Linear Memory Theorem with Suspension Bridge on Global Attractors

Wenjun Hui, College of Mathematics, Nanjing University, China

Abstract

The model with linear memory arise in the case of a generalized Kirchhoot viscoelastic bar, where a bending-moment relation with memory is considered. In this paper, after defining a new variable we discuss the existence of the global attractors for the model (1.1) with non-smooth semi-linear term u^{+}and linear memory using the new semigroup approach.

1. Introduction

Let $\Omega \subset \mathbb{R}^{2}$ be a bounded domain with smooth boundary Γ, we are concerned with the following equations associated with the oscillation of the suspension bridge:
$\left\{\begin{array}{l}u_{t t}+\delta u_{t}+\phi(0) \Delta^{2} u+\int_{0}^{\infty} \phi^{\prime}(s) \Delta^{2} u(t-s) d s+k u^{+}+g(u)=h, \text { in } \Omega \times \mathbb{R}^{+}, \\ u(x, t)=\Delta u(x, t)=0, \quad x \in \Gamma, t \in \mathbb{R}, \\ u(x, t)=u_{0}(x, t), \quad x \in \Omega, t \leq 0,\end{array}\right.$
where $\phi^{\prime}(s)$ denotes the memory kernel, $\phi(0), \phi(\infty)>0$ and $\phi^{\prime}(s) \leq 0$ for $\forall s \in \mathbb{R}^{+}$. $\delta>0$ is the viscous damping and k indicates the spring constant. If $\delta=\mathrm{k} \equiv 0$, then (1.1) is attributed to a general viscous elastic beam model when the bending-moment relation is considered[5]. In addition, if $\phi^{\prime} \equiv 0$, it is obvious that (1.1) reduces to the suspension bridge equations, where g represents some displacement-dependent body force density and the suspension bridge equations were presented by Lazer and McKenna as the new problems in fields of nonlinear analysis[1], they were obtained by a onesided Hooke's law. If $k=0$, there are many classical results to study existence of global attractors, please refer to [2,4,5]. However, once $\mathrm{k}>0$,

Keywords: global attractor, linear memory, suspension bridge equation, absorbing set. AMS Mathematics Subject Classification: 35Q35.
due to the non-smooth semi-linear term u^{+}appears in the equations and $\frac{\partial\left(u^{+}\right)}{\partial t} \neq\left(\frac{\partial u}{\partial t}\right)^{+}$, there are some difficulties in the process of proving the existence of global attractors. In this paper, after defining a new variable we obtain the existence of global attractors for equation (1.1) using the new semigroup methods. Concerning else literatures about attractors please the reader to see [3, 6-10], and therein references. Analogous to discuss of [4], we define

$$
\begin{equation*}
\eta^{\dagger}(x, s)=u(x, t)-u(x, t-s) . \tag{1.2}
\end{equation*}
$$

We set for simplicity $\mu(s)=-\phi^{\prime}(s)$ and $\phi(\infty)=1$. In view of (1.2), adding and subtracting the term $\Delta^{2} u$, equation (1.1) transform into the system

$$
\left\{\begin{array}{l}
u_{t t}+\delta u_{t}+\Delta^{2} u+\int_{0}^{\infty} \mu(s) \Delta^{2} \eta^{t}(s) d s+k u^{+}+g(u)=h, \tag{1.3}\\
\eta_{t}=-\eta_{s}+u_{t}
\end{array}\right.
$$

where the second equation is obtained by dierentiating (1.2). Initial-boundary value conditions are then given by

$$
\left\{\begin{array}{l}
u(x, t)=\Delta u(x, t)=0, x \in \Gamma, t \geq 0 \tag{1.4}\\
\eta^{t}(x, s)=\Delta \eta^{t}(x, s)=0, x \in \Gamma, t \geq 0, s \in \mathbb{R}^{+} \\
u(x, 0)=u_{1}(x), x \in \Omega \\
u_{t}(x, 0)=u_{2}(x), x \in \Omega \\
\eta^{0}(x, s)=\eta_{0}(x, s), \quad(x, s) \in \Omega \times \mathbb{R}^{+}
\end{array}\right.
$$

here

$$
\left\{\begin{array}{l}
u_{1}(x)=u_{0}(x, 0), \\
u_{2}(x)=\left.\partial_{t} u_{0}(x, t)\right|_{t=0}, \\
\eta_{0}(x, s)=u_{0}(x, 0)-u_{0}(x,-s)
\end{array}\right.
$$

