Revised: 12th April 2022

Revised:16th May 2022 Accepted: 10th June 2022

Linear Memory Theorem with Suspension Bridge on Global Attractors

Wenjun Hui, College of Mathematics, Nanjing University, China

Abstract

The model with linear memory arise in the case of a generalized Kirchhoot viscoelastic bar, where a bending-moment relation with memory is considered. In this paper, after defining a new variable we discuss the existence of the global attractors for the model (1.1) with non-smooth semi-linear term u^+ and linear memory using the new semigroup approach.

1. Introduction

Let $\Omega \subset \mathbb{R}^2$ be a bounded domain with smooth boundary Γ , we are concerned with the following equations associated with the oscillation of the suspension bridge:

$$\begin{cases} u_{tt} + \delta u_t + \phi(0)\Delta^2 u + \int_0^\infty \phi'(s)\Delta^2 u(t-s)ds + ku^+ + g(u) = h, \text{ in } \Omega \times \mathbb{R}^+, \\ u(x,t) = \Delta u(x,t) = 0, \ x \in \Gamma, \ t \in \mathbb{R}, \\ u(x,t) = u_0(x,t), \ x \in \Omega, \ t \le 0, \end{cases}$$
(1.1)

where $\phi'(s)$ denotes the memory kernel, $\phi(0)$, $\phi(\infty) > 0$ and $\phi'(s) \le 0$ for $\forall s \in \mathbb{R}^+$. $\delta > 0$ is the viscous damping and k indicates the spring constant. If $\delta = k = 0$, then (1.1) is attributed to a general viscous elastic beam model when the bending-moment relation is considered[5]. In addition, if $\phi' = 0$, it is obvious that (1.1) reduces to the suspension bridge equations, where g represents some displacement-dependent body force density and the suspension bridge equations were presented by Lazer and McKenna as the new problems in fields of nonlinear analysis[1], they were obtained by a onesided Hooke's law. If k = 0, there are many classical results to study existence of global attractors, please refer to [2,4,5]. However, once k > 0,

Keywords: global attractor, linear memory, suspension bridge equation, absorbing set. AMS Mathematics Subject Classification: 35Q35.

due to the non-smooth semi-linear term u⁺ appears in the equations and

 $\frac{\partial(u^+)}{\partial t} \neq \left(\frac{\partial u}{\partial t}\right)^+, \text{ there are some difficulties in the process of proving the existence}$

of global attractors. In this paper, after defining a new variable we obtain the existence of global attractors for equation (1.1) using the new semigroup methods. Concerning else literatures about attractors please the reader to see [3, 6-10], and therein references. Analogous to discuss of [4], we define

$$\eta^{t}(x, s) = u(x, t) - u(x, t - s).$$
(1.2)

We set for simplicity $\mu(s) = -\phi'(s)$ and $\phi(\infty) = 1$. In view of (1.2), adding and subtracting the term $\Delta^2 u$, equation (1.1) transform into the system

$$\begin{cases} u_{tt} + \delta u_t + \Delta^2 u + \int_0^\infty \mu(s) \Delta^2 \eta^t(s) ds + k u^+ + g(u) = h, \\ \eta_t = -\eta_s + u_t, \end{cases}$$
(1.3)

where the second equation is obtained by dierentiating (1.2). Initial-boundary value conditions are then given by

$$\begin{cases} u(x,t) = \Delta u(x,t) = 0, \ x \in \Gamma, \ t \ge 0, \\ \eta^{t}(x,s) = \Delta \eta^{t}(x,s) = 0, \ x \in \Gamma, \ t \ge 0, \ s \in \mathbb{R}^{+}, \\ u(x,0) = u_{1}(x), \ x \in \Omega, \\ u_{t}(x,0) = u_{2}(x), \ x \in \Omega, \\ \eta^{0}(x,s) = \eta_{0}(x,s), \ (x,s) \in \Omega \times \mathbb{R}^{+}, \end{cases}$$
(1.4)

here

$$\begin{cases} u_1(x) = u_0(x,0), \\ u_2(x) = \partial_t u_0(x,t) |_{t=0}, \\ \eta_0(x,s) = u_0(x,0) - u_0(x,-s). \end{cases}$$

Assume that the nonlinear function $g \in C^2(\mathbb{R}, \mathbb{R})$ satisfying the following conditions:

(g1)
$$\liminf_{|s|\to\infty} \frac{G(s)}{s^2} \ge 0$$
, here $G(s) = \int_0^s g(\tau) d\tau$;

(g2)
$$\limsup_{|s|\to\infty} \frac{|g'(s)|}{|s|^{\gamma}} = 0, \quad \forall 0 \le \gamma < \infty;$$

(g3) There exists
$$C_1 > 0$$
, such that $\liminf_{|s| \to \infty} \frac{sg(s) - C_1G(s)}{s^2} \ge 0$.

