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Abstract. We consider completely random games with a finite number of

players, that is, games in which the strategies are laws of probability and

the players’ moves are random variables with the distribution given by the
strategies. The payoff of the game is given by a function of the conditional

expectation of the move of a player versus the move of the others, which al-

lows studying games in which the strategies may be probability distributions
dependent on one another. In this context we first present a static game with

two players and two strategies for which we show numerically the existence of

an equilibrium point which is a fixed point either of the global best possible
reply or best possible average reply of players in the game. We verify numer-

ically that the strategies given by the equilibrium point are optimal. We also
present a more general approach that encompasses the example presented.

In this general approach the strategies are probability measures indexed by

parameters belonging to a compact convex set of real vectors. Under mild
hypothesis we show that the game admits equilibriums.

1. Introduction

The origin of contemporary game theory may be traced, firstly, to the mono-
graph of von Neumann and Morgensten (see [19]) and then to the works of John
Nash (see [10] and also the collection of essays [6]). Since then, game theory has
had a myriad of important developments and found many applications in Econo-
mics and many other scientific areas. General presentations of different aspects of
mathematical game theory are given in [12], [17], [4], [7] and [3].

John Nash’s note Equilibrium Points in n-Person games (see [6, pp. 49–50])
already contains some of the features of the present work, namely, considering
pure strategies given by the possible moves of a player and defining strategies as
probability distributions over the set of pure strategies.

In contrast with previous approaches, we deal with a formalisation of games
that dwell with uncertainty by means of strategies given by general probability
distributions indexed by parameters, the moves of the players given by random
variables with laws given by the correspondent strategies and payoffs which are
functions of the conditional expectations of moves of one player given the moves
of all other players.
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In the following we provide a review of some of the works that have approaches
that may overlap, if only mildly, with our own. In [2] a solution for two-person
zero-sum games with random payoffs is given by means of attaining a specified
level of confidence. The payoff is given by a matrix with random entries with
known distribution. The problem is formulated, firstly, as a linear programming
problem having as coefficients the tail probabilities of the random matrix entries
and secondly, as an non linear programming problem of the payoff level of a player
subjected to the constraint that the player receives that payoff with at least a
specified level of confidence. The problems are shown to admit solutions under
hypothesis on the distributions of the matrix entries.

The work in [20] deals with finding equilibrium in stochastic optimisation prob-
lems related to supply and demand. Under reasonable assumptions the existence
and unicity of equilibrium is proved.

In [11] the authors study, and we quote: “...n-player game with random payoffs
and continuous strategy sets. The payoff function of each player is defined by its
expected value and the strategy set of each player is defined by a joint chance con-
straint.” The random constraint vectors defining the joint chance constraint used
to define the strategy of players are dependent and follow elliptically symmetric
distributions; the dependence among random constraint vectors is modelled by the
Archimedean copula. The existence of a Nash equilibrium is proved under a set
of hypothesis related to the particular types of distributions and copulas used.

According to [16], and we quote: “...The original Nash equilibrium theory was
conceived for deterministic games, which makes it limited to handle real applica-
tions with random payoffs and strategy sets.” In its excellent literature review the
authors describe the evolution of game models with random payoffs that culmi-
nates in the work [11] where Nguyen et alii write, and we quote: “...extended the
results in [14] and in [13] to the general case where the payoff function is random
and the strategy profile set of each player is defined by elliptically distributed de-
pendent joint chance constraints.” Riccardi et alii in [16], propose and we quote:
“...an n-player non-cooperative game where the payoff function of each player fol-
lows a multivariate distribution.” The authors also signal the two main approaches
to deal with random payoffs: the first one is via the expected values (see [11]) and
the second approach, followed in this work (and also in [2]), amounts to require
the players attaining a maximum of their payoff with a given level of confidence.
Several models for a zonal electricity model are proposed that are then exploited
via simulation in prescribed scenarios.

Let us detail the main content of what follows.

• In Section 2 we deal with a simple example of a completely random game,
with two players, each one having as moves Bernoulli random variables
taking two values—the pure strategies—and so, players moves are random
variables taking values in the set of pure strategies. The laws of these
random variables for the players—the correspondent game strategies—
are given Bernoulli laws. The dependence structure between the laws of
the players is given as well. Of course, in the case of more than two
pure strategies we can consider multinomial laws. The joint law of the
strategies of the players, that is the dependence structure of the game, is
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given by means of copulas in order to illustrate the possibility of fitting
the model to observations. The payoffs are given by the image—by a
continuous function—of the conditional expectation of the move of one
player with respect to the move of the other player. This conditional
expectation is computed by means of the joint law. Since the moves are
discrete random variables, these conditional expectations may be explicitly
computed once the parameters are known or estimated. in Section 3 we
detail the numerical analysis of an instance of the game introduced in
Section 2 explicitly computing the equilibrium points and analysing the
results.
• In Section 4 we use Choquet’s representation theorem to express the value

of the game best possible reply for the example introduced in Section 2.
• In Section 5 we present a more general framework for completely random

games that encompasses the example presented in Section 2.

2. A first simple example: 2 players, 2 pure strategies - (2p, 2s)

In this Section we present a simple example of a static game, with two players,
each one having as a strategy a Bernoulli law. This example will serve a guide
and motivation for a more general theory in Section 5. Let us state first the
assumptions and notations for what follows.

(1) We denote the players by P1 and P2.
(2) The strategy of player P1 is given by the Bernoulli law B(p); we can then

say—following J. Nash in [6, pp. 49–50]—that Θ = {θa, θb} are the pure
strategies of player P1. The strategy of player P2 is given by the Bernoulli
law B(q); similarly we may say that Ξ = {ξa, ξb} are the pure strategies
of player P2. The elements of Θ and Ξ and can be chosen according to
some numerical return specific to each game; as a consequence we can
identify Θ = {θa, θb} with π̃1(Θ) = {π̃1(θa), π̃1(θb)} and Ξ = {ξa, ξb} with
π̃2(Ξ) = {π̃2(ξa), π̃2(ξb)} with π̃1 and π̃2 being the returns—or the pure
strategies payoffs specific to the game—of the pure strategies.

(3) In the game, a move of player P1 is given by X1 a random variable taking
values in Θ with law Bernoulli B(p). A move of player P2 is given by X2 a
random variable taking values in Ξ with law Bernoulli B(q). We suppose
that the joint law of (X1, X2) is also given.