Assume that the nonlinear function $g \in C^{2}(\mathbb{R}, \mathbb{R})$ satisfying the following conditions:
(g1) $\underset{|s| \rightarrow \infty}{\liminf } \frac{G(s)}{s^{2}} \geq 0$, here $G(s)=\int_{0}^{s} g(\tau) d \tau$;
(g2) $\quad \limsup _{|s| \rightarrow \infty} \frac{\left|g^{\prime}(s)\right|}{|s|^{\gamma}}=0, \quad \forall 0 \leq \gamma<\infty$;
(g3) There exists $C_{1}>0$, such that $\liminf _{|s| \rightarrow \infty} \frac{\operatorname{sg}(s)-C_{1} G(s)}{s^{2}} \geq 0$.

For simplicity, we denote $\phi(\mathrm{u})=\int_{\Omega} G(u(x)) d x$.
The memory kernel μ is required to satisfy the following assumptions:
(h1) $\quad \mu \in C^{1}\left(\mathbb{R}^{+}\right) \cap L^{1}\left(\mathbb{R}^{+}\right), \mu(s) \geq 0, \mu^{\prime}(\mathrm{s}) \leq 0, \forall s \in \mathbb{R}^{+}$;
(h2) $\quad \int_{0}^{\infty} \mu(s) d s=M>0$;
(h3)

$$
\mu^{\prime}(s)+\alpha \mu(s) \leq 0, \forall s \in \mathbb{R}^{+}, \text {for some } \alpha>0 .
$$

We write $H=L^{2}(\Omega), V=H_{0}^{2}(\Omega)$, the scalar product and the norm on H and V are denoted by $(\cdot, \cdot),|\cdot|$ and $((\cdot, \cdot)),\|\cdot\|$ respectively, where

$$
(u, v)=\int_{\Omega} u(x) v(x) d x, \quad((u, v))=\int_{\Omega} \Delta u(x) \Delta v(x) d x
$$

Define $D(A)=\{v \in V, A v \in H\}$, here $\mathrm{A}=\Delta^{2}$. For the operator A, we assume that

$$
A: \begin{aligned}
& V \rightarrow V^{*}, \\
& D(A) \rightarrow H
\end{aligned}
$$

are isomorphism, and there exists $\alpha>0$ such that

$$
\langle A u, u\rangle \geq \alpha\|u\|^{2}, \quad \forall u \in V,
$$

here $\langle\cdot, \cdot\rangle$ denotes the dual inner product. We also define the power A^{s} of A for $s \in$ \mathbb{R} which operate on the spaces $D\left(A^{s}\right)$, and we write $V_{2 s}=D\left(A^{s}\right), s \in \mathbb{R}$. This is a Hilbert space for the scalar product and the norm as follows

$$
(u, v)_{2 s}=\left(A^{s} u, A^{s} v\right)_{H},\|u\|_{2 s}=\left((u, u)_{2 s}\right)^{\frac{1}{2}}, \forall u, v \in D\left(A^{s}\right),
$$

and A^{r} is an isomorphism from $D\left(A^{s}\right)$ onto $D\left(A^{s-r}\right), \forall s, r \in \mathbb{R}$. It is clearly that $D\left(A^{0}\right)=H, D\left(A^{\frac{1}{2}}\right)=V, D\left(A^{-\frac{1}{2}}\right)=V^{*}$ and $D(A) \subset H=H^{*} \subset V \subset V^{*}$, here H^{*}, V^{*}
are the dual of H, V respectively, and each space is dense in the following one and the injections are continuous.

Let λ_{1} denote the first eigenvalue of $A^{\frac{1}{2}}$, clearly, λ_{1}^{2} is the first eigenvalue of A, namely,

$$
\lambda_{1}^{2}=\inf _{v \in V, v \neq 0} \frac{\|v\|^{2}}{|v|^{2}} .
$$

In view of $(\mathrm{h} 1)$, let $L_{\mu}^{2}\left(\mathbb{R}^{+}, H_{0}^{2}\right)$ be the Hilbert space of H_{0}^{2}-valued functions on \mathbb{R}^{+}, endowed with the following inner product

$$
(\varphi, \psi)_{\mu, V}=\int_{0}^{\infty} \mu(s)(\Delta \varphi(s), \Delta \psi(s)) d s
$$

and

$$
|\varphi|_{\mu, V}^{2}=(\varphi, \varphi)_{\mu, V}=\int_{0}^{\infty} \mu(s)\|\varphi\|^{2} d s .
$$

We denote $\mathcal{H}=V \times H \times L_{\mu}^{2}\left(\mathbb{R}^{+}, V\right)$.

