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ABSTRACT 
Early and accurate detection of brain tumors is crucial for better patient outcomes, but traditional methods that 

rely on manual image analysis are often time-consuming and prone to errors. This study presents a deep 

learning-based approach using a hyperparameter-optimized AlexNet Convolutional Neural Network (CNN) 

model to classify brain tumors from MRI scans. A diverse dataset comprising 7023 MRI images across four 

classes—glioma, meningioma, pituitary, and no tumor—was employed. The model was trained with and without 

data augmentation using varied epochs (10, 15, 20), a batch size of 32, and the Adamax optimizer with a learning 

rate of 0.001. The AlexNet architecture incorporated ReLU and softmax activation functions for effective feature 

extraction and classification. Experimental results demonstrated high classification performance, achieving a 

peak training accuracy of 99.97%, test accuracy of 96.15%, and AUC values exceeding 99.7% across all classes. 

Evaluation metrics including precision, recall, F1-score, and ROC analysis confirm the robustness of the model. 

These findings highlight the potential of a fine-tuned AlexNet model in supporting automated, accurate, and 

efficient brain tumor diagnosis using MRI data. 
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1. INTRODUCTION 

Accurate and timely detection of brain tumors remains crucial in combating neurological diseases. Magnetic 

Resonance Imaging (MRI) is a leading technique for obtaining detailed anatomical insights [1]. Deep learning has 

significantly advanced medical image analysis, enhancing tumor detection and classification precision [2]. 

Gliomas, the most common primary brain tumors, and pituitary tumors, due to their critical location, require 

accurate identification for effective treatment [3] and [4]. 

Deep learning, a subset of AI, excels at detecting complex patterns in MRI data, offering improved diagnostic 

accuracy [5]. This study focuses on applying deep learning, particularly convolutional neural networks (CNNs), to 

detect and classify gliomas, pituitary tumors, and healthy brain tissue using MRI scans [6]. 

Neurological conditions such as stroke, hemorrhage, multiple sclerosis, and tumors pose major health challenges. 

Early diagnosis is key to effective treatment. MRI remains the gold standard for brain tumor detection [7] and [8]. 

The paper is organized as follows: Section 2 provides an overview of deep learning methods used for brain tumor 

analysis. Section 3 describes the dataset, preprocessing steps, and model development process. Section 4 

highlights the experimental results, while Section 5 wraps up the study with key insights, limitations, and 

suggestions for future research. 

2. RELATED WORKS 
Early and accurate detection of brain tumors is crucial for improving survival and quality of life. Traditional 

diagnostic methods, relying on manual image interpretation, are often slow and error-prone, prompting the use of 

machine learning—especially CNNs—to improve detection accuracy [9]. AlexNet's breakthrough performance in 

the ILSVRC demonstrated deep learning‘s potential in image analysis [10], leading to its application in medical 

imaging. Studies show CNNs can automatically learn hierarchical features from MRI scans, improving tumor 

detection and segmentation [11] and [12]. CNNs have shown high accuracy in glioma segmentation [13] and in 

differentiating various tumor types [14]. AlexNet has been adapted for brain tumor detection through fine-tuning, 

transfer learning, and specialized preprocessing [15]. Ensemble models combining AlexNet with VGGNet, 
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ResNet, and InceptionNet further boost detection performance [16]. However, challenges such as class imbalance, 

limited labeled data, and medical image variability remain [27]. Addressing these requires data augmentation, 

regularization, and multimodal imaging [18]. Overall, CNNs like AlexNet mark a major step forward in brain 

tumor detection [19], and this paper explores their application, strengths, and limitations. 

3. METHODOLOGY IMPLIED 

Figure 1 shows the major steps involved in this work. 

 
Figure 1: Methodology of the Work 

3.1 Brain Tumor MRI Dataset: The MRI dataset used in this study was obtained from Kaggle and combines 

three different sources: Figshare, the SARTAJ dataset, and Br35H. In total, the dataset includes 7,023 human 

brain MRI images categorized into four classes: glioma, meningioma, pituitary tumor, and no tumor. Notably, all 

'no tumor' images were taken specifically from the Br35H dataset [20]. The dataset is organized into two main 

folders—Training and Testing—each containing four subfolders named after the respective classes. Figure 2 

displays sample MRI images from the dataset, while Table 1 provides detailed descriptions for each class. 