(4) Let π1 : R 7→ [0, 1] and π2 : R 7→ [0, 1] be two payoff continuous functions.
We define the payoff for player P1 for a move with law given by B(p)
whenever the player P2 makes a move with law given by B(q) by:

π1(E(p,q)[X1 | X2]) ,

and the payoff for player P2 for a move with law given by B(q) by whenever
the player P1 makes a move with law given by B(p) by:

π2(E(p,q)[X2 | X1]) .

We observe that by taking, for instance π1(E(p,q)[X1 | X2]), the image by
the function π1 of the conditional expectation of X1 with respect to X2—
instead of taking, as it is usually done, π(X1, X2), that is the image by
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a payoff function π of the couple (X1, X2)—we are considering that the
payoff for move of player P1 depends on the information made available
by the move of player P2; this is a realistic assumption in the context of
games that are played under external supervision or with the presence of
a referee, a game in which the players place their bets and these bets are
known.

(5) Then, the best possible random reply of player P2 for the move made by
player P1—with law given by B(p)—is given by:

r2→1(p) = arg sup
q
π1(E(p,q)[X1 | X2]) , (2.1)

where, arg supq is the value q̂ such that,

sup
q
u(E(p,q)[X1 | X2]) = u(E(p,q̂)[X1 | X2]) .

Also, the best possible random reply of player P1 for a move made by player
P2—with law given by B(q)—is given by:

r1→2(q) = arg sup
p
π2(E(p,q)[X2 | X1]) , (2.2)

with a similar convention for r1→2(q) as the one given above for r2→1(p).
(6) The best possible average reply of player P2 for the move made by player

P1—with law given by B(p)—is given by:

r2→1(p) = E
[
arg sup

q
π1(E(p,q)[X1 | X2])

]
, (2.3)

where, arg supq is the value q̂ such as above. Also, the best possible average
reply of player P1 for a move made by player P2—with law given by B(q)—
is given by:

r1→2(q) = E
[
arg sup

p
π2(E(p,q)[X2 | X1])

]
, (2.4)

with similar conventions as stated above for r2→1(p).

Remark 2.1 (On the nature of the best possible replies of the players). Since
π1(E(p,q)[X1 | X2]) in Formula (2.4) is a random variable we have to interpret
arg supq π1(E(p,q)[X1 | X2]), also, as a random variable taking values in sets, that
is, a random set. So, for each ω ∈ Ω, in the probability space Ω,

arg sup
q
π1(E(p,q)[X1 | X2])(ω) ,

may be a set with more than one element since it is a set of maximising points.
Being so r2→1(p) is the expected value of a random set and so it may be a non
random set with more than one element; in any case, for each p, we have that
r2→1(p) ⊂ [0, 1]. We will see in the numerical instances of an example of this
game that, in fact, r2→1(p), can be considered as a function the variable p.

Definition 2.2 (Game global best possible random reply). The global game best
possible random reply is given by the function R (or the correspondence),

R : [0, 1]× [0, 1] 7→ [0, 1]× [0, 1]
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such that R(p, q) = (r2→1(p), r1→2(q)).

Definition 2.3 (Equilibrium of the game). An equilibrium for the game is a fixed
point for R; if R is a correspondence then the equilibrium of the set is a set.

Definition 2.4 (Game global best possible average reply). The global game best
possible average reply is given by the function R (or the correspondence),

R : [0, 1]× [0, 1] 7→ [0, 1]× [0, 1]

such that R(p, q) = (r2→1(p), r1→2(q)).

Definition 2.5 (Equilibrium of the game). An equilibrium for the game is a fixed
point for R; if R is a correspondence then the equilibrium of the set is a set.

Remark 2.6 (On the nature of the equilibrium for game global best possible average
reply correspondence). A fixed point for R is a set of two strategies determined
by the parameters (p, q) that give the best possible replies for the two players and
so it is a set of strategies that does not admit improvement.

Remark 2.7 (Detailing the particular assumptions of the game). We will suppose
that the joint law of X1 and X2 is given by the Clayton copula with parameter
c and that the marginals are, respectively, B(p) and B(q). We have that, for the
conditional expectation E(p,q)[X1 | X2],

E(p,q)[X1 | X2 = ξa] = θaE(p,q)[X1 = θa | X2 = ξa] + θbE(p,q)[X1 = θb | X2 = ξa] =

= θa
P(p,q)[X1 = θa, X2 = ξa]

P(p,q)[X2 = ξa]
+ θb

P(p,q)[X1 = θb, X2 = ξa]

P(p,q)[X2 = ξa]
=

= θa
P(p,q)[X1 = θa, X2 = ξa]

q
+ θb

P(p,q)[X1 = θb, X2 = ξa]

q
.

The terms of the form P(p,q)[X1 = θb, X2 = ξa] may be computed by the bivari-
ate probability function associated to the Clayton copula with parameter c and
marginal laws B(p) and B(q) which is given by:

P(p,q)[X1 = θa,b, X2 = ξa,b] =

=


−
(
(1− p)−1/c + (1− q)−1/c − 1

)−c − q + 1 X1 = θa ∧X2 = ξb

−
(
(1− p)−1/c + (1− q)−1/c − 1

)−c − p+ 1 X1 = θb ∧X2 = ξa(
(1− p)−1/c + (1− q)−1/c − 1

)−c
X1 = θb ∧X2 = ξb(

(1− p)−1/c + (1− q)−1/c − 1
)−c

+ p+ q − 1 X1 = θa ∧X2 = ξa ,

with θa,b ∈ {θa, θb} and ξa,b ∈ {ξa, ξb}. It is now obvious the all branches of
the function P(p,q)[X1 = θa,b, X2 = ξa,b] in the variables p, q can be shown to
be Lipschitz with the same constant and so it is an equicontinuous family of
continuous functions and so the supremums are continuous functions.

In the next theorem we suppose that the joint law of the strategies is determined
by a determined copula—the Clayton copula—chosen for concept illustration pur-
poses (see [8, pp. 184-237] or [18] for relevant information on copulas).
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Theorem 2.8 (On the existence of equilibrium points for the game). Suppose
that p, q ∈ [ε, 1 − ε] for 0 < ε � 1 and that the joint law of (X1, X2) is given
by the Clayton copula with parameter c any positive number. Define Rε to be the
restriction of R to the square [ε, 1− ε]× [ε, 1− ε]. Then there exists an equilibrium
for the game with global best possible average reply correspondence Rε.

