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Abstract. The paper is devoted to investigation of stochastic differential

equations and inclusions with backward mean derivatives. We deal with

the property of global in time existence of solutions of “inverse” Cauchy
problem for such equations and inclusions having lowers semicontinuous right-

hand sides. A condition that guarantees the global in time existence of such

solutions is obtained. For inclusions with backward mean derivatives having
upper semi-continuous right-hand sides we prove the existence of optimal

solution minimizing a certain cost criterion.

1. Introduction

The notion of mean derivatives (forward, backward, symmetric and antisym-
metric) was introduced by E. Nelson in [1, 2, 3]. In [4] (see also [5]) an additional
mean derivative, called quadratic, was introduced so that from some Nelson’s mean
derivative and the quadratic one it became in principle possible to find a stochastic
process having those derivatives.

This is a brief survey of results published in [6, 7, 8]. We investigate sto-
chastic differential equations and inclusions given in terms of backward mean
derivatives. We deal with inclusions with both lower semi-continuous and up-
per semi-continuous right-hand sides. The case of stochastic differential inclusions
with forward mean derivatives was investigated in [9]. Here we present some facts
about inclusions with forward mean derivatives as the machinery for those with
backward ones.

Besides this Introduction, the paper consists of 7 sections. Section 1 is devoted
to the preliminaries from the theory of mean derivatives while Section 2 – to
preliminaries from the set-valued analysis. The detailed description of the former
can be found, e.g., in [5], and of the latter, e.g., in [10].

In Section 3 we deal with differential equations with backward mean derivatives.
This section gives the basis of next consideration.

In Section 4 we deal with inclusions with backward mean derivatives having
lower semi-continuous right-hand sides. We investigate the property of global in
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time existence of solutions of “inverse” Cauchy problem for those inclusions. A
condition that guarantees the global in time existence of such solutions is obtained.

In Section 5 we present some preliminary fact about inclusions with forward
mean derivatives necessary for constructions below.

Section 6 is devoted to the inclusions with backward mean derivatives having
upper semi-continuous right-hand sides. In Section 7‘ we prove the existence of
optimal solution of the latter inclusions minimizing a certain cost criterion.

Some remarks on the notation. In this paper we deal with equations and in-
clusions in the linear space Rn, for which we always use coordinate presentation
of vectors and linear operators. Vectors in Rn are considered as columns. If X is
such a vector, the transposed row vector is denoted by X∗. Linear operators from
Rn to Rn are represented as n× n matrices, the symbol ∗ means transposition of
a matrix (pass to the matrix of conjugate operator). The space of n× n matrices
is denoted by L(Rn,Rn).

By S(n) we denote the linear space of symmetric n × n matrices that is a
subspace in L(Rn,Rn). The symbol S+(n) denotes the set of positive definite
symmetric n × n matrices that is a convex open set in S(n). Its closure, i.e., the
set of positive semi-definite symmetric n× n matrices, is denoted by S̄+(n).

Everywhere below for a set B in Rn or in L(Rn,Rn) we use the norm introduced
by usual formula ‖B‖ = sup

y∈B
‖y‖.

For the sake of simplicity we consider equations, their solutions and other ob-
jects on a finite time interval t ∈ [0, T ].

2. Preliminaries from mean derivatives

In this section we briefly describe preliminary facts about mean derivatives. See
details in [1, 2, 3, 5].

Consider a stochastic process ξ(t) in Rn, t ∈ [0, T ], given on a certain probability
space (Ω,F ,P) and such that ξ(t) is an L1 random element for all t. It is known
that such a process determines 3 families of σ-subalgebras of the σ-algebra F :

(i) ”the past” Pξt generated by preimages of Borel sets from Rn under all map-
pings ξ(s) : Ω→ Rn for 0 ≤ s ≤ t;

(ii) ”the future” Fξt generated by preimages of Borel sets from Rn under all
mappings ξ(s) : Ω→ Rn for t ≤ s ≤ T ;

(iii) ”the present” (”now”) N ξ
t generated by preimages of Borel sets from Rn

under the mapping ξ(t) : Ω→ Rn.
All the above families we suppose to be complete, i.e., containing all sets of

probability zero.