2. Preliminaries

Using the standard Faedo-Galerkin methods [3-4] it's easy to obtain the existence, uniqueness of solution for (1.1) and the continuous dependence to the initial value, so we omit it and only give the following theorem:

Theorem $2.1{ }^{[3-4]}$ Let (g1)-(g3) and (h1)-(h3) hold. Then given any time interval I, problem (1.3)-(1.4) has a solution $\left(u, u_{t}, \eta^{t}\right)$ in $I=[0, T]$ with initial data $\left(\mathrm{u}_{1}, \mathrm{u}_{2}, \eta_{0}\right) \in \mathcal{H}$, and the mapping

$$
\left\{u_{1}, u_{2}, \eta_{0}\right\} \rightarrow\left\{u(t), u_{t}(t), \eta^{t}(s)\right\}
$$

is continuous in \mathcal{H}.
Thus, it admits to define a C^{0} semigroup

$$
S(t):\left\{u_{1}, u_{2}, \eta_{0}\right\} \rightarrow\left\{u(t), u_{t}(t), \eta^{t}(s)\right\}, t \in \mathbb{R}^{+}
$$

and it maps \mathcal{H} into itself.
In order to prove our main results, we also need the following abstract results.

Definition 2.1 ${ }^{[6]}$ A C^{0} semigroup $\{S(t)\}_{t \geq 0}$ in a Banach space X is said to satisfy condition (C), if for any $\varepsilon>0$ and for any bounded set B of X, there exists $t(B)>0$ and a finite dimensional subspace X_{1} of X, such that $\{\|P S(t) x\|: t \geq t(B), x \in B\}$ is bounded and

$$
\{\|(I-P) S(t) x\|\}<\varepsilon, \text { for } t \geq t(B), x \in B
$$

where $P: X \rightarrow X_{1}$ is a bounded projector.
Theorem $2.2{ }^{[6]}$ Let $\{\mathrm{S}(\mathrm{t})\}_{\mathrm{t} \geq 0}$ be $a C^{0}$ semigroup in a Hilbert space X . Then $\{S(t)\}_{t \geq 0}$ has a global attractor if and only if
(1) $\{S(t)\}_{t \geq 0}$ satisfies condition (C;
(2) there exists a bounded absorbing subset B of X.

3. Bounded absorbing set in \mathcal{H}

Choose $0<\sigma<1$, and take the scalar product of the first equation of (1.3) with $v=$ $u_{t}+\sigma u$ in H, after computation, we conclude

$$
\begin{gather*}
\frac{1}{2} \frac{d}{d t}\left(\|u\|^{2}+|v|^{2}\right)+\sigma\|u\|^{2}+(\delta-\sigma)|v|^{2} \tag{3.1}\\
-\sigma(\delta-\sigma)(u, v)+(\eta, v)_{\mu, \mathrm{V}}+\left(k u^{+}, v\right)+(g(u), v)=(h, v)
\end{gather*}
$$

Combining with (h1) and the second equation of (1.3), we have

$$
\begin{aligned}
(\eta, v)_{\mu, \mathrm{V}} & =\left(\eta, u_{t}\right)_{\mu, \mathrm{V}}+\sigma(\eta, u)_{\mu, \mathrm{V}}=\left(\eta, \eta_{\mathrm{t}}+\eta_{s}\right)_{\mu, \mathrm{V}}+\sigma(\eta, u)_{\mu, \mathrm{V}} \\
& =\frac{1}{2} \frac{d}{d t}|\eta|_{\mu, V}^{2}+\left(\eta, \eta_{s}\right)_{\mu, V}+\sigma(\eta, u)_{\mu, V}
\end{aligned}
$$

by (h2) (h3) entails

$$
\begin{align*}
\left(\eta, \eta_{s}\right)_{\mu, V} & =-\frac{1}{2} \int_{0}^{\infty} \mu^{\prime}(s)\left|\Delta \eta^{t}(s)\right|^{2} d s \tag{3.3}\\
& \geq \frac{\alpha}{2}|\eta|_{\mu, V}^{2}
\end{align*}
$$