Proof. We observe that the parameter space [ε, 1 − ε] × [ε, 1 − ε]. The proof is a
consequence of Theorem 5.5 in Section 5. �

In the following we will detail the study a first example of a (2p, 2s) game under
some particular assumptions.

3. Computing the details of a concrete example of a (2p, 2s) game

Suppose that a coin is drawn with law B(r); the result will be either H (heads)
with probability r or T (tails) with probability 1 − r. The player P1 makes the
move X1 according to the law B(p) and the player P2 makes the move X2 according
to the law B(q). We will consider that the returns—or the specific payoffs of this
game—are given by:

{H,T} = Ξ = Θ = {θa, θb} = {ξa, ξb} = {1,−1}

Since the dependence structure we are using is given by:

P(p,q)[X1 = θa,b, X2 = ξa,b] =

=


−
(
(1− p)−1/c + (1− q)−1/c − 1

)−c − q + 1 X1 = θa ∧X2 = θb

−
(
(1− p)−1/c + (1− q)−1/c − 1

)−c − p+ 1 X1 = θb ∧X2 = θa(
(1− p)−1/c + (1− q)−1/c − 1

)−c
X1 = θb ∧X2 = θb(

(1− p)−1/c + (1− q)−1/c − 1
)−c

+ p+ q − 1 X1 = θa ∧X2 = θa

we will have that,

E(p,q)[X1 | X2 = θa] = θa
P(p,q)[X1 = θa, X2 = θa]

q
+ θb

P(p,q)[X1 = θb, X2 = θa]

q

= θa

(
(1− p)−1/c + (1− q)−1/c − 1

)−c
+ p+ q − 1

q
+

+ θb
−
(
(1− p)−1/c + (1− q)−1/c − 1

)−c − p+ 1

q
=

=
2
(
(1− p)−1/c + (1− q)−1/c − 1

)−c
+ 2p+ q − 2

q
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and that,

E(p,q)[X1 | X2 = θb] = θa
P(p,q)[X1 = θa, X2 = θb]

1− q
+ θb

P(p,q)[X1 = θb, X2 = θb]

1− q

=
−
(
(1− p)−1/c + (1− q)−1/c − 1

)−c − q + 1

1− q
+

−
(
(1− p)−1/c + (1− q)−1/c − 1

)−c
1− q

=

=
−2
(
(1− p)−1/c + (1− q)−1/c − 1

)−c − q + 1

1− q

We will consider, as an example, u(x) = π1(x) = π2(x) = x2 and c = 0.06. With
these specifications we have that we can compute the random variable:

π1(E(p,q)[X1 | X2)]

We observe that u(E(p,q)[X1 | X2 = θa]) and u(E(p,q)[X1 | X2 = θb]), both as func-
tions of the variables p and q, are shown as a contour plots in the following Figure 1.
The random variable arg supq π1(E(p,q)[X1 | X2)] is then given by:

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Contour plot of u([X1 |X2=θa ]) for c=0.06

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Contour plot of u([X1 |X2=θb ]) for c=0.06

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Figure 1. Contour plots of the images by u of the conditional
expectations of the move of the first player with respect to the
move of second player
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arg sup
q
π1(E(p,q)[X1 | X2)] =

=

(
arg sup

q
π1(E(p,q)[X1 | X2 = θa)]

)
I{X2=θa}+

+

(
arg sup

q
π1(E(p,q)[X1 | X2 = θb)]

)
I{X2=θb} ,

and so we have that:

r2→1(p) = E
[
arg sup

q
π1(E(p,q)[X1 | X2)]

]
=

=

(
arg sup

q
π1(E(p,q)[X1 | X2 = θa)]

)
P [X2 = θa] +

+

(
arg sup

q
π1(E(p,q)[X1 | X2 = θb)]

)
P [X2 = θb] .

We observe that the terms of r2→1(p), that is, arg supq π1(E(p,q)[X1 | X2 = θa)]
and arg supq π1(E(p,q)[X1 | X2 = θb)] may be considered functions of the variable
p since both are correspondences that take as values singular sets.

From the plot of Figure 3 depicting the function r2→1(p) it is clear that there
should exist a fixed point. Numerical calculations show that for p0 = 0.496 we
have that r2→1(p0) = 0.495363 and we have thus obtained an approximation of
the first component of a point of the equilibrium set.

Remark 3.1 (On the first component of the equilibrium point of the game). This re-
sult shows that for the first player the best option is to play with the law B(0.496).

We can perform the same calculations for the second player and the results are
the following with only minor changes from the calculations for the first player.

E(p,q)[X2 | X1 = θa] = θa
P(p,q)[X2 = θa, X1 = θa]

p
+ θb

P(p,q)[X1 = θb, X2 = θa]

p

=
2
(
(1− p)−1/c + (1− q)−1/c − 1

)−c
+ 2p+ q − 2

p

The graphics representation is given in the following Figure 2.

Remark 3.2 (On the contour plots). The non coloured regions in the contour plots
of Figure 2 are due to very large values of the functions represented. These large
values will also induce a particular result for the function r1→2(q) shown below in
Figure 3. The best possible average reply correspondence of player P1 to the move
of player P2 is given by the following expression.
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Contour plot of u([X2 |X1=θa ]) for c=0.06
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Contour plot of u([X2 |X1=θb ]) for c=0.06

0.250.500.751.001.251.501.752.002.25 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Figure 2. Contour plots of the images by u of the conditional
expectations of the move of the second player with respect to the
move of first player

r1→2(q) = E
[
arg sup

p
π2(E(p,q)[X2 | X1)]

]
=

=

(
arg sup

p
π2(E(p,q)[X2 | X1 = θa)]

)
P [X1 = θa] +

+

(
arg sup

p
π2(E(p,q)[X2 | X1 = θb)]

)
P [X1 = θb]

We also have the terms of r1→2(q), that is, arg supp π2(E(p,q)[X2 | X1 = θa)]
and arg supp π2(E(p,q)[X2 | X1 = θb)] may be considered functions of the variable
q since both are correspondences that take as values singular sets.