For the sake of convenience we denote by Eξt the conditional expectation E(·|N ξ
t )

with respect to the ”present” N ξ
t for ξ(t).

Following [1, 2, 3], introduce the following notions of forward and backward
mean derivatives.
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Definition 2.1. (i) The forward mean derivative Dξ(t) of ξ(t) at the time instant
t is an L1 random element of the form

Dξ(t) = lim
4t→+0

Eξt (
ξ(t+4t)− ξ(t)

4t
), (2.1)

where the limit is supposed to exist in L1(Ω,F ,P) and 4t → +0 means that 4t
tends to 0 and 4t > 0.

(ii) The backward mean derivative D∗ξ(t) of ξ(t) at t is the L1-random element

D∗ξ(t) = lim
∆t→+0

Eξt (
ξ(t)− ξ(t−∆t)

∆t
) (2.2)

where (as well as in (i)) the limit is assumed to exist in L1(Ω,F ,P) and ∆t→ +0
means that ∆t→ 0 and ∆t > 0.

Remark 2.2. If ξ(t) is a Markov process then evidently Eξt can be replaced by

E(·|Pξt ) in (2.1) and by E(·|Fξt ) in (2.2). In initial Nelson’s works there were
two versions of definition of mean derivatives: as in our Definition 2.1 and with
conditional expectations with respect to ”past” and ”future” as above that coincide
for Markov processes. We shall not suppose ξ(t) to be a Markov process and give
the definition with conditional expectation with respect to ”present” taking into
account the physical principle of locality: the derivative should be determined by
the present state of the system, not by its past or future.

Following [4] (see also [5]) we introduce the differential operator D2 that differ-
entiates an L1 random process ξ(t), t ∈ [0, T ] according to the rule

D2ξ(t) = lim
4t→+0

Eξt (
(ξ(t+4t)− ξ(t))(ξ(t+4t)− ξ(t))∗

4t
), (2.3)

where (ξ(t +4t) − ξ(t)) is considered as a column vector (vector in Rn), (ξ(t +
4t) − ξ(t))∗ is a row vector (transposed, or conjugate vector) and the limit is
supposed to exists in L1(Ω,F ,P). We emphasize that the matrix product of a
column on the left and a row on the right is a matrix. It is shown that D2ξ(t)
takes values in S̄+(n), the set of symmetric semi-positive definite matrices. We
call D2 the quadratic mean derivative.

Remark 2.3. From the properties of conditional expectation (see, e.g., [11]) it
follows that there exist Borel mappings a(t, x), a∗(t, x) and α(t, x) from R × Rn
to Rn and to S̄+, respectively, such that Dξ(t) = a(t, ξ(t)), D∗ξ(t) = a∗(t, ξ(t))
and D2ξ(t) = α(t, ξ(t)). Following [11] we call a(t, x), a∗(t, x) and α(t, x) the
regressions.

Let Borel measurable mappings a(t, x) and α(t, x) from [0, T ] × Rn to Rn and
to S̄+(n), respectively, be given. We call the system of the form{

Dξ(t) = a(t, ξ(t)),
D2ξ(t) = α(t, ξ(t)),

(2.4)

a first order differential equation with forward mean derivatives.
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Definition 2.4. We say that (2.4) has a solution on [0, T ] with initial condition
ξ(0) = x0, if there exist a probability space (Ω,F ,P) and a process ξ(t) given on
(Ω,F ,P) and taking values in Rn such that P-a.s. and for almost all t (2.4) is
satisfied.

Several existence of solution theorems for (2.4) can be found in [4].

Definition 2.5. The smooth function ϕ : X → R sending the topological space
X to R is called proper if the preimage of every relatively compact set in R is
relatively compact in X.

Denote by L the generator of Markov process generated by equation (2.4).

Theorem 2.6. Let on Rn there exist a smooth proper positive function ϕ : Rn → R
such that Lϕ < C for all t ∈ [0,+∞) and x ∈ Rn where C > 0 is a certain real
constant. Then the flow generated by equation (2.4) is complete, i.e. all solutions
of (2.4) with deterministic initial values exist for t ∈ [0,+∞).

Theorem 2.6 is a reformulation of [12, Theorem IX. 6A].