and by Young and Hölder inequalities, this lead to

$$
\sigma(\eta, u)_{\mu, V}=\sigma \int_{0}^{\infty} \mu(s)(\Delta \eta(s), \Delta u) d s
$$

$$
\begin{align*}
& \geq-\frac{\alpha}{4} \int_{0}^{\infty} \mu(s)\left|\Delta \eta^{t}(s)\right|^{2} d s-\frac{\sigma^{2}}{\alpha} \int_{0}^{\infty} \mu(s)|\Delta u|^{2} d s \\
& \geq-\frac{\alpha}{4}|\eta|_{\mu, V}^{2}-\frac{M \sigma^{2}}{\alpha}\|u\|^{2} . \tag{3.4}
\end{align*}
$$

Combining with (3.3), (3.4), from (3.2) we obtain

$$
\begin{equation*}
(\eta, v)_{\mu, V} \geq \frac{1}{2} \frac{d}{d t}|\eta|_{\mu, V}^{2}+\frac{\alpha}{4}|\eta|_{\mu, V}^{2}-\frac{M \sigma^{2}}{\alpha}\|u\|^{2} \tag{3.5}
\end{equation*}
$$

In addition, it's easy to have

$$
\begin{equation*}
\left(k u^{+}, v\right)=\frac{1}{2} \frac{d}{d t} k\left|u^{+}\right|^{2}+\sigma k\left|u^{+}\right|^{2} \tag{3.6}
\end{equation*}
$$

Exploiting $(\mathrm{g} 1),(\mathrm{g} 3)$, there exists constants $K_{1}, K_{2}>0$ only depending on u, such that

$$
\begin{gather*}
\phi(u)+\frac{1}{8}\|u\|^{2} \geq-K_{1}, \quad \forall \quad u \in V \tag{3.7}\\
(u, g(u))-C_{1} \phi(u)+\frac{1}{4}\|u\|^{2} \geq-K_{2}, \quad \forall u \in V \tag{3.8}
\end{gather*}
$$

Therefore

$$
\begin{align*}
& (g(u), v)=\frac{d}{d t} \int_{\Omega} G(u) d x+\sigma \int_{\Omega} g(u) u d x \\
& \geq \frac{d}{d t} \phi(u)+\sigma\left(C_{1} \phi(u)-\frac{1}{4}\|u\|^{2}-K_{2}\right) \tag{3.9}
\end{align*}
$$

Integrating with (3.5), (3.6) and (3.9), from (3.1) we get

$$
\begin{gathered}
\frac{1}{2} \frac{d}{d t}\left(\|u\|^{2}+|v|^{2}+2 \phi(u)+k\left|u^{+}\right|^{2}+|\eta|_{\mu, V}^{2}\right)+(\delta-\sigma)|v|^{2}-\sigma(\delta-\sigma)(u, v) \\
+\sigma\left(\frac{3}{4}-\frac{M \sigma}{\alpha}\right)\|u\|^{2}+\frac{\alpha}{4}|\eta|_{\mu, V}^{2}+\sigma k\left|u^{+}\right|^{2}+\sigma C_{1} \phi(u)-\sigma K_{2}
\end{gathered}
$$

$$
\begin{equation*}
\leq \frac{|h|^{2}}{\delta}+\frac{\delta}{4}|v|^{2} . \tag{3.10}
\end{equation*}
$$

Take σ small enough, such that

$$
\frac{3 \delta}{4}-\sigma \geq \frac{\delta}{2}, \quad \frac{3}{4}-\frac{\sigma \delta}{\lambda_{1}^{2}}-\frac{M \sigma}{\alpha} \geq \frac{1}{2}
$$