The numerical computations corresponding to this correspondence—which in
fact comes out as a function—give the graphic representation on the left of Fig-
ure 3, with the identity function of also plotted. From the plot of this Figure 3
(right) depicting the function r1→2(q) it is also clear that there should exist a fixed
point. Numerical calculations show that for p0 = 0.5 we have that r1→2(p0) = 0.5
and we have thus obtained an approximation of the second component of an equi-
librium point.

3.1. The concrete example of a (2p, 2s) game with given partial infor-
mation. We now address the following question: what happens if some informa-
tion on the initial draw is fed into the game? For instance, if we suppose that
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0.2 0.4 0.6 0.8 1.0
p

0.2

0.4

0.6

0.8

1.0

r21

The function r2->1 for u=x
2 and c=0.06`
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r12

The function r1->2 for u=x
2 and c=0.06`

Figure 3. Functions r2→1(p) (left) and r1→2(q) (right) and the
identity functions showing the approximate location of their res-
pective fixed points.

r ∈ [ρ1, ρ2]? The natural result would be to have the laws of the players with
parameters also in that interval. We will now suppose that r ∈ [0.25, 0.45] all the
other parameters being kept equal. The same method for the numerical compu-
tations was applied giving for the equilibrium point the numerical approximation
(p0, q0) = (0.311, 0.445) with:

R(p0, q0) = (r2→1(0.311), r1→2(0.445)) = (0.31081, 0.445174)

We will, secondly, suppose that r ∈ [0.65, 0.85] all the other parameters being kept
equal. The same method for the numerical computations was applied giving for
the equilibrium point the numerical approximation (p0, q0) = (0.311, 0.445) with:

R(p0, q0) = (r2→1(0.709), r1→2(0.792)) = (0.7084, 0.791998)

The main conclusion we get is that the asymmetry of the two strategies’ players
becomes more visible with more information being fed int the game.

3.2. Interpreting the equilibrium point obtained in the concrete exam-
ple of a (2p,2s) game with given partial information. We simulated 105

runs of the game studied when we took r ∈ [0.65, 0.85] using the previously de-
termined equilibrium points as strategies. The Mathematica programming used is
the following.

We obtained the following couple of success rates for the two players respec-
tively: (0.60355, 0.64599). It is clear that both players performed better than
average with a small advantage for the second player, the player with the higher
fixed point.

We also simulated 105 runs of the game studied when we took r ∈ [0.25, 0.45].
The correspondent results were (0.55687, 0.5186) in this case showing a small ad-
vantage of the first player, the player with the smallest fixed point and a slightly
better performance than average of both players.

For comparison we simulated 105 runs of the game with no prior information,
that is when r ∈ [0, 1] we have the result (0.50342, 0.50245) in this case showing a
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The meaning of the equilibrium point
In[]:= Players[c_, p_, q_] := CopulaDistribution[{"Clayton", c},

{BernoulliDistribution[p], BernoulliDistribution[q]}]

In[]:= c = 0.06; p0 = 0.709`;

q0 = 0.792`; (* These are the parameters obtained andor given *)

ene = 100000; U = {}; V = {};

For[i = 1, i ≤ ene, i++,

aa = RandomVariate[UniformDistribution[{0.65, 0.85}], 1]〚1〛;

(* We simulate a choice for the law of the first draw *)

draw = RandomVariate[BernoulliDistribution[aa], 1]〚1〛;

(* We simulate a choice for the first draw *)

game = RandomVariate[Players[0.06, p0, q0], 1];

(* We simulate the players mooves *)

U = Append[U, Abs[game〚1, 1〛 - draw]];

V = Append[V, Abs[game〚1, 2〛 - draw]];

(* We determine the list of "fails" (the ones) for each player comparing

the moove of the player to the draw *)

];

{1 - N[Mean[U]], 1 - N[Mean[V]]}

(* This gives the percentage of successes for player 1 and player 2

respectively *)

Out[]= {0.60287, 0.64495}

Figure 4. Mathematica code for getting computational confir-
mation of the optimality of the equilibrium points

very small advantage of the first player, the player with the smallest fixed point
and a slightly better performance than average of both players.

The interpretation of these results is that, using as strategies the determined
equilibrium points, increases even if only slightly the gains of the players with
respect of complete random strategy.

Remark 3.3 (On the difference between strategies). The differences observed should
be related not only to the Clayton copula used but also to the function used for
the payoff π1(x) = π2(x) = x2. The derivative of this function for x < 0.5 is less
than one and for x > 0.5 is greater than one; this may explain the quantitative
differences observed between the first and the second case.

4. On the Choquet’s representation of the game global best possible
reply

Choquet’s theorem allows the representation of the game global best possible
reply by means of the extreme points of its convex compact domain. Recall that
the game global best possible reply function considered is Rε defined in [ε, 1− ε]×
[ε, 1− ε] which is a compact convex set of the locally convex space R.

Theorem 4.1 (Choquet’s theorem). If C is a metrisable compact convex subset
of a locally convex space and x0 is an arbitrary element of C, then there is a
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probability measure which represents x0 and is supported by the extreme points of
C (see [15, pp. 20-21]).

Let µ(p,q) be the probability measure given by Choquet’s theorem to C :=
[ε, 1− ε]× [ε, 1− ε] supported by the set,

E = {(ε, ε), (ε, 1− ε), (1− ε, ε), (1− ε, 1− ε)}
of extreme points of C that represent a given point (p, q) ∈ C. It is clear due to
the discrete nature of E that we must have that µ(p,q) is a convex combination
of Dirac measures each supported by an extreme point of C, that is, for some
constants α1, . . . , α4 ∈ [0, 1] such that α1 + · · ·+ α4 = 1 we have that:

µ(p,q) = α1δ(ε,ε) + α2δ(ε,1−ε) + α3δ(1−ε,ε) + α4δ(1−ε,1−ε)

The representation property says considering (p, q) ∈ C a fixed point of Rε that
for all linear function f we have that:

f(p, q) =

∫
E

f(u, v)dµ(p,q)(u, v) =

= α1f(ε, ε) + α2f(ε, 1− ε) + α3f(1− ε, ε) + α4f(1− ε, 1− ε)

And that means that since (p, q) ∈ C a fixed point of Rε, that is, Rε(p, q) = (p, q),
that we have:

Rε(p, q) = α1 · (ε, ε) + α2 · (ε, 1− ε) + α3 · (1− ε, ε) + α4 · (1− ε, 1− ε)
that is, the game global best possible reply function at the equilibrium point may
be written as a linear combination of the extreme points of the set [ε, 1−ε]×[ε, 1−ε].