3. Preliminaries from set-valued mappings and differential inclusions

A set-valued mapping F from a set X into a set Y is a correspondence that
assigns a non-empty subset F (x) ⊂ Y to every point x ∈ X; F (x) is called the
image of x.

If X and Y are metric spaces, for set-valued mappings there are several different
analogues of continuity that in the case of single-valued mappings are transformed
into usual continuity.

Definition 3.1. A set-valued mapping F is called upper semi-continuous at the
point x ∈ X if for each ε > 0 there exists a neighbourhood U(x) of x such that
from x′ ∈ U(x) it follows that F (x′) belongs to the ε-neighbourhood of the set
F (x). F is called upper semi-continuous on X if it is upper semi-continuous at
every point of X.

Definition 3.2. A set-valued mapping F is called lower semi-continuous at the
point x ∈ X if for each ε > 0 there exists a neighbourhood U(x) of x such that
from x′ ∈ U(x) it follows that F (x) belongs to the ε-neighbourhood of F (x′). F
is called lower semi-continuous on X if it is lower semi-continuous at every point
of X

An important technical role in investigating set-valued mappings is played by
single-valued mappings that approximate the set-valued ones in some sense. We
describe two kinds of such single-valued mappings: selectors and ε-approximations.

Definition 3.3. Let F : X → Y be a set-valued mapping. A single-valued
mapping f : X → Y such that for each x ∈ X the inclusion f(x) ∈ F (x) holds, is
called a selector of F .

Not every set-valued mapping has a continuous selector. For lower semi-continu-
ous set-valued mappings with convex closed values their existence is proved in the
classical Michael’s Theorem.
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Theorem 3.4. (Michael’s Theorem) If X is an arbitrary metric space and Y is a
Banach space, a lower semi-continuous mapping such that the value of every point
of X is a convex closed set, has a continuous selector.

Upper semi-continuous mappings arise in applications more often than lower
semi-continuous ones. Generally speaking, they do not have continuous selectors
(but they have measurable ones). The so called ε-approximations are very much
useful for investigating the upper semi-continuous mappings.

Recall that for a mapping F : X → Y of a metric space X to a metric space
Y its graph is the set of pairs {(x, F (x)) | x ∈ X} in X × Y . Note that for a
set-valued F the value F (x) is a set in Y .

Definition 3.5. For given ε > 0 a continuous single-valued mapping fε : X → Y
is called an ε-approximation of a set-valued mapping F : X → Y if the graph of f
as a set in X × Y , belongs to the ε-neighbourhood of the graph of F .

It is known (see, e.g., [10]), that for upper semi-continuous set-valued mappings
with convex closed images in normed linear spaces the ε-approximations exist for
each ε > 0.

Let F : R× Rn → Rn be a set-valued mapping. A differential inclusion

ẋ ∈ F (t, x) (3.1)

is an analogue of differential equation and transforms into the latter if F is single-
valued.

Below we are dealing with analjgues of refdi) where in the left-hand side there
are backward of forward mean derivatives.

4. Differential equations with backward mean derivatives

The system {
D∗ξ(t) = a(t, ξ(t))
D2ξ(t) = α(t, ξ(t))

(4.1)

is called a first order differential equation with backward mean derivatives.
Notice that we do not introduce the notion of backward analog of operator

D2 since, applying the properties of Itô integral, one can easily prove that for a
diffusion process ξ(t) the result of application of that analog coincides with D2ξ(t)
(this follows from the results of [2, 3]).

Definition 4.1. We say that (4.1) has a solution on [0, T ] with condition ξ(T ) =
ξ0, if there exist a probability space (Ω,F ,P) and a process ξ(t) given on (Ω,F ,P)
and taking values in Rn such that ξ(T ) = ξ0, P-a.s. and for almost all t equality
(4.1) is satisfied.

Consider a solution η(t), given on t ∈ [0, T ], with initial condition η(0) = ξ0 ∈
Rn of the following differential equation with forward mean derivatives{

Dη(t) = −a(T − t, η(t)),
D2η(t) = α(T − t, η(t)).

