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Abstract

The model with linear memory arise in the case of a generalized Kirchhoot
viscoelastic bar, where a bending-moment relation with memory is considered.
In this paper, after defining a new variable we discuss the existence of the
global attractors for the model (1.1) with non-smooth semi-linear term u+ and
linear memory using the new semigroup approach.

1. Introduction

Let ��� �2 be a bounded domain with smooth boundary �, we are concerned with
the following equations associated with the oscillation of the suspension bridge:
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where ��(s) denotes the memory kernel, �(0), �(�) > 0 and ��(s) ��0 for � s � �+.
��> 0 is the viscous damping and k indicates the spring constant. If ��= k � 0, then
(1.1) is attributed to a general viscous elastic beam model when the bending-moment
relation is considered[5]. In addition, if ���� 0, it is obvious that (1.1) reduces to the
suspension bridge equations, where g represents some displacement-dependent
body force density and the suspension bridge equations were presented by Lazer
and McKenna as the new problems in fields of nonlinear analysis[1], they were
obtained by a onesided Hooke’s law. If k = 0, there are many classical results to
study existence of global attractors, please refer to [2,4,5]. However, once k > 0,
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due to the non-smooth semi-linear term u+ appears in the equations and
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,
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 there are some difficulties in the process of proving the existence

of global attractors. In this paper, after defining a new variable we obtain the
existence of global attractors for equation (1.1) using the new semigroup methods.
Concerning else literatures about attractors please the reader to see [3, 6-10], and
therein references. Analogous to discuss of [4], we define

�t(x, s) = u(x, t) – u(x, t – s). (1.2)

We set for simplicity µ(s) = –��(s) and �(�) = 1. In view of (1.2), adding and
subtracting the term �2u, equation (1.1) transform into the system
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where the second equation is obtained by dierentiating (1.2). Initial-boundary value
conditions are then given by

1

2

0
0

( , ) ( , ) 0, , 0,

( , ) ( , ) 0, , 0, ,

( ,0) ( ), ,

( ,0) ( ), ,

( , ) ( , ), ( , ) ,

t t

t

u x t u x t x t

x s x s x t s

u x u x x

u x u x x

x s x s x s

�

�

� � � �� ��
�
� � �� � �� � ��
� � ���
� � ���
�� � � ����

�

�

(1.4)
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Assume that the nonlinear function g � C2(�, �) satisfying the following
conditions:
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For simplicity, we denote �(u) = ( ( )) .G u x dx
��

The memory kernel µ is required to satisfy the following assumptions:

(h1) µ � C1(�+) � L1(�+), µ(s) � 0, µ�(s) ��0,  � s � �+;
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(h3) µ�(s) + �µ(s) ��0,  � s � �+, for some  ��> 0.

We write H = L2(�), V = 2
0 ( )H � , the scalar product and the norm on H and V

are denoted by (·, ·), | · | and ((·, ·)), || · || respectively, where
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here �· , ·� denotes the dual inner product. We also define the power As of A for s �
� which operate on the spaces D(As), and we write V
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are the dual of H, V respectively, and each space is dense in the following one and
the injections are continuous.

Let �
1
 denote the first eigenvalue of 

1
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A, namely,
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We denote � = V × H × 2 ( , )L V�
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2. Preliminaries

Using the standard Faedo-Galerkin methods [3-4] it’s easy to obtain the existence,
uniqueness of solution for (1.1) and the continuous dependence to the initial value,
so we omit it and only give the following theorem:

Theorem 2.1 [3-4] Let (g1)-(g3) and (h1)-(h3) hold. Then given any time
interval I, problem (1.3)-(1.4) has a solution (u, u

t
, �t) in I = [0, T] with initial data

(u
1
, u

2
, �

0
) � �, and the mapping

{u
1
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2
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0
} � {u(t), u

t
(t), �t(s)}

is continuous in �.

Thus, it admits to define a C0 semigroup

S(t) : {u
1
, u

2
, �

0
} � {u(t), u

t
(t), �t(s)},  t � �+,

and it maps � into itself.