For simplicity, we denote $\phi(\mathbf{u}) = \int_{\Omega} G(u(x)) dx$.

The memory kernel μ is required to satisfy the following assumptions:

(h1)
$$\mu \in C^1(\mathbb{R}^+) \cap L^1(\mathbb{R}^+), \ \mu(s) \ge 0, \ \mu'(s) \le 0, \ \forall \ s \in \mathbb{R}^+;$$

(h2)
$$\int_0^\infty \mu(s) ds = M > 0;$$

(h3) $\mu'(s) + \alpha \mu(s) \le 0, \forall s \in \mathbb{R}^+, \text{ for some } \alpha > 0.$

We write $H = L^2(\Omega)$, $V = H_0^2(\Omega)$, the scalar product and the norm on H and V are denoted by (\cdot, \cdot) , $|\cdot|$ and $((\cdot, \cdot))$, $||\cdot||$ respectively, where

$$(u,v) = \int_{\Omega} u(x)v(x)dx, \quad ((u,v)) = \int_{\Omega} \Delta u(x)\Delta v(x)dx.$$

Define $D(A) = \{v \in V, Av \in H\}$, here $A = \Delta^2$. For the operator *A*, we assume that

$$A: \frac{V \to V^*}{D(A) \to H}$$

are isomorphism, and there exists $\alpha > 0$ such that

$$\langle Au, u \rangle \ge \alpha \|u\|^2, \ \forall \ u \in V,$$

here $\langle \cdot, \cdot \rangle$ denotes the dual inner product. We also define the power A^s of A for $s \in \mathbb{R}$ which operate on the spaces $D(A^s)$, and we write $V_{2s} = D(A^s)$, $s \in \mathbb{R}$. This is a Hilbert space for the scalar product and the norm as follows

$$(u,v)_{2s} = (A^{s}u, A^{s}v)_{H}, ||u||_{2s} = ((u,u)_{2s})^{\frac{1}{2}}, \forall u, v \in D(A^{s}),$$

and A^r is an isomorphism from $D(A^s)$ onto $D(A^{s-r}), \forall s, r \in \mathbb{R}$. It is clearly that

$$D(A^0) = H, D\left(A^{\frac{1}{2}}\right) = V, D\left(A^{-\frac{1}{2}}\right) = V^* \text{ and } D(A) \subset H = H^* \subset V \subset V^*, \text{ here } H^*, V^*$$

are the dual of H, V respectively, and each space is dense in the following one and the injections are continuous.

Let λ_1 denote the first eigenvalue of $A^{\frac{1}{2}}$, clearly, λ_1^2 is the first eigenvalue of A, namely,

$$\lambda_1^2 = \inf_{v \in V, v \neq 0} \frac{\|v\|^2}{|v|^2}.$$

In view of (h1), let $L^2_{\mu}(\mathbb{R}^+, H^2_0)$ be the Hilbert space of H^2_0 -valued functions on \mathbb{R}^+ , endowed with the following inner product

$$(\varphi, \psi)_{\mu,V} = \int_0^\infty \mu(s) (\Delta \varphi(s), \Delta \psi(s)) ds$$

and

$$|\phi|_{\mu,V}^2 = (\phi,\phi)_{\mu,V} = \int_0^\infty \mu(s) ||\phi||^2 ds$$

We denote $\mathcal{H} = V \times H \times L^2_{\mu}(\mathbb{R}^+, V)$.

2. Preliminaries

Using the standard Faedo-Galerkin methods [3-4] it's easy to obtain the existence, uniqueness of solution for (1.1) and the continuous dependence to the initial value, so we omit it and only give the following theorem:

Theorem 2.1 ^[3-4] Let (g1)-(g3) and (h1)-(h3) hold. Then given any time interval I, problem (1.3)-(1.4) has a solution (u, u_t , η^t) in I = [0, T] with initial data $(u_1, u_2, \eta_0) \in \mathcal{H}$, and the mapping

$$\{u_1, u_2, \eta_0\} \to \{u(t), u_t(t), \eta^t(s)\}$$

is continuous in \mathcal{H} .