(4.2)

Theorem 4.2. The process ξ(t) = η(T − t) is a solution of (4.1) with condition
ξ(T ) = ξ0 where η(t) is a solution of (4.2) with initial condition η(0) = ξ0.
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Indeed, D∗ξ(t) = −Dη(T − t) = a(t, η(T − t)) = a(t, ξ(t)). For D2ξ(t) the
arguments are analogous. The equality ξ(T ) = ξ0 is obvious.

Now we are in position to find conditions, under which solutions of (4.1) exist
on every interval [0, T ]. It is evident that for this it is enough to show that the

flow generated by equation (4.2), is complete. Denote the generator of (4.2) by L̃.

Theorem 4.3. If on Rn there exists a smooth proper positive function ϕ : Rn → R
such that L̃ϕ < C for some real C > 0 at all t ∈ [0,+∞) and x ∈ Rn, then all
solutions of (4.1) with deterministic values of “inverse” Cauchy problem exist on
every interval [0, T ].

Theorem 4.3 follows from Theoren 2.6 and Theorem 4.2.

5. Differential inclusions with backward mean derivatives having lower
semi-continuous right-hand sides

Let a(t, x) and α(t, x) be set-valued mappings from [0, T ] × Rn to Rn and to
S̄+(n), respectively. The system of the form{

D∗ξ(t) ∈ a(t, ξ(t)),
D2ξ(t) ∈ α(t, ξ(t)).

(5.1)

is called a first order differential inclusion with backward mean derivatives.

Definition 5.1. We say that (5.1) has a solution on [0, T ] with “inverse” Cauchy
condition ξ(T ) = ξ0, if there exist a probability space (Ω,F ,P) and a process ξ(t)
given on (Ω,F ,P) and taking values in Rn such that ξ(T ) = ξ0 and P-a.s. and for
almost all t inclusion (5.1) is satisfied.

For equations with backward mean derivatives and inclusions with forward mean
derivatives the definition of solution is quite analogous.

Consider a solution η(t), given on t ∈ [0, T ], with initial condition η(0) = ξ0 of
the following differential inclusion with forward mean derivatives{

Dη(t) ∈ −a(1− t, η(t)),
D2η(t) ∈ α(1− t, η(t)).

(5.2)

Theorem 5.2. The process ξ(t) = ξ0 − η(T ) + η(T − t) is a solution of (5.1)
with condition ξ(T ) = ξ0 where η(t) is a solution of (5.2) with initial condition
η(0) = ξ0.

Indeed, D∗ξ(t) = −Dη(T − t) ∈ a(t, η(T − t)) = a(t, ξ(t)). For D2ξ(t) the
arguments are analogous.

Now we are in position to find conditions, under which solutions of (5.1) exist
on every interval [0, T ].

Specify t ∈ [0, T ], x ∈ Rn, a point a ∈ a(t, x) with coordinates ai of this vector
and a point α ∈ α(t, x) with elemets αij of this matrix. Consider the differential

operator L(t, x.a, α) = −ai ∂
∂xi + αij ∂2

∂xi∂xj

Theorem 5.3. Let a and α be lower semicontinuous and have closed convex
values. If on Rn there exists a smooth proper positive function ϕ : Rn → R
such that for every t ∈ [0, T ], x ∈ Rn, a ∈ a(t, x) and α ∈ α(t, x) the estimate
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L(t, x.a, α)ϕ < C holds for some real C > 0, on every interval [0, T ] there exists
a solution of (5.1) with deterministic value of “inverse” Cauchy problem with
ξ(T ) = ξ0.

Proof. By Michael’s theorem their exist continuous selectors a(t.x) of a(t,x) and
α(t, x) of α(t.x), respectively. So, it is sufficient to prove the statement of theorem
for the solution of (4.1) with those a(t.x) and α(t, x). But this solution is a solution
of equation with forward mean derivatives{

Dη(t) ∈ −a(1− t, η(t)),
D2η(t) ∈ α(1− t, η(t)).