 

Figure 2: Brain Tumor MRI Dataset Samples 

Table 1: Description overview of Brain Tumor MRI dataset 

S. No. Sub-Class No. of Samples Description 

1 Glioma 1,621 Affected 

2 Meningioma 1,757 Affected 

3 Pituitary 1,6451 Affected 

4 No Tumor 2,000 Normal (Unaffected) 
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3.2 Data Preparation and Model Training:  To ensure consistency and improve processing efficiency, all 

images were resized to 240×240×3 pixels and converted to grayscale. The dataset was then divided into training 

(80%), validation (10%), and testing (10%) sets. AlexNet, a popular CNN architecture, was trained across 

multiple epochs with early stopping applied to prevent overfitting. Throughout training, the model‘s performance 

was monitored on the validation set using key metrics like accuracy, precision, recall, and AUC-ROC to evaluate 

its generalization ability and guide further optimization. 

3.3 Performance Evaluation: After completing the training and validation phases, the final performance of the 

AlexNet model was evaluated using a separate testing dataset. To thoroughly assess its effectiveness in 

classifying different brain tumor subtypes from MRI images, key metrics such as loss, accuracy, precision, recall, 

and AUC-ROC were calculated. The description flowgraph of the work is given in Figure 3. 

 
Figure 3: Description flowgraph of the work 

3.4 Training Configuration: AlexNet was trained over 10, 15, and 20 epochs using a batch size of 32. The 

Adamax optimizer, with a learning rate of 0.001, was used to dynamically update the model‘s weights during 

training. ReLU activation functions were applied to the input and hidden layers to introduce non-linearity, while 

the softmax function in the output layer provided class probability predictions. The model relied on 2D 

convolution operations, a core component in CNN-based image processing tasks [21]. Given an input image 𝐼 and 

a filter/kernel 𝐾, the 2D convolution operation can be represented mathematically as follows: 

                                                                    (1) 
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Where: C(𝑖, 𝑗) is the value at position  (𝑖, 𝑗) in the output feature map. (𝑚, 𝑛) is the pixel value of the input image 

at position (𝑚, 𝑛). (𝑖 − 𝑚, 𝑗 − 𝑛) is the value of the filter/kernel at position (𝑖 − 𝑚, 𝑗 – 𝑛). The double summation 

is performed over all valid positions of the filter/kernel in the input image. ‗∗‘ denotes the convolution operation. 

ReLU (Rectified Linear Unit) and Softmax are commonly used activation functions in neural networks, including 

convolutional neural networks (CNNs) for various tasks like classification. 

ReLU is a simple non-linear activation function defined as: 

                                                                                                                         (2) 

In multi-class classification tasks, the softmax function is used in the output layer of a neural network to convert 

raw output scores (logits) into probabilities. This helps the model express its confidence in each class prediction. 

Given an input vector z with K elements (where K is the number of classes), the Softmax function is defined as: 

                                                                                                                        (3) 

Where: The ith element of the output probability vector is Softmax(𝑧)i. Euler‘s number is e (approximately 

2.71828). The ith element of the input vector is 𝑧i. The denominator in the softmax function adds up the 

exponentials of all the input values, ensuring that the final output values represent probabilities that sum to 1. This 

makes softmax ideal for multi-class classification problems, where the model needs to assign a probability to each 

class. 

3.5 AlexNet Architecture Layers: The AlexNet model consists of one input layer, five convolutional layers, 

three max-pooling layers, two fully connected hidden layers, and a final output layer [22]. The overall architecture 

of AlexNet is illustrated in Figure 4. 

 
Figure 4: Architecture of AlexNet Model: C1, C2, C3, C4 and C5 are the Convolutional Layers. P1, P2, and P3 

are the Maximum Pooling. ‗s‘ indicates strides 

This architecture follows a pattern of alternating convolutional layers—which extract important features—and 

max-pooling layers that reduce spatial dimensions. These are followed by fully connected layers that handle the 

classification task. The final softmax layer outputs the probabilities for each class. 

3.6 Data augmentation: Data augmentation enhances model robustness and generalization, especially when 

training data is limited. Table 2 outlines the applied augmentation techniques. 
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Table 2: Data Augmentation Parameters Used During Model Training 

S. No. Parameter Value 

1 Horizontal flip True 

2 Vertical flip True 

3 Height shift range 0.1 

4 Width shift range 0.1 

5 Rotation 90
0 

6 Shear range 0.2 

7 Zoom range 0.2 

3.7 Hyperparameter (Fine-Tuning) used in AlexNet Model: Fine-tuning AlexNet for classifying brain tumors 

involves the following steps. The process generally includes preparing dataset, modifying the AlexNet 

architecture to suit specific problem, and then training the model.  