Thus, it admits to define a C^0 semigroup

$$S(t): \{u_1, u_2, \eta_0\} \to \{u(t), u_t(t), \eta^t(s)\}, \ t \in \mathbb{R}^+,$$

and it maps \mathcal{H} into itself.

In order to prove our main results, we also need the following abstract results.

Definition 2.1^[6] A C^0 semigroup $\{S(t)\}_{t\geq 0}$ in a Banach space *X* is said to satisfy condition (*C*), if for any $\varepsilon > 0$ and for any bounded set *B* of *X*, there exists t(B) > 0 and a finite dimensional subspace X_1 of *X*, such that $\{ || PS(t)x || : t \ge t(B), x \in B \}$ is bounded and

$$\{ \| (I-P) S(t)x \| \} \le \varepsilon, \text{ for } t \ge t(B), x \in B,$$

where $P: X \to X_1$ is a bounded projector.

Theorem 2.2 ^[6] Let $\{S(t)\}_{t\geq 0}$ be *a* C^0 semigroup in a Hilbert space X. Then $\{S(t)\}_{t\geq 0}$ has a global attractor if and only if

- (1) $\{S(t)\}_{t\geq 0}$ satisfies condition (*C*);
- (2) there exists a bounded absorbing subset B of X.

3. Bounded absorbing set in \mathcal{H}

Choose $0 < \sigma < 1$, and take the scalar product of the first equation of (1.3) with $v = u_t + \sigma u$ in H, after computation, we conclude

$$\frac{1}{2}\frac{d}{dt}(||u||^{2}+|v|^{2})+\sigma ||u||^{2}+(\delta-\sigma)|v|^{2}$$

$$-\sigma (\delta-\sigma) (u,v)+(\eta,v)_{u,v}+(ku^{+},v)+(g(u),v)=(h,v).$$
(3.1)

Combining with (h1) and the second equation of (1.3), we have

$$(\eta, v)_{\mu, V} = (\eta, u_t)_{\mu, V} + \sigma(\eta, u)_{\mu, V} = (\eta, \eta_t + \eta_s)_{\mu, V} + \sigma(\eta, u)_{\mu, V}$$
$$= \frac{1}{2} \frac{d}{dt} |\eta|_{\mu, V}^2 + (\eta, \eta_s)_{\mu, V} + \sigma(\eta, u)_{\mu, V},$$

by (h2) (h3) entails

$$(\eta, \eta_s)_{\mu, V} = -\frac{1}{2} \int_0^\infty \mu'(s) \left| \Delta \eta^t(s) \right|^2 ds$$

$$\geq \frac{\alpha}{2} \left| \eta \right|_{\mu, V}^2$$
(3.3)

and by Young and Hölder inequalities, this lead to

$$\sigma(\eta, u)_{\mu, \nabla} = \sigma \int_0^\infty \mu(s) \, (\Delta \eta(s), \Delta u) ds$$

$$\geq -\frac{\alpha}{4} \int_0^\infty \mu(s) |\Delta \eta^t(s)|^2 \, ds - \frac{\sigma^2}{\alpha} \int_0^\infty \mu(s) |\Delta u|^2 \, ds$$
$$\geq -\frac{\alpha}{4} |\eta|_{\mu,V}^2 - \frac{M\sigma^2}{\alpha} ||u||^2 \,. \tag{3.4}$$

Combining with (3.3), (3.4), from (3.2) we obtain

$$(\eta, \nu)_{\mu, V} \ge \frac{1}{2} \frac{d}{dt} |\eta|_{\mu, V}^{2} + \frac{\alpha}{4} |\eta|_{\mu, V}^{2} - \frac{M\sigma^{2}}{\alpha} ||u||^{2}.$$
(3.5)

In addition, it's easy to have

$$(ku^{+},v) = \frac{1}{2} \frac{d}{dt} k |u^{+}|^{2} + \sigma k |u^{+}|^{2}.$$
(3.6)

Exploiting (g1), (g3), there exists constants K_1 , $K_2 > 0$ only depending on u, such that

$$\phi(u) + \frac{1}{8} \| u \|^2 \ge -K_1, \quad \forall \quad u \in V,$$
(3.7)

$$(u,g(u)) - C_1 \phi(u) + \frac{1}{4} ||u||^2 \ge -K_2, \quad \forall \quad u \in V.$$
(3.8)