(5.3)

where η(t) is a solution of (5.3) with initial condition η(0) = ξ0.The generator L
of the flow generated by equation (5.3) is a selector of L(t, x.a, α). Hence, by the
hypothesis of theorem, equation (5.3) satisfies the conditions of Theorem 2.6 and
so the solution exists for all t ∈ [0,∞). Thus on every interval [0, T ] the solution
of “inverse” Cauchy problem for (5.1) with ξ(T ) = ξ0 exists. �

6. Auxiliary facts about inclusions with forward mean derivatives
having upper semi-continuous right-hand sides

Let a(t, x) and α(t, x) be set-valued mappings from [0, T ] × Rn to Rn and to
S̄+(n), respectively. The system of the form{

Dξ(t) ∈ a(t, ξ(t)),
D2ξ(t) ∈ α(t, ξ(t)).

(6.1)

is called a first order differential inclusion with forward mean derivatives.

Definition 6.1. We say that (6.1) has a solution on [0, T ] with initial condition
ξ(0) = x0, if there exist a probability space (Ω,F ,P) and a process ξ(t) given on
(Ω,F ,P) and taking values in Rn such that P-a.s. and for almost all t (6.1) is
satisfied.

Note that for simplicity here we consider only deterministic initial conditions,
i.e., ξ0 in Definition 6.1 is a point in Rn.

Denote by Ω the Banach space C0([0, T ],Rn) of continuous curves in Rn given
on [0, T ], with usual uniform norm. Introduce in Ω the σ-algebra F generated by
cylinder sets. Everywhere below we use this notation. Recall that F is the Borel
σ-algebra in Ω. Note that the elementary event in Ω is a curve that we denote by
x(·). Its value at t ∈ [0, T ] is denoted by x(t).

It is a well-known fact that every stochastic process η with continuous sample
paths in Rn, given on a certain probability space (Ω̃, F̃ ,P) for t ∈ [0, T ], is a

measurable mapping from (Ω̃, F̃) to (Ω,F). Thus it determines a measure µη on
(Ω,F) by the standard formula µη(A) = P(η−1(A)) for every A ∈ F .

There is a standard process c(t, x(·)) in Rn given on (Ω,F). It is the so-called
“coordinate process” defined by the formula c(t, x(·)) = x(t). The coordinate pro-
cess on the probability space (Ω,F , µη) is the standard description of the process
η(t) on this probability space. See details, e.g., in [13, 5].
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We shall look for solutions of (6.1) with continuous sample paths and mainly the
solution will be described as a coordinate process on Ω where the corresponding
measure will be constructed.

Definition 6.2. The perfect solution of (6.1) is a stochastic process with contin-
uous sample paths such that it is a solution in the sense of Definition 6.1 and the
measure corresponding to it on the space of continuous curves, is a weak limit of
measures generated by solutions of a sequence of diffusion-type Itô equations with
continuous coefficients.

Remark 6.3. Note that perfect solutions, approximated by solutions of diffusion
type equation, naturally arise in applications. But there is an open question
whether any solution is perfect or non-perfect solutions also may exist.

Lemma 6.4. Let α(t, x) be a jointly continuous (measurable, smooth) mapping
from [0, T ] × Rn to S+(n). Then there exists a jointly continuous (measurable,
smooth, respectively) mapping A(t, x) from [0, T ]×Rn to L(Rn,Rn) such that for
all t ∈ R, x ∈ Rn the equality A(t, x)A∗(t, x) = α(t, x) holds.

The proof is available in [4, Lemma 2.2].

Theorem 6.5 ([9]). Specify an arbitrary initial value ξ0 ∈ Rn. Let a(t, x) be an
upper semi-continuous set-valued mapping with closed convex images from [0, T ]×
Rn to Rn and let it satisfy the estimate

‖a(t, x)‖2 < K(1 + ‖x‖2) (6.2)

for some K > 0.
Let α(t, x) be an upper semicontinuous set-valued mapping with closed convex

images from [0, T ]×Rn to S̄+(n) such that for each α(t, x) ∈ α(t, x) the estimate

|trα(t, x)| < K(1 + ‖x‖2) (6.3)

takes place for some K > 0.
Then for every sequence εi → 0, εi > 0, each pair of sequence ai(t, x) and

αi(t, x) of εi-approximations of a(t, x) and α(t, x), respectively, generates a perfect
solution of (6.1) with initial condition ξ0.

7. Optimal solutions of inclusions with backward mean derivatives
having upper semi-continuous right-hand sides

Let a(t, x) and α(t, x) be set-valued mappings from [0, T ] × Rn to Rn and to
S̄+(n), respectively. The system of the form{

D∗ξ(t) ∈ a(t, ξ(t)),
D2ξ(t) ∈ α(t, ξ(t)).

