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Abstract

The model with linear memory arise in the case of a generalized Kirchhoot
viscoelastic bar, where a bending-moment relation with memory is considered.
In this paper, after defining a new variable we discuss the existence of the
global attractors for the model (1.1) with non-smooth semi-linear term u* and
linear memory using the new semigroup approach.

1. Introduction

Let Q c R? be a bounded domain with smooth boundary I", we are concerned with
the following equations associated with the oscillation of the suspension bridge:

U, +0U +d(0)A2u+ [ ¢'(s)A2u(t —s)ds+ku* +g(u) = h, in Q xR,
tt 0

u(x,t)=Au(xt)=0, xel, teR,

u(xt) =uy(xt), xeQ, t<0, (.0
where ¢'(S) denotes the memory kernel, ¢(0), ¢p(e0) > 0 and ¢'(S) < 0 for V s € R*".
d > 0 is the viscous damping and K indicates the spring constant. If § = k = 0, then
(1.1) is attributed to a general viscous elastic beam model when the bending-moment
relation is considered[5]. In addition, if ¢’ = 0, it is obvious that (1.1) reduces to the
suspension bridge equations, where g represents some displacement-dependent
body force density and the suspension bridge equations were presented by Lazer
and McKenna as the new problems in fields of nonlinear analysis[1], they were
obtained by a onesided Hooke’s law. If k = 0, there are many classical results to
study existence of global attractors, please refer to [2,4,5]. However, once k > 0,
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due to the non-smooth semi-linear term u* appears in the equations and
owr) ,(auy N . .
o ) there are some difficulties in the process of proving the existence

of global attractors. In this paper, after defining a new variable we obtain the
existence of global attractors for equation (1.1) using the new semigroup methods.
Concerning else literatures about attractors please the reader to see [3, 6-10], and
therein references. Analogous to discuss of [4], we define

n'(X §) = ux, h—u(x, t-9). (1.2)

We set for simplicity p(s) = —¢'(s) and ¢(0) = 1. In view of (1.2), adding and
subtracting the term A”u, equation (1.1) transform into the system

Uy +8U, +A%u+ j(:ou(s)Aznt(s)ds+ ku® +g(u)=h,

(1.3)
N =Nt

where the second equation is obtained by dierentiating (1.2). Initial-boundary value
conditions are then given by

u(x,t) = Au(x,t)=0, xel, t>0,

n'(%9) =An'(x,5)=0, xeI, t>0, seR",
u(x,0) =y, (x), xeQ,

U (X,0) =u,(X), XeQ,

n°(%,9) =1Mp(X,9), (%9)eQxR",

(1.4)

here

UI(X) = uO(XaO)a
U, (X) = OyUp (X,1) o,
TQIO(Xa S) = UO(Xao) - uO(Xa_S)'

Assume that the nonlinear function g € C*R, R) satisfying the following
conditions:

2

.. ~G(s) s
1 f >0, here G(s)= dr;
(1) liminf= (9=, 90
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(22) limsup@ =0, V0<y<o;

EE

Jiminf O =SCE) 5

I§>0 S

(g3)  There exists C, >0, such tha

For simplicity, we denote ¢(u) = IQG(U(X))dX

The memory kernel p is required to satisfy the following assumptions:
(h1) peCR)NL'ERY), w(s)=20,pn'(s)<0, Vse R
(h2) j: u(s)ds=M > 0;
(h3) p' (e +ou(s) <0, Vs e R, for some a>0.