Remark 4.2 (On the arbitrariness of ε). : The coefficients α1, . . . , α4 depend on
and so on they also depend on ε. At the moment, it does not seem possible to
use some procedure in order to pass to the limit and, as so, defining a game on
[0, 1]× [0, 1].

Remark 4.3 (On the importance of Choquet’s representation). For parameter mod-
els with a finite number of parameters in compact intervals Choquet’s represen-
tation provides an obvious result obtained simply by the fact that intervals are
convex sets with two extreme points. The result will become interesting in the
case of strategies belonging to some infinite dimensional subspace of probability
measures.

5. Completely random games with arbitrary finite number of players
and with strategies indexed by real vector parameters

In this section we present a general theory for random static games with a finite
number of players. In the following there is a list of assumptions and notations
for the approach we propose.

(1) Let P1, P2, . . . , Pr denote the players.
(2) Consider a set M = {µθ : θ ∈ Θ} of probability measures defined on

a complete probability space (Ω,F,P) with Θ b Rd a convex compact
space of parameters in an Euclidean space. In a given game, each player
Pi, i = 1, . . . , r, has a strategy given by a probability measure µθi ∈M.
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(3) In a given game, each player Pi, i = 1, . . . , r has a move, that is, a
random variable Xi : Ω → R having as law, or probability distribution,
the probability measure µθi .

(4) In a given game, µ(θ1,...,θr) the joint law of the vector (X1, X2, . . . , Xr)
is determined. We observe that a better approach to be thee notion of
kernel such as it is developed in [5]. In an application this joint law may
be given by an adequate copula.

(5) In a given game, for each player Pi, i = 1, . . . , r there is a continuous
function πi : R → [0, 1] such that the payoff of player Pi, i = 1, . . . , r is
given by the image by π1 of the conditional expectation:

E(θ1,...,θr)[Xi | X1, . . . , Xi−1, Xi+1, . . . , Xr] ,

that is,

πi
(
E(θ1,...,θr)[Xi | X1, . . . , Xi−1, Xi+1, . . . , Xr]

)
.

(6) We will use next the following notation; î := {1, 2, . . . , r} \ {i}, that is, î
is the set of all the players indexes {1, 2, . . . , r} with the index i removed.
With the notation:

θî = (θ1, . . . ,θi−1,θi+1, . . . ,θr) and(θi,θî) = (θ1, . . . ,θi−1,θi,θi+1, . . . ,θr) ,

we define the (random) best possible reply by:

r î→i(θi) = arg sup
θj , j∈̂i

πi(E(θ1,...,θr)[Xi | X1, . . . , Xi−1, Xi+1, . . . , Xr]) =

= {θî : πi(E(θi,θî)[Xi | X1, . . . , Xi−1, Xi+1, . . . , Xr]) =

= sup
θj , j∈̂i

πi(E(θ1,...,θr)[Xi | X1, . . . , Xi−1, Xi+1, . . . , Xr])} ,
(5.1)

which a random variable taking as values sets in Θr−1 since it is defined
by means of a conditional expectation.

(7) With the same notation the best possible average reply for a move made

by the player Pi of players Pj for j ∈ î is given by:

r î→i(θi) = E

[
arg sup

θj , j∈̂i
πi(E(θ1,...,θr)[Xi | X1, . . . , Xi−1, Xi+1, . . . , Xr])

]
, (5.2)

that is, the best possible average reply, for the player of index i given by the
other players, is the expected value of the set of values of the parameters—
defining the law of the moves of players Pj for j ∈ î—which maximizes
the image, by the function πi of the conditional expectation of the move
of of player Pi given all the moves of the other players defined by their
strategies. So, this best possible average reply may be considered as a
correspondence from Θ into Θr−1.

Remark 5.1 (The best possible replies depend on the laws of the players moves).
We stress that the best possible average reply ri(θi), of a player Pi, for i = 1, . . . , r,
depends on the move Xi and also on Xj for j 6= i and so it depends on θi, for
i = 1, . . . , r, that is on the probability distribution of the moves of all players—the
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ML ESQUÍVEL AND NP KRASII

strategies—and so it may be used to define a correspondence that takes values in
the parameter set Θr.

We have two notions of best possible reply for the game; one corresponding to best
possible average reply in Formula (5.2) and the second one corresponding to best
possible random reply in Formula (5.1).

Definition 5.2 (Game global random best possible reply). The global best possible
random reply of the game is given by the correspondence R defined, for almost all
ω ∈ Ω, by:

R = R(ω) : Θr = Θ× · · · ×Θ� Θr ,

such that:

(θ1,θ2, . . . ,θr) 7→
⋃

i∈{1,...,r} ,θî∈r î→i(θi)(ω)

{(
θi,θî

)}
,

for almost all ω ∈ Ω.

Naturally we will expect to be able to define similarly the next concept.

Definition 5.3 (Game global best possible average reply). The global best possible
average reply of the game is given by the correspondence R defined by:

R : Θr = Θ× · · · ×Θ� Θr ,

such that:
(θ1,θ2, . . . ,θr) 7→

⋃
i∈{1,...,r} ,θî∈r î→i(θi)

{(
θi,θî

)}
We can now state the definition of a Nash like equilibrium point for the random

game.

Definition 5.4 (Equilibrium points of the game). A random (respectively, aver-
age) equilibrium for the game is a fixed point for the closure of the convex hull of
the correspondence R (respectively,R).

The question that subsides now is to determine the conditions under which a
game has equilibrium points.

Theorem 5.5 (On the existence of—random—equilibrium points for the game).
Let us suppose that:

(1) The parameter set Θ is convex and compact.
(2) Defining, for all integers s ≥ 1, the map Φs : Θs →Ms such that:

Φs(θ1,θ2, . . . ,θs) = (µθ1 , µθ2 , . . . , µθs) ,

we suppose that this map is continuous from Θs equipped with any s-
product distance of the Euclidean distance of the ambient space of Θ into
Ms equipped with the s-product of the total variation distance on M.

(3) We suppose that for all integers s the joint law of (µθ1 , µθ2 , . . . , µθs) ad-
mits a density with respect to the Lebesgue measure given by f (θ1,θ2,...,θs).