Therefore

$$(g(u), v) = \frac{d}{dt} \int_{\Omega} G(u) dx + \sigma \int_{\Omega} g(u) u dx$$
$$\geq \frac{d}{dt} \phi(u) + \sigma(C_1 \phi(u) - \frac{1}{4} ||u||^2 - K_2).$$
(3.9)

Integrating with (3.5), (3.6) and (3.9), from (3.1) we get

$$\frac{1}{2}\frac{d}{dt}(||u||^{2} + |v|^{2} + 2\phi(u) + k|u^{+}|^{2} + |\eta|_{\mu,V}^{2}) + (\delta - \sigma)|v|^{2} - \sigma(\delta - \sigma)(u,v)$$
$$+ \sigma\left(\frac{3}{4} - \frac{M\sigma}{\alpha}\right)||u||^{2} + \frac{\alpha}{4}|\eta|_{\mu,V}^{2} + \sigma k|u^{+}|^{2} + \sigma C_{1}\phi(u) - \sigma K_{2}$$

$$\leq \frac{|h|^2}{\delta} + \frac{\delta}{4} |v|^2 . \tag{3.10}$$

Take σ small enough, such that

$$\frac{3\delta}{4} - \sigma \ge \frac{\delta}{2}, \quad \frac{3}{4} - \frac{\sigma\delta}{\lambda_1^2} - \frac{M\sigma}{\alpha} \ge \frac{1}{2}.$$

Thus, we have

$$(\delta - \sigma) |v|^{2} - \sigma(\delta - \sigma)(u, v) + \sigma \left(\frac{3}{4} - \frac{M\sigma}{\alpha}\right) ||u||^{2}$$

$$\geq (\delta - \sigma) |v|^{2} - \frac{\sigma\delta}{\lambda_{1}} ||u|| \cdot |v| + \sigma \left(\frac{3}{4} - \frac{M\sigma}{\alpha}\right) ||u||^{2}$$

$$\geq (\delta - \sigma) |v|^{2} - \frac{\sigma^{2}\delta}{\lambda_{1}^{2}} ||u||^{2} - \frac{\delta}{4} |v|^{2} + \sigma \left(\frac{3}{4} - \frac{M\sigma}{\alpha}\right) ||u||^{2} \qquad (3.11)$$

$$\geq \frac{\delta}{2} |v|^{2} + \frac{\sigma}{2} ||u||^{2},$$

then combining with (3.10) we conclude

$$\frac{1}{2} \frac{d}{dt} (||u||^{2} + |v|^{2} + 2\phi(u) + k |u^{+}|^{2} + |\eta|_{\mu,v}^{2}) + \frac{\delta}{4} |v|^{2}$$

$$+ \frac{\sigma}{2} ||u||^{2} + \frac{\alpha}{4} |\eta|_{\mu,v}^{2} + \sigma k |u^{+}|^{2} + \sigma C_{1}\phi(u) \leq \frac{|h|^{2}}{\delta} + \sigma K_{2}$$
Let $\sigma_{0} = \min \{\sigma, \frac{\delta}{2}, \frac{\alpha}{2}, \sigma C_{1}\}$, we have
$$\frac{d}{dt} (||u||^{2} + |v|^{2} + 2\phi(u) + k |u^{+}|^{2} + |\eta|_{\mu,v}^{2} + 2K_{1})$$

$$+ \sigma_{0} (||u||^{2} + |v|^{2} + 2\phi(u) + k |u^{+}|^{2} + |\eta|_{\mu,v}^{2} + 2K_{1}) \qquad (3.12)$$

$$\leq \frac{2|h|^{2}}{\delta} + 2\sigma K_{2} + 2\sigma_{0} K_{1}.$$

By (3.7), (3.12) we denote

$$W(t) = ||u||^2 + |v|^2 + 2\phi(u) + k|u^+|^2 + |\eta|^2_{\mu,V} + 2K_1 > 0, \qquad (3.13)$$

then

$$\frac{d}{dt}W(t) + \sigma_0 W(t) \leq C,$$

where C = $\frac{2|h|^2}{\delta} + 2\sigma K_2 + 2\sigma_0 K_1$. By the Gronwall lemma, we have

$$W(t) \le W(0) \exp(-\sigma_0 t) + \frac{C}{\sigma_0} (1 - \exp(-\sigma_0 t)), \forall t \le 0.$$