Figure 5 shows AlexNet model with fine tuning and hyperparameters. The hyperparameter optimization strategy 

used in training is summarized in Table 3. 

Table 3: Optimization of fine-tuned (hyper-parameters) used in this work 

Model Hyperparameters Value 

CNN-AlexNet 

Optimizer function Adamax 

Loss function categorical_crossentropy 

Metrics Train and Test Loss, AUC, Accuracy 

Epochs 10, 15 and 20 

Batch size 32 

Learning rate 0.001 

 
Figure 5: AlexNet model for the classification of brain tumor disease 

3.8 Early Stopping and Learning Rate Reduction: To prevent overfitting and improve model convergence, two 

strategies were used: early stopping and learning rate reduction. Early stopping halted training if validation 

accuracy didn‘t improve after 3 epochs, while the learning rate was reduced by a factor of 0.1 if performance 

plateaued for 2 epochs. These two callbacks—EarlyStopping and ReduceLROnPlateau—helped optimize training 

by stopping at the right time and fine-tuning the learning pace. 

3.9 Performance Metrics: After training and validating the model, a full set of performance metrics was 

calculated to assess how well AlexNet performed and how effectively it could generalize to new data [33]. One of 

the key metrics was accuracy, which measures the percentage of correctly classified samples out of the total. 

                                           (4) 
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Precision: This metric reflects how many of the model‘s positive predictions were actually correct. It helps 

measure the model's ability to minimize false positives. 

                                                                                        (5) 

Recall:  Recall shows how well the model captures actual positive cases. It‘s calculated as the proportion of true 

positives out of all actual positive examples, highlighting the model‘s ability to detect relevant instances. 

                                                                                                     (6) 

F1 – Score: The F1-score is the harmonic mean of precision and recall. It provides a balanced measure that 

considers both false positives and false negatives, offering a single, comprehensive performance score. 

                                                                                                         (7) 

Loss: The measure of discrepancy between predicted and actual class labels, computed using appropriate loss 

functions such as categorical cross-entropy loss L. In a Convolutional Neural Network (CNN), the loss function is 

a measure of how well the model‘s predictions match the actual labels in the training data [23]. L is calculated as 

follows: 

                                                                                                                   (8) 

Where:  the number of classes is c, the actual probability that belongs to class 𝑖 is , and the predicted probability 

that belongs to class 𝑖 is . 

AUC-ROC: This metric summarizes how well the model distinguishes between classes. It‘s based on the ROC 

curve, which plots the trade-off between sensitivity (true positive rate) and the false positive rate. A high AUC 

indicates strong performance [24]. 

True Positive Rate (TPR): The proportion of actual positives correctly identified—e.g., how many tumors the 

model detects accurately. 

False Positive Rate (FPR): The proportion of negatives wrongly classified as positives—e.g., non-tumor cases 

labeled as tumors. 

ROC Curve: Visualizes the balance between TPR and FPR. The closer the curve is to the top-left corner, the 

better the model‘s performance. 

                                                                                                      (9) 

                                                                                                    (10) 

4. EXPERIMENTAL RESULTS AND PERFORMANCE EVALUATION: 

The experimental results clearly show AlexNet‘s strong ability to classify brain tumors from MRI images. It 

achieved a training accuracy of 99.97% and a training AUC of 100%, indicating excellent learning of complex 

patterns. Tables 4 and 5 summarize the average training and testing loss, accuracy, and AUC across different 

epochs. The model also performed well on unseen data, with a test accuracy of 96.15% and a test AUC of 

99.75%. 