Then there are equilibrium points for the game, namely the fixed points of the
correspondence M given by the closure of the convex hull of the game global random
best possible reply correspondence R.
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Proof. We observe that if R is a function—and not a general correspondence—
Brower’s fixed point theorem 1 may allow us to conclude since R is a map from
a compact convex set Θr into itself. If R is, in general, a correspondence it will
be necessary to use Berge maximum theorem and then Kakutani’s fixed point
theorem.

Let us show that E(θ1,...,θr) [Xi | X1, . . . , Xi−1, Xi+1, . . . , Xr] is a continuous
function of the parameter vector (θ1, . . . ,θr). For that purpose we observe that
if,

E(θ1,...,θr) [Xi | X1 = k1, . . . , Xi−1 = ki−1, Xi+1 = ki+1, . . . , Xr = kr] =

=

∫
Rd

xi
f

(θ1,θ2,...,θr)
(X1,...,Xr) (k1, . . . , ki−1, xi, ki+1, . . . , kr)

f
(θ1,...,θi−1,θi+1,...,θr)

(X1,...,Xi−1,Xi+1,...Xr)(k1, . . . , ki−1, ki+1, . . . , kr)
dλ(xi) =

= φ(θ1,...,θi−1,θi,θi+1,...,θr)(k1, . . . , ki−1, ki+1, . . . , kr) ,

(5.3)

then we have that:

E(θ1,...,θr) [Xi | X1, . . . , Xi−1, Xi+1, . . . , Xr] =

= φ(θ1,...,θi−1,θi,θi+1,...,θr)(X1, . . . , Xi−1, Xi+1, . . . , Xr) .

So it all amounts to prove the continuity of the function φ(θ1,...,θi−1,θi,θi+1,...,θr)

and by Formula 5.3 this amounts to prove that the densities are continuous func-
tions of the vector parameters.

So consider two vectors of parameters (θi1 , . . . ,θis) and (θ′i1 , . . . ,θ
′
is) with the

same indexes and the correspondent densities f
(θi1

,...,θis )

(Xi1
,...,Xi1

) and f
(θ′i1

,...,θ′is )

(Xi1
,...,Xi1

) of the

joint laws (respectively) µ(θi1
,...,θis ) and µ(θ′i1

,...,θ′is ) with respect to the Lebesgue

measure dλ(xi1 , . . . , xis) and observe that for any measurable set A,∣∣∣∣∫
A

(
f

(θi1
,...,θis )

(Xi1
,...,Xi1

)(xi1 , . . . , xis)− f
(θ′i1

,...,θ′is )

(Xi1
,...,Xi1

)(xi1 , . . . , xis)

)
dλ(xi1 , . . . , xis)

∣∣∣∣ =

=
∣∣∣µ(θi1 ,...,θis )(A)− µ(θ′i1 ,...,θ

′
is

)(A)
∣∣∣ ≤ sup

B

∣∣∣µ(θi1 ,...,θis )(B)− µ(θ′i1 ,...,θ
′
is

)(B)
∣∣∣ =

= ds

(
µ(θ′i1 ,...,θ

′
is

), µ(θ′i1 ,...,θ
′
is

)

)
Now choose ε > 0 an then (θi1 , . . . ,θis) and (θ′i1 , . . . ,θ

′
is) close enough such that,

ds

(
µ(θ′i1 ,...,θ

′
is

), µ(θ′i1 ,...,θ
′
is

)

)
≤ ε .

Then, for (θi1 , . . . ,θis) and (θ′i1 , . . . ,θ
′
is) close enough and for the set:

D+(ε) :=

{
(xi1 , . . . , xis) : f

(θi1
,...,θis )

(Xi1
,...,Xi1

)(xi1 , . . . , xis) ≥ f
(θ′i1

,...,θ′is )

(Xi1
,...,Xi1

)(xi1 , . . . , xis)

}
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we will have that for all measurable sets A and for (θi1 , . . . ,θis) and (θ′i1 , . . . ,θ
′
is)

close enough, the following positive integral verifies:∫
D+(ε)∩A

(
f

(θi1
,...,θis )

(Xi1
,...,Xi1

)(xi1 , . . . , xis) −

− f
(θ′i1

,...,θ′is )

(Xi1
,...,Xi1

)(xi1 , . . . , xis)

)
dλ(xi1 , . . . , xis) ≤ ε ,

(5.4)

and also for the set:

D−(ε) :=

{
(xi1 , . . . , xis) : f

(θi1
,...,θis )

(Xi1
,...,Xi1

)(xi1 , . . . , xis) ≤ f
(θ′i1

,...,θ′is )

(Xi1
,...,Xi1

)(xi1 , . . . , xis)

}
we will have that for all measurable sets A and for (θi1 , . . . ,θis) and (θ′i1 , . . . ,θ

′
is)

close enough, the following positive integral verifies:∫
D−(ε)∩A

(
f

(θ′i1
,...,θ′is )

(Xi1
,...,Xi1

)(xi1 , . . . , xis) −

− f
(θi1

,...,θis )

(Xi1
,...,Xi1

)(xi1 , . . . , xis)
)
dλ(xi1 , . . . , xis) ≤ ε .

(5.5)

By the properties of the Lebesgue integral (see Lemma 6.1 in the Appendix) the
bounds in Formulas (5.4) and (5.5) are sufficient to prove that λ(xi1 , . . . , xis)
almost everywhere:

lim
(θi1

,...,θis )→(θ′i1
,...,θ′is )

f
(θi1

,...,θis )

(Xi1
,...,Xi1

)(xi1 , . . . , xis) = f
(θ′i1

,...,θ′is )

(Xi1
,...,Xi1

)(xi1 , . . . , xis) ,

thus showing, as an application of Lebesgue’s dominated convergence theorem that
the functions φ(θ1,...,θi−1,θi,θi+1,...,θr) are continuous as functions of the parameters
(θ1, . . . ,θi−1,θi,θi+1, . . . ,θr).

In order to conclude we must apply the Berge maximum theorem and Kakutani
fixed point theorem. The general reference for these results is [1, p. 583] for
the Kakutani–Fan–Glicksberg theorem and [1, p. 570] for the Berge’s maximum
theorem. For the reader’s commodity we also present the adequate versions of
these results—respectively, Theorem 6.3 and Theorem 6.2—in the Appendix.