Thus, we have

$$
\begin{gather*}
(\delta-\sigma)|v|^{2}-\sigma(\delta-\sigma)(u, v)+\sigma\left(\frac{3}{4}-\frac{M \sigma}{\alpha}\right)\|u\|^{2} \\
\geq(\delta-\sigma)|v|^{2}-\frac{\sigma \delta}{\lambda_{1}}\|u\| \cdot|v|+\sigma\left(\frac{3}{4}-\frac{M \sigma}{\alpha}\right)\|u\|^{2} \\
\geq(\delta-\sigma)|v|^{2}-\frac{\sigma^{2} \delta}{\lambda_{1}^{2}}\|u\|^{2}-\frac{\delta}{4}|v|^{2}+\sigma\left(\frac{3}{4}-\frac{M \sigma}{\alpha}\right)\|u\|^{2} \tag{3.11}\\
\geq \frac{\delta}{2}|v|^{2}+\frac{\sigma}{2}\|u\|^{2},
\end{gather*}
$$

then combining with (3.10) we conclude

$$
\begin{aligned}
& \frac{1}{2} \frac{d}{d t}\left(\|u\|^{2}+|v|^{2}+2 \phi(u)+k\left|u^{+}\right|^{2}+|\eta|_{\mu, V}^{2}\right)+\frac{\delta}{4}|v|^{2} \\
& +\frac{\sigma}{2}\|u\|^{2}+\frac{\alpha}{4}|\eta|_{\mu, V}^{2}+\sigma k\left|u^{+}\right|^{2}+\sigma C_{1} \phi(u) \leq \frac{|h|^{2}}{\delta}+\sigma K_{2}
\end{aligned}
$$

Let $\sigma_{0}=\min \left\{\sigma, \frac{\delta}{2}, \frac{\alpha}{2}, \sigma C_{1}\right\}$, we have

$$
\begin{gather*}
\frac{d}{d t}\left(\|u\|^{2}+|v|^{2}+2 \phi(u)+k\left|u^{+}\right|^{2}+|\eta|_{\mu, V}^{2}+2 K_{1}\right) \\
+\sigma_{0}\left(\|u\|^{2}+|v|^{2}+2 \phi(u)+k\left|u^{+}\right|^{2}+|\eta|_{\mu, V}^{2}+2 K_{1}\right) \tag{3.12}\\
\leq \frac{2|h|^{2}}{\delta}+2 \sigma K_{2}+2 \sigma_{0} K_{1} .
\end{gather*}
$$

By (3.7), (3.12) we denote

$$
\begin{equation*}
W(t)=\|u\|^{2}+|v|^{2}+2 \phi(u)+k\left|u^{+}\right|^{2}+|\eta|_{\mu, \mathrm{V}}^{2}+2 K_{1}>0, \tag{3.13}
\end{equation*}
$$

then

$$
\frac{d}{d t} W(t)+\sigma_{0} W(t) \leq C,
$$

where $\mathrm{C}=\frac{2|h|^{2}}{\delta}+2 \sigma K_{2}+2 \sigma_{0} K_{1}$. By the Gronwall lemma, we have

$$
W(t) \leq W(0) \exp \left(-\sigma_{0} t\right)+\frac{C}{\sigma_{0}}\left(1-\exp \left(-\sigma_{0} t\right)\right), \forall t \leq 0 .
$$

In line with (g2) and Sobolev embedding theorem, if $\|u(0)\|^{2},\left|u_{t}(0)\right|^{2},|\eta(0)|_{\mu, V}^{2}$ are bounded, then $\phi(u(0))$ is bounded, too, therefore $W(0)$ is bounded, and

$$
\begin{equation*}
\limsup _{t \rightarrow \infty} W(t) \leq \rho_{0}^{2}, \tag{3.14}
\end{equation*}
$$

where $\rho_{0}^{2}=\frac{C}{\sigma_{0}}$. Thus, we have the following theorem:
Theorem 3.1 Suppose that $k>0,(g 1)-(g 3)$ and $(h 1)-(h 3)$ are hold. The ball $B_{0}=B_{z_{z}}\left(0, \rho_{0}\right)$ of \mathcal{H}, centered at 0 of radius 0 , is a bounded absorbing set in \mathcal{H} for the semigroup $\{S(t)\}_{ \pm 2}$. Namely, for any bounded subset B of \mathcal{H}, there exists $t_{0}=$ $t_{0}(B)>0$, such that $S(t) B \subset B_{0}$ for $t \geq t_{0}$.

4. Global attractor in \mathcal{H}

In order to obtain our main results, we first need the following lemma of compactness property about the nonlinear term g.

Lemma $4.1{ }^{[9]}$ Let g be C^{2} function from \mathbb{R} into \mathbb{R} satisfying $\left(g_{2}\right)$. Then g : $H_{0}^{2}(\Omega) \rightarrow H^{1, p}(\Omega), \forall p>1$ is continuously compact.