Tables 6 and 7 report precision, recall, and F1 scores at epochs 10, 20, and 30, showing consistent performance in 

identifying tumors. Figures 6 and 7 visually illustrate the model‘s results across four tumor types, both with and 

without data augmentation. These metrics and visualizations reflect the model‘s ability to generalize and detect 

subtle differences in tumor features over time. 
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Table 4: Train and Test Loss, Accuracy, AUC at different Epochs, batch size = 32 Without Augmentation 

Epoch = 10 Epoch = 15 Epoch = 20 

Train Loss: 0.0338 

Train Accuracy: 99.27% 

Train AUC: 99.97% 

--------------------- 

Test Loss: 0.1586 

Test Accuracy: 94.72% 

Test AUC: 99.34% 

Train Loss: 0.0070 

Train Accuracy: 99.96% 

Train AUC: 100.00% 

--------------------- 

Test Loss: 0.1116 

Test Accuracy: 97.72% 

Test AUC: 99.47% 

Train Loss: 0.0067 

Train Accuracy: 99.89% 

Train AUC: 100.00% 

---------------------- 

Test Loss: 0.1051 

Test Accuracy: 97.72% 

Test AUC: 99.65%% 

Table 5: Train and Test Loss, Accuracy, AUC at different Epochs, batch size = 32 With Augmentation 

Epoch = 10 Epoch = 15 Epoch = 20 

Train Loss: 0.1266 

Train Accuracy: 95.03% 

Train AUC: 99.67% 

--------------------- 

Test Loss: 0.2772 

Test Accuracy: 89.63% 

Test AUC: 98.70% 

Train Loss: 0.0215 

Train Accuracy: 99.50% 

Train AUC: 99.99% 

--------------------- 

Test Loss: 0.1622 

Test Accuracy: 94.63% 

Test AUC: 99.35% 

Train Loss: 0.0022 

Train Accuracy: 99.97% 

Train AUC: 100.00% 

---------------------- 

Test Loss: 0.0113 

Test Accuracy: 96.15% 

Test AUC: 99.75% 

Table 6: Class-wise Precision, Recall, F1-Score, and Average Accuracy of AlexNet Model at Different Training 

Epochs without Data Augmentation 

Class Precision Recall F1-Score Avg. Accuracy 

 Epoch = 10 

glioma 0.94 0.94 0.94 

0.9472 
meningioma 0.92 0.88 0.90 

No Tumor 0.96 0.97 0.97 

pituitary 0.96 0.98 0.97 

 Epoch = 15 

glioma 0.97 0.98 0.97 

0.9772 
meningioma 0.97 0.95 0.96 

No Tumor 0.99 0.99 0.99 

pituitary 0.98 0.99 0.98 

 Epoch = 20 

glioma 0.98 0.97 0.98 

0.9772 
meningioma 0.98 0.96 0.97 

No Tumor 0.99 0.99 0.99 

pituitary 0.97 0.98 0.97 
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Figure 6: Performance graph of Brain Tumor Disease using Hype-tuned AlexNet Model without Augmentation 

Table 7: Class-wise Precision, Recall, F1-Score, and Average Accuracy of AlexNet Model at Different Training 

Epochs with Augmentation 

Class Precision Recall F1-Score Avg. Accuracy 

 Epoch = 10 

glioma 0.93 0.79 0.86 

0.8963 
meningioma 0.81 0.89 0.84 

No Tumor 0.97 0.96 0.96 

pituitary 0.89 0.95 0.92 

 Epoch = 15 

glioma 0.91 0.94 0.92 

0.9463 
meningioma 0.92 0.91 0.91 

No Tumor 0.98 0.99 0.99 

pituitary 0.97 0.95 0.96 

 Epoch = 20 

glioma 0.90 0.92 0.91 

0.9615 
meningioma 0.92 0.89 0.90 

No Tumor 0.98 0.99 0.99 

pituitary 0.96 0.95 0.96 
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Figure 7: Performance graph of Brain Tumor Disease using Hype-tuned AlexNet Model with Augmentation 

Figure 8 shows training and validation metrics of the hyper-tuned AlexNet model over 10 epochs without data 

augmentation, presented in four plots. 

 
Figure 8: Training progress for the AlexNet model: loss value, accuracy value, precision value and recall value 

during training and validation process, Epoch = 10, batch size = 32 without Augmentation 

The model shows strong performance across all metrics (loss, accuracy, precision, recall), with improvements 

continuing until epoch 9, after which performance stabilizes. The best epoch for the model across all metrics 

appears to be epoch 9. At this point, both training and validation results show minimal discrepancy, indicating 

that the model generalizes well and is not overfitting.  
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The gap between training and validation metrics is relatively small, which suggests that the model is well-trained 

without significant overfitting. 

Similarly, Figures 9–13 represent four plots showing the training and validation metrics for a machine learning 

model over 10, 15, and 20 epochs, with and without augmentation, highlighting the best epoch at different points. 