Let us chose a version of E(θ1,...,θr) [Xi | X1, . . . , Xi−1, Xi+1, . . . , Xr] and for
that version and ω ∈ Ω1 with Ω1 a set of probability one let us take:

E(θ1,...,θr) [Xi | X1, . . . , Xi−1, Xi+1, . . . , Xr] (ω) =

= φ(θ1,...,θi−1,θi,θi+1,...,θr)(X1(ω), . . . , Xi−1(ω), Xi+1(ω), . . . , Xr(ω)) ,

Now, considering the correspondence ϕi : Θ� Θr−1 such that, for

(θ1, . . . ,θi−1,θi,θi+1, . . . ,θr) ∈ Θr

we have

ϕi(θi) =
{
θî = (θ1, . . . ,θi−1,θi+1, . . . ,θr)

}
⊂ Θr−1 ,
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define:

m î→i(θi) = m î→i(θi)(ω) :=

= sup
(θ1,...,θr)

E(θ1,...,θr) [Xi | X1, . . . , Xi−1, Xi+1, . . . , Xr] (ω) =

= sup
(θ1,...,θr)

φ(θ1,...,θr)(X1(ω), . . . , Xi−1(ω), Xi+1(ω), . . . , Xr(ω)) =

= sup
(θi,ϕi(θi))≡(θi,θî)

φ(θ1,...,θr)(X1(ω), . . . , Xi−1(ω), Xi+1(ω), . . . , Xr(ω)) .

Then, considering the correspondence r î→i(θi)(ω) : Θ � Θr−1 giving the max-
imisers,

r î→i(θi)(ω) :=

=
{
θî ∈ ϕ (θi) : φ(θ1,...,θr)(X1(ω), . . . , Xi−1(ω), Xi+1(ω), . . . , Xr(ω)) = m î→i(θi)

}
,

we may conclude applying the Berge’s maximum theorem, recalled ahead in the
Appendix as Theorem 6.2, that for almost all ω ∈ Ω we have that m î→i(ω) is con-
tinuous and the “argmax” correspondence r î→i(θi)(ω) is upper hemicontinuous
with compact values.

In order to conclude we aim to deal with the best possible random reply. So
we first consider the correspondence R(ω) : Θr � Θr, proposed in Definition 5.2,
defined for almost all ω ∈ Ω by:

R(ω) (θ1,θ2, . . . ,θr) =
⋃

i∈{1,...,r} , θî∈r î→i(θi)(ω)

{((
θ1,θ1̂,

)
, . . . , (θr,θr̂, )

)}
,

(5.6)
that is, the correspondence that to (θ1,θ2, . . . ,θr) associates the set of all ma-
ximisers of the functions m î→i(θi). Let us first observe that since R(ω) is the
product of two correspondences—the first factor being the identity function in
Θr and the second factor being given by r î→i(θi)(ω) which we already know is
a upper hemicontinuous correspondence with compact values—is hemicontinuous
with compact values (see [1, p. 568]). We can also observe that by the close graph
theorem (see [1, p. 561]) R(ω) is a closed correspondence.

In order to prove the conditions for fixed point theorem to be applied we consider
the convex hull of the correspondence R(ω), that is, we define:

M(ω) (θ1,θ2, . . . ,θr) = Conv (R(ω) (θ1,θ2, . . . ,θr))

that is, the closure of the convex hull of R(ω) (θ1,θ2, . . . ,θr). Since Θr is convex
M(ω) is a correspondence defined in Θr and taking convex set values in Θr.
Now the closure of the convex hull of a hemicontinuous orrespondence taking
compact values is hemicontinuous and takes compact values (see Theorem 17.35
in [1, p. 573]) and so again the closed graph theorem followed by the Kakutani-
Fan-Glicksberg’s fixed point theorem the correspondence M(ω) has a compact non
empty set of fixed points and the proof is finished. �

We now study the best possible average reply fixed points detailed in the ex-
ample studied in Sections 2 and 3. Let us state our starting point. By For-
mula (5.6) we have defined for almost all ω ∈ Ω a correspondence R(ω) that to
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some vector (θ1,θ2, . . . ,θr) in Θr associates the random set on the righthand side
of Formula (5.6). It is natural to define the average correspondence R to be a
correspondence given by:

R (θ1,θ2, . . . ,θr) := E

 ⋃
i∈{1,...,r} , θî∈r î→i(θi)

{((
θ1,θ1̂

)
, . . . , (θr,θr̂)

)} ,

where on the righthand side we have the expectation of a random set, since
r î→i(θi) = r î→i(θi)(ω). In order to clarify this definition we observe that af-
ter taking expectations we should obtain a correspondence. Let us consider a
selection in the variables (θ1,θ2, . . . ,θr); by definition it is a function S such that:

S (θ1,θ2, . . . ,θr) ∈
⋃

i∈{1,...,r} , θî∈r î→i(θi)

{((
θ1,θ1̂

)
, . . . , (θr,θr̂)

)}
that is, such that

S (θ1,θ2, . . . ,θr) =
((
θ1,θ1̂

)
, . . . , (θr,θr̂)

)
|θî∈r î→i(θi) , i∈{1,...,r}=

=
((
θ1,θ1̂

)
1Ir 1̂→1(θ1)(θ1̂), . . . ,

(
θr,θr̂)1Ir 1̂→r(θr)(θr̂

))
with, for i ∈ {1, . . . , r}:

1Ir î→i(θi)(θî) =

{
1 if θî ∈ r î→i(θi)
0 if θî /∈ r î→i(θi) .