In line with (g2) and Sobolev embedding theorem, if $||u(0)||^2$, $|u_t(0)|^2$, $|\eta(0)|^2_{\mu,V}$ are bounded, then $\phi(u(0))$ is bounded, too, therefore W(0) is bounded, and

$$\limsup_{t \to \infty} W(t) \le \rho_0^2, \tag{3.14}$$

where $\rho_0^2 = \frac{C}{\sigma_0}$. Thus, we have the following theorem:

Theorem 3.1 Suppose that k > 0, $(g_1) - (g_3)$ and $(h_1) - (h_3)$ are hold. The ball $B_0 = B_{\mathcal{H}}(0, \rho_0)$ of \mathcal{H} , centered at 0 of radius 0, is a bounded absorbing set in \mathcal{H} for the semigroup $\{S(t)\}_{t\geq 0}$. Namely, for any bounded subset *B* of \mathcal{H} , there exists $t_0 = t_0(B) > 0$, such that $S(t)B \subset B_0$ for $t \ge t_0$.

4. Global attractor in \mathcal{H}

In order to obtain our main results, we first need the following lemma of compactness property about the nonlinear term g.

Lemma 4.1 ^[9] Let g be C^2 function from \mathbb{R} into \mathbb{R} satisfying (g_2) . Then $g : H_0^2(\Omega) \to H^{1,p}(\Omega), \forall p > 1$ is continuously compact.

Theorem 4.2 Suppose that k > 0, the conditions (g_1) - (g_3) and (h_1) - (h_3) are hold. Then the semigroup $\{S(t)\}_{t\geq 0}$ associated with the initial boundary value problem (1.3)-(1.4) possesses a global attractor \mathcal{A} in \mathcal{H} which attracts all bounded subsets of \mathcal{H} in the norm of \mathcal{H} .

Proof Applying theorem 2.2 and theorem 2.3, it is sufficient to prove that $\{S(t)\}_{t\geq 0}$ satisfies the condition (*C*) in \mathcal{H} .

Let $\{\omega_k\}_{k=1}^{\infty}$ be an orthonormal basis of *V* which consists of eigenvectors of A, the corresponding eigenvalues are denoted by

$$0 < v_1 < v_2 \le v_3 \le \cdots, v_k \to \infty, \text{ as } k \to \infty.$$

We write $H_m = \text{span}\{\omega_1, \dots, \omega_m\}$. Since $h \in H$ and $g: V \to H^{1,p(\Omega)}, \forall p > 1$ is compact operators verified in Lemma 4.1, therefore, for any $\varepsilon > 0$, there exists some m such that

$$\left| (I - P_m) h \right|_{\mathrm{H}} \le \frac{\varepsilon}{4},\tag{4.1}$$

$$|(I-P_m)g(u)|_H \leq \frac{\varepsilon}{4}, \ \forall u \in B_V(0,\rho_0),$$

$$(4.2)$$

where $P_m : H \to H_m$ is an orthogonal projector, and ρ_0 is given by theorem 3.1. For any $(u, u_t, \eta) \in \mathcal{H}$, we write $(u, u_t, \eta) = (u_1, u_{1t}, \eta_1) + (u_2, u_{2t}, \eta_2)$, here $(u_1, u_{1t}, \eta_1) = (P_m u, P_m u_t, P_m \eta)$.

Choose $0 < \sigma < 1$, taking the scalar product in *H* of the first equation of (1.3) with $v_2 = u_{2t} + \sigma u_2$, combining the second equation of (1.3), we obtain

$$\frac{1}{2}\frac{d}{dt}\left(\|u_{2}\|^{2}+|v_{2}|^{2}+|\eta_{2}|_{\mu,V}^{2}\right)+\sigma\|u_{2}\|^{2}+(\delta-\sigma)|v_{2}|^{2}$$

$$-\sigma(\delta-\sigma)(u_{2},v_{2})+(k(u^{+})_{2},v_{2})+\frac{\alpha}{4}|\eta_{2}|_{\mu,V}^{2}+(g(u),v_{2})\leq(h,v_{2}).$$
(4.3)

Take σ small enough, like (3.11), we have

$$\sigma \| u_2 \|^2 + (\delta - \sigma) |v_2|^2 - \sigma(\delta - \sigma)(u_2, v_2) \ge \frac{\sigma}{2} \| u_2 \|^2 + \frac{\delta}{2} |v_2|^2.$$
 (4.4)

