

≥ y(q − 1)

q2

∫
RN

|(−∇)γ/4|v|q/2|2.

�

At the last step, the inequality is taken because the function |E(θ)|q/2 is not γ
harmonic.

Using the same technique, one can prove the generalization of (4.1).

Lemma 4.2. Let 0 < γ < 2. Then∫
RN

(−4)γ/2v ≥
∫
RN

|(−4)|γ/4Ψ(v)|2 (4.2)

where Ψ′ = (Ψ′)2.

The proof is based on the extension method and the following property

< ∇Ψ(ω),∇ω >= |∇Ψ(ω)|2.
To prove the second functional inequality, which we need later, we use the well-

known Hardy-Littlewood-Sobolev inequality [9]: for each v such that (−4)γ/2v ∈
Lr(RN ), 1 < r < N/γ, 0 < γ < 2

‖v‖r1 ≤ c(N, r, γ)‖(−4)γ/2v‖r1 , r1 =
Nr

N − γr
. (4.3)
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Taking r = 2, γ = α/2 for example, we find the inclusion Ḣα/2(RN ) ↪→
L

2N
N−α (RN ) when N > α. What will happen for N = 1 ≤ α < 2? Or more

general, for r ≥ N/γ? The answers to these questions are in the next lemma.

Lemma 4.3. (Nash-Gagliardo-Nirenberg inequality type). Let p ≥ 1, r > 1, 0 <
γ < min{N, r}. Then there is a constant C = C(p, r, γ,N) > 0 such that for any
v ∈ Lp(RN ) with (−4)γ/2v ∈ Lp(RN ) we have

‖v‖β+1
r2 ≤ C‖(−4)γ/2v‖r‖v‖βp , (4.4)

where r2 = N(rp+r−p)
r(N−γ) , β = p(r−1)

r .

Proof. First, we use inequalities (4.1) and (4.3) to estimate the left side of in-
equality (5.3). Further, to estimate the right side of (5.3), Hölder’s inequality is
used. �

5. Main results

On the space S′(RN ), the Brownian list W is a zero-mean quadratically in-
tegrable Lévy process on a suitably chosen Hilbert space. Denote its covariance
operator by K. We define H as the set of all W ∈ S′(RN ) in such a way that

|(W,ϕ)| ≤ L
√
K(ϕ,ϕ),∀ϕ ∈ S′(RN ) (5.1)

with constant L < ∞ independent of ϕ. i.e. (HN , < ·, · >)HN , N ∈ N is a
decreasing sequence of separable Hilbert spaces.

Then the next statement is true.

Lemma 5.1. There are N and C such that

|K(ϕ,ϕ)| ≤ c|ϕ|HN |ψ|HN for all ϕ,ψ ∈ S(RN ).

The next assertion establishes that W can be represented as a spatially station-
ary random field on RN × [0,∞).

Theorem 5.2. If the spectral measure µ of the process W is finite, then W can
be identified as a random field W (x, t), x ∈ RN , t ≥ 0 as follows:

(W (t), ϕ(t)) =

∫
RN

W (x, t)Ψ(x, t)dx, t ≥ 0,Ψ ∈ S(RN × [0,∞)).

Let us now return to equation (1.6) with g = 1, i.e.{
∂u(x,t)
∂t = −(−4)α/2um(x, t) + Ẇ (x, t), x ∈ RN , t > 0

u(x, 0) = u0(x), x ∈ RN .
(5.2)

We multiply equation (5.2) by the test function Ψ and integrate u by parts, and
then we obtain

T∫
0

∫
RN

u(x, t)Ψt(x, t)dxdt =
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T∫
0

∫
RN

(−4)α/2um(x, t)(−4)α/4Ψdxdt+

T∫
0

< W (t),Ψt(x) > dt. (5.3)

The integrals in (5.3) make sense if u and um lie in well-defined spaces, and a
possible convenient space for um is the fractional function space Hα/2(RN ) defined
as the completion of C∞0 (RN ) with the following norm

‖ϕ‖Hα/2(RN ) = (

∫
RN

|ξ|α|ϕ̂|2dξ)1/2 = ‖(−4)α/2ϕ‖L2(RN ).

Definition 5.3. The function u is a weak solution of equation (5.2) if:
1. u ∈ L1(RN ) for all T > 0, umL2

loc(H
α/2(RN )(0,∞));

2. W satisfies inequalities (5.1) and the conditions of the lemma 5.1;
3. Equation (5.2) is true for every ϕ ∈ C1

0 (RN × (0, T ));
4. u(·, t) ∈ L1(RN ) for all t > 0, lim

t→0+
u(·, t) = u0 ∈ L1(RN ).

Considering the above results and definitions, we present the main result of the
paper.

Theorem 5.4. Suppose u0 ∈ L1(RN ), and let u ∈ L1(RN × [0, T ]) for all T > 0
is a weak solution to problem (1.1), um ∈ L1

loc(H
α/2(RN ), (0,∞)) and W satisfies

inequality (5.1) and the conditions of Lemma 5.1. Then∫
RN

u(x, t)dx ∈ C(R+), u ∈ C(L1(RN , [0, T ]))

and ∫
RN

u(x, t)dx =

T∫
0

∫
RN

σ(u(x, s)Ẇ (x, s))dxds+

∫
RN

u0(x)dx =

=

T∫
0

∫
RN

σ(u(x, x)W (dx, ds)) +

∫
RN

u0(x)dx.