For such a selection, in case that,

E

[
1Ir î→i(θi)(θî)

]
= 1Ir î→1(θi)(θî) , (5.7)

which happens if #r î→1(θi) = 1, that is, if there is always an unique maximiser
see [9, p.282], we should have:

E [S (θ1,θ2, . . . ,θr)] = E
[((
θ1,θ1̂

)
1Ir 1̂→1(θ1)(θ1̂), . . . ,

(
θr,θr̂)1Ir 1̂→r(θr)(θr̂

))]
=

=
((
θ1,θ1̂

)
E
[
1Ir 1̂→1(θ1)(θ1̂)

]
, . . . ,

(
θr,θr̂)E

[
1Ir 1̂→r(θr)(θr̂

]))
=
((
θ1,θ1̂

)
1Ir 1̂→1(θ1)(θ1̂), . . . ,

(
θr,θr̂)1Ir 1̂→r(θr)(θr̂

))
As a consequence, we may write:

E [S (θ1,θ2, . . . ,θr)] ∈
⋃

i∈{1,...,r} , θî∈r î→i(θi)

{((
θ1,θ1̂

)
, . . . , (θr,θr̂)

)}
,

that is, E [S (θ1,θ2, . . . ,θr)] is a selection of the non random correspondence R
given by:

R (θ1,θ2, . . . ,θr) =
⋃

i∈{1,...,r} , θî∈r î→i(θi)

{((
θ1,θ1̂

)
, . . . , (θr,θr̂)

)}
.

We can now formulate a result that guaranties the existence of average equilibrium
points for the game.

Corollary 5.6 (On the best possible average reply). Under the same hypothesis of
Theorem 5.5 suppose that for all i ∈ {1, . . . , r} the condition given by Formula (5.7)
is verified. Then there are average equilibrium points for the game.
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Proof. The same arguments developed in the proof of the preceding theorem apply.

6. Conclusions and further work

There are some advantages of the approach we have taken in this work, namely,
considering strategies given by probability laws, players’s moves given by random
variables with the respective laws given by the strategies and the payoffs given as
functions of the conditional expectations of one player move with respect to the
other, or others; the first advantage is that we can consider that the players do
not play independently of each other, that is, we can introduce—in a simple and
feasible way—a dependence structure on the strategies of the players; the second
advantage is that with a dynamic game we have that the moves are stochastic
processes; finally, a third advantage is that we contemplate the possibility of players
not having deterministic moves, but preferably, random moves but with a given
distribution corresponding to a defined strategy.

In what concerns for the example in Section 2, the main conclusion is that
without information on the outcome of the initial draw of the game—or on its law—
it seems natural that the best strategy for player one is to play with B(0.496) and
for player two to play with B(0.5). The origin of this asymmetry comes perhaps
from the value of the constant describing the dependence structure of the players
laws. If some information is fed into the game, namely by stating that the law of
the initial draw B(r) has a parameter that belongs to some interval, for instance,
not containing 1/2, then the asymmetry of the laws of the players is reinforced,
the second player having to play a more extreme game, with its law parameter
either close to zero or to one. A natural question is: what is the importance of
considering that the pure strategies are given by {H,T} = {1,−1}? In principle
it corresponds to H giving to the statute of success. But then, what happens if we
use only positive values, or any other values? Another natural question is: what is
the importance of the dependence structure of the players laws? The constant c in
the Clayton’s copula relates to lower tail dependence. The value c = 0 corresponds
to independence and larger values of c to comonotonicity.

An interesting question relates to the determination of the optimality degree of
the equilibrium points for the game. In the approach we are following the fixed
points are obtained from functions that are averages; the consideration of optimal
extreme equilibrium points requires a different and less classical approach.

One example of interesting game is to consider a finite number of players in
some stock exchange. In the Black-Scholes model, if the moves of the players are
given by buying call options the price of these call options will basically depend
on a bet on the volatility, that is, on a probability law describing the choice of
the volatility in some compact interval; such an example will be treated in future
work.

Appendix

In this section we reference some important results that are needed in the main
text.
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The following result in a Euclidean space with the Lebesgue measure was used
in the proof of Theorem 5.5; we state and prove it for the reader’s commodity.

Lemma 6.1. Suppose that, for fθ > 0 a locally integrable function, we have:

∀ε > 0 , ∃θε ∀θ ‖θ‖ ≤ ‖θε‖ , ∀A λ(A) < +∞⇒
∫
A

fθdλ ≤ ε . (6.1)

Suppose furthermore that the whole space can be covered by a sequence of sets of
finite measure (σ-finite space). Then, almost everywhere,

lim
‖θ‖→0

fθ = 0 .

Proof. By Tchebycheff inequality we have that for A such that λ(A) < +∞,

λA [fθ ≥ a] ≤ 1

a

∫
A

fθdλ ,

with λA denoting the restriction of λ to A. Choose a = 1/n and, in Formula (6.1)
ε = 1/n3 and we will now have:

λA

[
fθ ≥

1

n

]
≤ 1

n2
.

By a Borel-Cantelli type result we now have that:

λA

[
lim sup

n

{
fθn
≥ 1

n

}]
= 0 ,

and so we have that almost everywhere over A that,

∃mx ≥ 1 ∀n ≥ mx∀θ , ‖θ‖ ≤ ‖θn‖ ⇒ fθ(x) ≤ 1

n
.

Since the space is σ-finite, that implies the result announced. �

The following well known results are crucial for the proof of the existence of
equilibrium points in Theorem 5.5. A general reference for these results is [1]. We
recall that we consider the following notation for (θ1,θ2, . . . ,θr) ∈ Θr:

θî := (θ1, . . . ,θi−1,θi+1, . . . ,θr) .

In Formula (6.2) we will also use the convention:(
θi,θî

)
≡ (θ1,θ2, . . . ,θr) .

Theorem 6.2 (Berge’s maximum theorem). Let ϕ : Θ � Θr−1 be a continuous
correspondence with nonempty compact values. Let ψ : Θ × Θr−1 → R be a
continuous function. Consider the optimisation given by:

m î→i(θi) = sup
θî∈ϕθi)

ψ
(
θi,θî

)
= sup
θî∈ϕ(θi)

ψ (θ1,θ2, . . . ,θr) , (6.2)

Consider also the correspondence µ : Θ� Θr−1 of maximisers of the optimisation
problem given by:

µ(θi) :=
{
θî ∈ ϕ (θi) : ψ

(
θi,θî

)
= m î→i(θi)

}
.

Then the value function m î→i is continuous and the “argmax” correspondence µ
is upper hemicontinuous with compact values.
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NOTES

Theorem 6.3 (Kakutani–Fan–Glicksberg). Let Θ be a nonempty compact convex
subspace of a locally convex Hausdorff space and let the correspondence R : Θr �
Θr have a closed graph and nonempty convex values. Then the set of fixed points
of R is compact and nonempty.
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Notes

1Brower’s fixed point theorem: every continuous function from a nonempty convex compact

subset K of a Euclidean space to K itself has a fixed point.
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