(7.1)

is called a first order differential inclusion with backward mean derivatives.

Definition 7.1. We say that (7.1) has a solution on [0, T ] with “inverse” Cauchy
condition ξ(T ) = ξ0, if there exist a probability space (Ω,F ,P) and a process ξ(t)
given on (Ω,F ,P) and taking values in Rn such that ξ(T ) = ξ0 and P-a.s. and for
almost all t inclusion (7.1) is satisfied.
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Consider a solution η(t), given on t ∈ [0, T ], with initial condition η(0) = ξ0 of
the following differential inclusion with forward mean derivatives{

Dη(t) ∈ −a(T − t, η(t)),
D2η(t) ∈ α(T − t, η(t)).

(7.2)

Theorem 7.2. The process ξ(t) = ξ0 − η(T ) + η(T − t) is a solution of (7.1)
with condition ξ(T ) = ξ0 where η(t) is a solution of (7.2) with initial condition
η(0) = ξ0.

Indeed, D∗ξ(t) = −Dη(T − t) ∈ a(t, η(T − t)) = a(t, ξ(t)). For D2ξ(t) the
arguments are analogous.

Theorem 7.3. Specify an arbitrary final value ξ0 ∈ Rn. Let the set-valued map-
pings a(t, x) and α(t, x) satisfy the conditions of Theorem 6.5. Then for ev-
ery sequence εi → 0, εi > 0, each pair of sequence ai(t, x) and αi(t, x) of εi-
approximations of a(t, x) and α(t, x), respectively, generates a perfect solution of
(7.1) with inverse initial condition ξ0.

Indeed, under the hypothesis of Theorem 7.3 inclusion (7.2) satisfies the con-
dition of Theorem 6.5. Thus the assertion of Theorem 7.3 follows from Theorm
7.2.

Remark 7.4. Note that all sequences of ε-approximations for all sequences of εi →
0, used in the proof of Theorem 6.5, satisfy (6.2) and (6.3) with the same K so
that by corollary in Section III.2 [13] the set of measures {µi} (corresponding to
all sequences and all i is weakly compact.

Let f be a continuous bounded real-valued function on R × Rn. For solutions
of (6.1) consider the cost criterion in the form

J(ξ(·)) = E

∫ T

0

f(t, ξ(t))dt (7.3)

We are looking for solutions, for which the value of the criterion is minimal.

Theorem 7.5. Among the perfect solutions of (7.1) constructed in the proof of
Theorem 7.3, there is a solution ξ(t) on which the value of J is minimal.

Proof. Since all the measures on (Ω,F), constructed in the proof of Theorem
7.3 for perfect solutions of (7.1), are probabilistic and the function f in (7.3) is
bounded, the set of values of J on those solutions is bounded. If that set of values
has a minimum, then the corresponding measure µ is the one we are looking for:
the coordinate process on the space (Ω,F , µ) is an optimal solution.

Suppose that the above-mentioned set of values has no minimum, but then
it has a greatest lower bound ℵ that is a limit point in that set. Let µ∗i be a
sequence of measures such that for the corresponding solutions ξ∗i (t) the values
J(ξ∗i (t)) converge to ℵ. Every µ∗i is a weak limit of a sequence of measures µij
corresponding to some sequence of εj-approximations as j → ∞. One can easily
see that it is possible to select from the sequence a subsequence (for simplicity
we denote it by the same symbol µij) such that for the corresponding solutions
ξij(t) and for all i we obtain the uniform convergence of J(ξij(·)) to J(ξ∗i (·)) as
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j →∞. Then J(ξii(·))→ ℵ as i→∞. Since the set of all measures corresponding
to all approximations, is weakly compact (see above), we can select from µii a
subsequence (denote it by the same symbol µii) that weakly converges to a certain
measure µ∗. By the construction, for the coordinate process ξ∗(t) on (Ω,F , µ∗)
we get J(ξ∗(·)) = ℵ, i.e., the value is minimal. Since µ∗ is a limit of µii, ξ

∗(t) is a
perfect solution of (6.1) that we are looking for. �
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