We write H = L*(Q2), V= H g (Q), the scalar product and the norm on H and V
are denoted by (-, -), | - | and ((-, -)), || - || respectively, where

(u,v):J.Q u(xv(xydx, (u,v)) = .fQ Au(X) Av(x)dx.
Define D(A) = {v € V, Av € H}, here A= A”. For the operator A, we assume

that

VoV

ATV

D(A)—>H

are isomorphism, and there exists o > 0 such that
(Au, Uy > aul*, Yu eV,

here (- , -) denotes the dual inner product. We also define the power A* of Afor s €
R which operate on the spaces D(A%), and we write V, = D(A%), s € R. This is a
Hilbert space for the scalar product and the norm as follows

1
(U V)5 = (AU, AV) ., [[U [lps= (U, U)35)*, VU, Ve D(AY),

and A’ is an isomorphism from D(A®) onto D(A*¥), V s, r € R. It is clearly that

1 1
0 N 5 *
D(A") = H,D[AZ}V,D(A 2]=V and D(A)cH=H'cVc V', here H", V'
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are the dual of H, V respectively, and each space is dense in the following one and
the injections are continuous.

1
Let A, denote the first eigenvalue of A2 clearly, klz is the first eigenvalue of
A, namely,

2
. \'

klzz inf IvIE ||2.
veV,v¢0|V|

In view of (h1), let Li (R¥, Hg ) be the Hilbert space of Hg -valued functions

on R, endowed with the following inner product

(@ W)y = [ WS (A0(s), Ad(s)ds

and
[0hv=(0.0),y =] 1S o]’ ds
We denote H =V x H x L3 (R",V).

2. Preliminaries

Using the standard Faedo-Galerkin methods [3-4] it’s easy to obtain the existence,
uniqueness of solution for (1.1) and the continuous dependence to the initial value,
so we omit it and only give the following theorem:

Theorem 2.1 B4 Let (gl1)-(g3) and (h1)-(h3) hold. Then given any time
interval I, problem (1.3)-(1.4) has a solution (u, u, n') in I = [0, T] with initial data
(u,u,, n,) € H, and the mapping

{u, u, ny} = {u(®), u(®), n'(s)}
is continuous in H.
Thus, it admits to define a C° semigroup
S1) : {u,, u, n§ = {u®), u®), n'(s)}, teR,
and it maps H into itself.

In order to prove our main results, we also need the following abstract results.
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Definition 2.1 A C° semigroup {St)} ., in a Banach space Xis said to satisfy
condition (C), if for any € > 0 and for any bounded set B of X, there exists t(B) > 0
and a finite dimensional subspace X, of X, such that {|| PSt)x || : t > (B), X € B} is
bounded and

{10-=P)St)X| } <e, for t>1t(B), x € B,
where P : X — X is a bounded projector.

Theorem 2.2 1 Let {S(t)}, be a C° semigroup in a Hilbert space X. Then
{31}, has a global attractor if and only if

(1) {Sv)},,, satisfies condition (C);

(2) there exists a bounded absorbing subset B of X.

3. Bounded absorbing set in H
Choose 0 < ¢ < 1, and take the scalar product of the first equation of (1.3) with v=

U + ou in H, after computation, we conclude

S (U vy olulP +6-0)|vF G.1)

6 (8-0) (V) + (M, V), + (ku', V) + (g(), v) = (h, V).
Combining with (h1) and the second equation of (1.3), we have
M, V), =0, u),, toMm U, ,=Mmmn+ny,,tomnu),,
1d
T2dt
by (h2) (h3) entails

My +(Ne)uy +o(M,U),y.

(v == |, WO 1A' (9 ds (33)

o 2
>—|n|
oY

and by Young and Holder inequalities, this lead to

o u),, = o], WS (An(s), Auyds
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2
1y w@1an' () ds=2-[u(s)| Auf ds

(x| |2 Mo’

4 nu,V_

Julf. (3.4)

Combining with (3.3), (3.4), from (3.2) we obtain

1d 2 (04 2 MG2 2
,V >—— +— — ujl”. 3.5
(M) St M v 2 M v lull 3.5)
In addition, it’s easy to have
(ku* v)=lik lu™ P +ok|ut P (3.6)
© 2t ‘

Exploiting (g1), (g3), there exists constants K, K, > 0 only depending on u, such
that

1
¢(U)+§IIUIIZZ— K, V ueV, (3.7)

(u,g(u))—q¢<u)+in UPs—K,, ¥ ueV. (3.8)