Theorem 4.2 Suppose that $k>0$, the conditions $(g 1)-(g 3)$ and $(h 1)-(h 3)$ are hold. Then the semigroup $\{S(t)\}_{t \geq 0}$ associated with the initial boundary value problem (1.3)-(1.4) possesses a global attractor \mathcal{A} in \mathcal{H} which attracts all bounded subsets of \mathcal{H} in the norm of \mathcal{H}.

Proof Applying theorem 2.2 and theorem 2.3, it is sufficient to prove that $\{S(t)\}_{t \geq 0}$ satisfies the condition (C) in \mathcal{H}.

Let $\left\{\omega_{k}\right\}_{k=1}^{\infty}$ be an orthonormal basis of V which consists of eigenvectors of A, the corresponding eigenvalues are denoted by

$$
0<v_{1}<v_{2} \leq v_{3} \leq \cdots, v_{k} \rightarrow \infty, \text { as } k \rightarrow \infty .
$$

We write $H_{m}=\operatorname{span}\left\{\omega_{1}, \cdots, \omega_{\mathrm{m}}\right\}$. Since $h \in H$ and $g: V \rightarrow H^{1, \mathrm{p}(\Omega)}, \forall p>1$ is compact operators verified in Lemma 4.1, therefore, for any $\varepsilon>0$, there exists some m such that

$$
\begin{gather*}
\left|\left(I-P_{m}\right) h\right|_{\mathrm{H}} \leq \frac{\varepsilon}{4}, \tag{4.1}\\
\left|\left(I-P_{m}\right) g(u)\right|_{H} \leq \frac{\varepsilon}{4}, \quad \forall u \in B_{V}\left(0, \rho_{0}\right), \tag{4.2}
\end{gather*}
$$

where $P_{m}: H \rightarrow H_{m}$ is an orthogonal projector, and ρ_{0} is given by theorem 3.1. For any $\left(u, u_{t}, \eta\right) \in \mathcal{H}$, we write $\left(u, u_{t}, \eta\right)=\left(u_{1}, u_{1 t}, \eta_{1}\right)+\left(u_{2}, u_{2 t}, \eta_{2}\right)$, here $\left(u_{1}, u_{1 t}, \eta_{1}\right)=$ $\left(P_{m} u, P_{m} u_{t}, P_{m} \eta\right.$).

Choose $0<\sigma<1$, taking the scalar product in H of the first equation of (1.3) with $v_{2}=u_{2 t}+\sigma u_{2}$, combining the second equation of (1.3), we obtain

$$
\begin{gather*}
\frac{1}{2} \frac{d}{d t}\left(\left\|u_{2}\right\|^{2}+\left|v_{2}\right|^{2}+\left|\eta_{2}\right|_{\mu, V}^{2}\right)+\sigma\left\|u_{2}\right\|^{2}+(\delta-\sigma)\left|v_{2}\right|^{2} \tag{4.3}\\
-\sigma(\delta-\sigma)\left(u_{2}, v_{2}\right)+\left(k\left(u^{+}\right)_{2}, v_{2}\right)+\frac{\alpha}{4}\left|\eta_{2}\right|_{\mu, V}^{2}+\left(g(u), v_{2}\right) \leq\left(h, v_{2}\right) .
\end{gather*}
$$

Take σ small enough, like (3.11), we have

$$
\begin{equation*}
\sigma\left\|u_{2}\right\|^{2}+(\delta-\sigma)\left|v_{2}\right|^{2}-\sigma(\delta-\sigma)\left(u_{2}, v_{2}\right) \geq \frac{\sigma}{2}\left\|u_{2}\right\|^{2}+\frac{\delta}{2}\left|v_{2}\right|^{2} . \tag{4.4}
\end{equation*}
$$

Thanks to u is uniformly bounded in V and exploiting $\left|u^{+}\right| \leq|u|$, by the Sobolev embedding theorem, for above any $\varepsilon>0$, we obtain $\left|\left(u^{+}\right)_{2}\right|<\varepsilon$. Therefore, we conclude that

$$
\begin{equation*}
\left(k\left(u^{+}\right)_{2}, v_{2}\right) \leq k\left|\left(u^{+}\right)_{2}\right| \cdot\left|v_{2}\right| \leq \varepsilon k\left|v_{2}\right| \leq \frac{\delta}{8}\left|v_{2}\right|^{2}+\frac{2 k^{2} \varepsilon^{2}}{\delta} \tag{4.5}
\end{equation*}
$$