 
Figure 9: Training progress of the AlexNet model: loss value, accuracy value, precision value and recall value 

during training and validation process at Epoch = 15, batch size = 32 without Augmentation 

 
Figure 10: Training progress of the AlexNet model: loss value, accuracy value, precision value and recall value 

during training and validation process at Epoch = 20, batch size = 32 without Augmentation, Early stopping 
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Figure 11: Training progress of the AlexNet model: loss value, accuracy value, precision value and recall value 

during training and validation process at Epoch = 10, batch size = 32 with Augmentation 

 
Figure 12: Training progress of the AlexNet model: loss value, accuracy value, precision value and recall value 

during training and validation process at Epoch = 15, batch size = 32 with Augmentation 
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Figure 13: Training progress of the AlexNet model: loss value, accuracy value, precision value and recall value 

during training and validation process at Epoch = 20, batch size = 32 with Augmentation 

A confusion matrix helps assess how accurately the model classifies brain tumors into four categories: glioma, 

meningioma, pituitary tumor, and no tumor. Figure 14 shows that most predictions align with the true labels, 

indicating strong performance. The ―No Tumor‖ class was predicted perfectly with 195 correct predictions and no 

errors, while overall misclassifications were minimal. 

 

Figure 14: Confusion matrix for AlexNet model Performance at Epoch = 10, Batch Size = 32, without 

augmentation 
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Similarly, Figures 15 – 19 represent confusion matrices that evaluate the performance of a machine learning 

classification model over 10, 15, and 20 epochs, with and without augmentation. 

 
Figure 15: Confusion matrix for AlexNet model Performance at Epoch = 15, Batch Size = 32, without 

augmentation 

 
Figure 16: Confusion matrix for AlexNet model Performance at Epoch = 20, Batch Size = 32, without 

augmentation 
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Figure 17: Confusion matrix for AlexNet model Performance at Epoch = 10, Batch Size = 32 with augmentation 

 
Figure 18: Confusion matrix for AlexNet model Performance at Epoch = 15, Batch Size = 32 with augmentation 
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Figure 19: Confusion matrix for AlexNet model Performance at Epoch = 20, Batch Size = 32 with augmentation 

Figure 20 shows the ROC curves for the AlexNet model across four classes: glioma, meningioma, pituitary tumor, 

and no tumor. The model performs exceptionally well, with AUC scores of 1.00 for glioma, no tumor, and 

pituitary, and 0.99 for meningioma. The curves closely hug the top-left corner, indicating high accuracy and 

minimal overlap between true and false positives. 

 
Figure 20: ROC curve for AlexNet model Performance at Epoch = 10, Batch Size = 32, without augmentation 
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Similarly, Figure 21 – 25 shows the Receiver Operating Characteristic (ROC) curve for the AlexNet model, 

representing its classification performance across four different categories over 10, 15, and 20 epochs, with and 

without augmentation. 

 
Figure 21: ROC curve for AlexNet model Performance at Epoch = 15, Batch Size = 32, without augmentation 

 
Figure 22: ROC curve for AlexNet model Performance at Epoch = 20, Batch Size = 32, without augmentation 
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Figure 23: ROC curve for AlexNet model Performance at Epoch = 10, Batch Size = 32 with augmentation 

 
Figure 24: ROC curve for AlexNet model Performance at Epoch = 15, Batch Size = 32 with augmentation 
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Figure 25: ROC curve for AlexNet model Performance at Epoch = 20, Batch Size = 32 with augmentation 

Figure 26 demonstrates a sample of the prediction outcomes from the hyper-tuned AlexNet model. Four input 

images, one from each category, show an almost 100% probability of the predictions. 

 
Figure 26: Prediction results of the AlexNet model at epochs = 20, with augmentation, shown almost 100% 

probability. 
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CONCLUSION 

This study demonstrates the efficacy of a hyperparameter-tuned AlexNet CNN model in accurately classifying 

brain tumor types using MRI data. The model was rigorously evaluated with and without data augmentation 

across multiple epochs, achieving a high training accuracy of 99.97% and a test accuracy of 96.15%, with AUC 

values approaching 100%. These results underscore the model‘s robustness, generalization ability, and its 

capacity to detect subtle imaging variations across tumor classes. The consistent improvement in performance 

with data augmentation further validates the significance of dataset diversity in medical image analysis. Future 

research may explore enhancing this framework through transfer learning, model ensembling, and evaluation on 

larger, multimodal MRI datasets to develop even more generalizable and clinically viable diagnostic tools. 
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