Proof. Let a test function Ψ be defined in terms of Ψ(x, t) = ϕ(x)ϕ(t) where
ϕR(x) = ϕ( xR ) is defined as follows:

ϕ ∈ C∞0 (RN ), 0 ≤ ϕ(·) ≤ 1,

ϕ(x) =

{
1, |x| ≤ 1,

0, |x| ≥ 2.

For any test function ϕ ∈ C∞0 (R+) we have

−
∞∫

0

∫
RN

u(t, x)ϕR(x)ϕ′(t)dtdx =
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=

∞∫
0

∫
RN

[−um(x, t)(−4)α/2ϕR(x) + Ẇ (x, t)ϕR(x)]+

+

∫
RN

u0(x)ϕR(x)ϕ(0)x =

∞∫
0

∫
RN

[−um(x, t)
1

Rα
(−4)α/2ϕ(

x

R
)+

+Ẇ (x, t)ϕR(x)]ϕ(t)dxdt+

∫
RN

u0(x)ϕR(x)ϕ(0)dx.

Taking the limit as R → ∞ and using the Lebesgue convergence theorem, we
obtain

−
∞∫

0

∫
RN

u(t, x)ϕ′(t)dtdx =

=

∞∫
0

∫
RN

Ẇ (x, t)ϕ(t)dxdt+

∫
RN

u0(x)ϕ(0)dx.

Let Fu(t) =
∫
RN

u(x, t)dx and FẆ (t) = Ẇ (x, t)dx, where Fu(t) ∈ L1
loc(RN ) and

FW (t) ∈ L2
loc(P ). Let T > 0 and consider the test function ϕ(t) = I(0≤t≤T ); we

also choose a sequence of test functions ϕn ∈ C∞0 (RN ) with decreasing ϕn so that
ϕn(t) ≤ ϕ(t) and ϕn(t) = 1 on the interval [0, T − 1/n] for sufficiently large n.
Then we apply Lebesgue’s theorem to Fu and obtain

−
∞∫

0

Fu(t)Ψ′n(t)dt =

=

∞∫
0

FẆ (t)ϕn(t)dt+

∫
RN

u0(x)ϕn(0)dx→
T∫

0

FẆ (t)dt+

∫
RN

u0(x)dx

for n → ∞. This implies that Fu ∈ C(R+) or otherwise Fu has a continuous
representation in its Lebesgue class. Now choosing ϕn better, at each Lebesgue
point T for Fu and passing to the limit on the left side, we get

Fu =

T∫
0

FẆ (t)dt+

∫
RN

u0(x)dx.

We have given proofs of the theorem for g = 1, for simplicity, however, with
these steps we can establish this result for g 6= 1 when σ is continuous and satisfies
the Lipschitz conditions. For the condition of existence and uniqueness, we need
the following condition on σ.
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Condition 5.5. There is a finite positive constant Lipσ such that for all x, y ∈ R
we have σ(0) = 0, and

|σ(x)− σ(y)| ≤ Lipσ|x− y|.

Theorem 5.6. Under conditions 5.5, there exists a unique solution to problem
(5.2).

Proof. From Lemma 5.1, equation (5.1), and Hölder’s inequality, we obtain

|
T∫

0

∫
RN

u(x, t)Ψt(x, t)dxdt| ≤

‖(−4)α/4um‖L2(RN×(0,T )) · ‖(−4)α/4ϕ‖L2(RN×(0,T )) + TL
√
C sup

0≤t≤T
|Ψt|Hn =

= ‖um‖Hα/2(RN×(0,T )) · ‖Ψ‖Hα/2(RN×(0,T )) + TL
√
C sup

0≤t≤T
|Ψt|Hn <∞

Returning to equation (1.5) we have

E|
∫
RN

|u1(x, t)− u2(x, t)||dx|2 = E|
T∫

0

∫
RN

|g(u1(x, t))− g(u2(x, t))||W (dx, dt)|2 ≤

≤ Lip2
gE

T∫
0

∫
RN

|u1(x, t)− u2(x, t)|dxdt.

Let there exist C > 0 such that

C

∫
RN

E|u1(x, t)− u2(x, t)|2dx ≤ E|
∫
RN

|u1(x, t)− u2(x, t)|dx|2

then it follows that

‖u1 − u2‖L2(P ) ≤ Lipg
√
T/C‖u1 − u2‖L2(P ).

The last inequality proves the uniqueness of the solution since 1−Lipg
√
T/C >

0. �

The next result concerns the growth property of the solution, taking into ac-
count Theorem 5.4.

Theorem 5.7. There is a constant Lσ > 0 and C > 0 such that

‖u(t)‖L2(P ) ≤
1√
C
‖u0‖L1(RN )exp(

Lipσ√
C
t). (5.4)

Proof. Taking into account Theorem 5.4, we obtain the inequality
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‖u‖L2(P ) ≤
Lipσ√
C

t∫
0

‖u(s)‖L2(P )ds+
1√
C
‖u0‖L1(RN ). (5.5)

Next, applying the Gronwall lemma to inequality (5.5), we obtain (5.4).
Note that the solution concept used here was proposed in [15]. Some other

aspects of the theory of nonlinear stochastic equations are presented in [16-18.]
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