Combining with (4.1)-(4.5), we find

$$
\begin{aligned}
& \frac{d}{d t}\left(\left\|u_{2}\right\|^{2}+\left|v_{2}\right|^{2}+\left|\eta_{2}\right|_{\mu, V}^{2}\right)+\sigma\left\|u_{2}\right\|^{2}+\frac{3 \delta}{8}\left|v_{2}\right|^{2}+\frac{\alpha}{2}\left|\eta_{2}\right|_{\mu, V}^{2} \\
& \leq \frac{\varepsilon^{2}}{2 \delta}+\frac{2 k^{2} \varepsilon^{2}}{\delta}, t \geq t_{0}
\end{aligned}
$$

Let

$$
V(t)=\left\|u_{2}\right\|^{2}+\left|v_{2}\right|^{2}+\left|\eta_{2}\right|_{\mu, V}^{2}, \quad \mathrm{t} \geq t_{0} .
$$

Take σ small enough, such that

$$
\frac{d}{d t} V(t)+\sigma V(t) \leq C \varepsilon^{2}, \quad t \geq t_{0}
$$

where $C=\frac{1}{2 \delta}+\frac{2 k^{2}}{\delta}$. By the Gronwall lemma, we have

$$
V(t) \leq V\left(t_{0}\right) \exp \left(-\sigma\left(t-t_{0}\right)\right)+\frac{C \varepsilon^{2}}{\sigma}\left(1-\exp \left(-\sigma\left(t-t_{0}\right)\right)\right)
$$

Take $t_{1}-t_{0}=\frac{1}{\sigma} \log \frac{\rho_{0}^{2}}{\varepsilon^{2}}$, then we conclude

$$
V(t) \leq\left(1+\frac{C}{\sigma}\right) \varepsilon^{2}, t \geq t_{1}
$$

Thus, the semigroup $\{S(t)\}_{t \geq 0}$ satisfies Condition (C).

REFERENCE

[1] A.C. Lazer and P.J. McKenna, Large-Amplitude Periodic Oscillations in Suspension Bridges: Some New Connections with Nonlinear Analysis, SIAM Review, 32, No.4, pp. 537-578, December 1990.
[2] A.D. Drozdov and V.B. Kolmanovskii, Stability in Viscoelasticity, North-Holland Series in Applied Mathematics and Mechanics, 38, North-Holland Publishing Co., Amsterdam, 1994.
[3] R.Temam, Infinite Dimensional Dynamical System in Mechanics and Physics (second edition), Spring-Verlag, 1997.
[4] Claudio Giorgi, J. E. Munoz Rivera and Vittorino Pata, Global Attractors for a Semilinear Hyperbolic Equation in Viscoelasticity, J. Math. Anal. Appl., 260, 8399(2001).
[5] J.E.M. Rivera, M.G. Naso and F.M. Vegni, Asymptotic Behavior of the Energy for a Class of Weakly Dissipative Second-Order Systems with Memory, J. Math. Anal. Appl., 286 (2), (2003), 692-704.
[6] Q.F. Ma, S.H. Wang and C.K. Zhong, Necessary and Sufficient Conditions for the Existence of Global Attractor for Semigroup and Application. Indiana University Mathematics Journal, 51, No. 6 (2002), 1541-1559.
[7] Qiaozhen Ma, Chengkui Zhong, Existence of Strong Global Attractors for Hyperbolic Equation with Linear Memory [J]. Applied Mathematics and Computation, 157 (2004), 745-758.
[8] Qiaozhen Ma, Chengkui Zhong, Global Attractors of Strong Solutions for Nonclassical Diusion Equation [J]. Journal of Lanzhou University, 40 No. 5, 2004, 7-9.
[9] Qiaozhen Ma, Chengkui Zhong, Existence of Global Attractors for the Coupled System of Suspension bridge equations, J. Math. Anal. Appl. 308 (2005), 365-379.
[10]Qiaozhen Ma, Chengkui Zhong, Existence of Global Attractors of Suspension bridge equations, J. Sichuan University (2005), in press.