Thanks to *u* is uniformly bounded in V and exploiting $|u^+| \le |u|$, by the Sobolev embedding theorem, for above any $\varepsilon > 0$, we obtain $|(u^+)_2| < \varepsilon$. Therefore, we conclude that

$$(k(u^{+})_{2}, v_{2}) \leq k |(u^{+})_{2}| ||v_{2}| \leq \varepsilon k |v_{2}| \leq \frac{\delta}{8} |v_{2}|^{2} + \frac{2k^{2}\varepsilon^{2}}{\delta}$$
(4.5)

Combining with (4.1)-(4.5), we find

$$\begin{aligned} &\frac{d}{dt}(||u_2||^2 + |v_2|^2 + |\eta_2|^2_{\mu,V}) + \sigma ||u_2||^2 + \frac{3\delta}{8}|v_2|^2 + \frac{\alpha}{2}|\eta_2|^2_{\mu,V} \\ &\leq \frac{\varepsilon^2}{2\delta} + \frac{2k^2\varepsilon^2}{\delta}, \ t \geq t_0. \end{aligned}$$

Let

$$V(t) = \|u_2\|^2 + |v_2|^2 + |\eta_2|^2_{\mu, V}, \ t \ge t_0.$$

Take σ small enough, such that

$$\frac{d}{dt}V(t) + \sigma V(t) \leq C\varepsilon^2, \quad t \geq t_0.$$

where $C = \frac{1}{2\delta} + \frac{2k^2}{\delta}$. By the Gronwall lemma, we have

$$V(t) \leq V(t_0) \exp\left(-\sigma(t-t_0)\right) + \frac{C\varepsilon^2}{\sigma} (1 - \exp(-\sigma(t-t_0))).$$

Take $t_1 - t_0 = \frac{1}{\sigma} \log \frac{\rho_0^2}{\epsilon^2}$, then we conclude

$$V(t) \leq \left(1 + \frac{C}{\sigma}\right)\varepsilon^2, t \geq t_1.$$

Thus, the semigroup $\{S(t)\}_{t\geq 0}$ satisfies Condition (*C*).

REFERENCE

- A.C. Lazer and P.J. McKenna, Large-Amplitude Periodic Oscillations in Suspension Bridges: Some New Connections with Nonlinear Analysis, SIAM Review, 32, No.4, pp. 537-578, December 1990.
- [2] A.D. Drozdov and V.B. Kolmanovskii, Stability in Viscoelasticity, North-Holland Series in *Applied Mathematics and Mechanics*, 38, North-Holland Publishing Co., Amsterdam, 1994.
- [3] R. Temam, Infinite Dimensional Dynamical System in Mechanics and Physics (second edition), Spring-Verlag, 1997.
- [4] Claudio Giorgi, J. E. Munoz Rivera and Vittorino Pata, Global Attractors for a Semilinear Hyperbolic Equation in Viscoelasticity, J. Math. Anal. Appl., 260, 83-99(2001).

- [5] J.E.M. Rivera, M.G. Naso and F.M. Vegni, Asymptotic Behavior of the Energy for a Class of Weakly Dissipative Second-Order Systems with Memory, J. Math. Anal. Appl., 286 (2), (2003), 692-704.
- [6] Q.F. Ma, S.H. Wang and C.K. Zhong, Necessary and Sufficient Conditions for the Existence of Global Attractor for Semigroup and Application. *Indiana University Mathematics Journal*, **51**, No.6 (2002), 1541-1559.
- [7] Qiaozhen Ma, Chengkui Zhong, Existence of Strong Global Attractors for Hyperbolic Equation with Linear Memory [J]. Applied Mathematics and Computation, 157 (2004), 745-758.
- [8] Qiaozhen Ma, Chengkui Zhong, Global Attractors of Strong Solutions for Nonclassical Diusion Equation [J]. *Journal of Lanzhou University*, **40** No. 5, 2004, 7-9.
- [9] Qiaozhen Ma, Chengkui Zhong, Existence of Global Attractors for the Coupled System of Suspension bridge equations, *J. Math. Anal. Appl.* 308 (2005), 365-379.
- [10] Qiaozhen Ma, Chengkui Zhong, Existence of Global Attractors of Suspension bridge equations, J. Sichuan University (2005), in press.