In order to prove our main results, we also need the following abstract results.
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Definition 2.1[6] A C0 semigroup {S(t)}
t�0

 in a Banach space X is said to satisfy
condition (C), if for any � > 0 and for any bounded set B of X, there exists t(B) > 0
and a finite dimensional subspace X

1
 of X, such that {|| PS(t)x || : t � t(B), x � B} is

bounded and

{ ||(I – P) S(t)x|| } < �,  for  t ��t(B), x � B,

where P : X � X
1
 is a bounded projector.

Theorem 2.2 [6] Let {S(t)}
t�0

 be a C0 semigroup in a Hilbert space X. Then
{S(t)}

t�0
 has a global attractor if and only if

(1) {S(t)}
t�0

 satisfies condition (C);

(2) there exists a bounded absorbing subset B of X.

3. Bounded absorbing set in �

Choose 0 < � < 1, and take the scalar product of the first equation of (1.3) with v =
u

t
 + �u in H, after computation, we conclude
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and by Young and Hölder inequalities, this lead to
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Combining with (3.3), (3.4), from (3.2) we obtain
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In addition, it’s easy to have
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Integrating with (3.5), (3.6) and (3.9), from (3.1) we get
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By (3.7), (3.12) we denote

W(t) = ||u||2 + |v|2 + 2�(u) + k|u+|2 + |�|2 
µ,V

 + 2K
1
 > 0, (3.13)
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 By the Gronwall lemma, we have

W(t) � W(0) exp(–�
0
t) + 

0

C

�  (1 – exp(–�
0
t)), � t � 0.

In line with (g2) and Sobolev embedding theorem, if ||u(0)||2, |u
t
(0)|2, |�(0)|2

µ,V
 are

bounded, then �(u(0)) is bounded, too, therefore W(0) is bounded, and
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0

.
C

� �
�  Thus, we have the following theorem:

Theorem 3.1 Suppose that k > 0, (g1) - (g3) and (h1) - (h3) are hold. The ball
B

0
 = B

�
(0, �

0
) of �, centered at 0 of radius 0, is a bounded absorbing set in � for

the semigroup { S(t)}
t�0

. Namely, for any bounded subset B of �, there exists t
0
 =

t
0
(B) > 0, such that S(t)B � B

0
 for t � t

0
.

4. Global attractor in �

In order to obtain our main results, we first need the following lemma of compactness
property about the nonlinear term g.

Lemma 4.1 [9] Let g be C2 function from � into � satisfying (g
2
). Then g :

2 1,
0 ( ) ( ), 1pH H p� � � � �  is continuously compact.

Theorem 4.2 Suppose that k > 0, the conditions (g1)-(g3) and (h1)-(h3) are
hold. Then the semigroup {S(t)}

t�0
 associated with the initial boundary value

problem (1.3)-(1.4) possesses a global attractor � in � which attracts all bounded
subsets of � in the norm of �.
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Proof Applying theorem 2.2 and theorem 2.3, it is sufficient to prove that
{S(t)}

t�0
 satisfies the condition (C) in �.

Let 
1{ }k k

�
��  be an orthonormal basis of V which consists of eigenvectors of A,

the corresponding eigenvalues are denoted by
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2
 � v

3
 ��· · ·, v

k
 ���, as k � �.
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m
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1
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m
}. Since h � H and g : V � H1,p(�),  � p > 1 is

compact operators verified in Lemma 4.1, therefore, for any � > 0, there exists
some m such that
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0
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u
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�).

Choose 0 < � < 1, taking the scalar product in H of the first equation of (1.3)
with v

2
 = u

2t
 + �u

2
, combining the second equation of (1.3), we obtain
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Take � small enough, like (3.11), we have
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Thanks to u is uniformly bounded in V and exploiting |u+| � |u|, by the Sobolev
embedding theorem, for above any � > 0, we obtain |(u+)

2
| < �. Therefore, we

conclude that
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Combining with (4.1)-(4.5), we find
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 then we conclude

V (t) � 
2

11 , .
C

t t
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Thus, the semigroup {S(t)}
t�0

 satisfies Condition (C).
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