Therefore

(g(u), v) = %IQG(U)dX+ GJ.Q g(u)udx

d 1
> a¢(u)+G(Q¢(U)—ZII ul® -K,). (3.9)
Integrating with (3.5), (3.6) and (3.9), from (3.1) we get

1d
By (LUl + VP +20(u)+k U™ P +[nfiy) +(E~0) V] ~6(8~0)(U,V)

3 Mo a
" “(Z‘Tj IUlF +7In Ly +ok|u” [ +C(u) oK,
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Take o small enough, such that

36 0 3 o6 Mo _1
——0c2 >—.
4 2

Thus, we have

(6-0) |V} ~o(E-o)U,) +c{3—@] Julp
4 a

o) 3 Mo
>3 -o)|Vv[ ——||U||-|V|+G[———JIIU||2
A 4 o

1

’5 o 3 Mo
>6-6) VP —Z2|[ulf =2 V] +o| = ——2 ||[u]p
@=a)IvP -T2 ~1vF o -
5 o

then combining with (3.10) we conclude

1d .
(Ul + v +2¢(w) +k[u™ [ +[nl;

5 o
+=|v
T )+ 71Vl

c o . h|?
+ Ul + %y +ok|u’ +6C,0(U)<! 8'

+0oK,

o a
Let 6, = min {G’E’E’ oC,}, we have

d R
pm (lulP + v 20 +k[u™ P +[nfy +2K)

+o,(Jull +[vF +2¢(u) +K[u™ [ +[nf, +2K)

2
S2|h| + 20K, +206,K,.

56

(3.10)

(3.11)

(3.12)



By (3.7), (3.12) we denote

W) = [Jul]? + VP + 2¢(u) + Ku'P +nf , + 2K, >0, (3.13)
then
d
—W(t)+o W(t)<C,
dt
2
where C = ] +20K, +206,K,. By the Gronwall lemma, we have

C
W(t) < W(0) exp(—o,t) + o (I —exp(-o,t)), Vt<0.

In line with (g2) and Sobolev embedding theorem, if [[u(0)[P, [u(0), M(O)F. ,, are
bounded, then ¢p(u(0)) is bounded, too, therefore W(0) is bounded, and
limsup W(t)<p;, (3.14)

t—oow

where Po ZG_~ Thus, we have the following theorem:
0

Theorem 3.1 Suppose that k> 0, (gl) - (g3) and (h1) - (h3) are hold. The ball
B, = B,(0, p,) of H, centered at 0 of radius 0, is a bounded absorbing set in ‘H for
the semigroup { St)} ., Namely, for any bounded subset B of H, there exists t =
t,(B) > 0, such that St)Bc B, for t > t.

4. Global attractor in H
In order to obtain our main results, we first need the following lemma of compactness
property about the nonlinear term g.
Lemma 4.1 P Let g be C* function from R into R satisfying (g,). Then g :
H;(Q)— H"P(Q), V p>1 is continuously compact.

Theorem 4.2 Suppose that k > 0, the conditions (g1)-(g3) and (h1)-(h3) are
hold. Then the semigroup {S1)} .,
problem (1.3)-(1.4) possesses a global attractor A in H which attracts all bounded
subsets of H in the norm of H.

associated with the initial boundary value
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Proof Applying theorem 2.2 and theorem 2.3, it is sufficient to prove that
{1}, satisfies the condition (C) in H.
Let {®, },_, be an orthonormal basis of V which consists of eigenvectors of A,
the corresponding eigenvalues are denoted by
O<v, <V, SV, <V, —0,as K—> o0,

We write H = span{o, - - -, ®_}. Sinceh e Hand g: V — H'"*®_ V¥V p>1is
compact operators verified in Lemma 4.1, therefore, for any € > 0, there exists
some m such that

€
(1= Phl, < (4.1)

(1 =P, ()], S%’ Vue B, (0,p,), 4.2)

where P_: H — H_ is an orthogonal projector, and p, is given by theorem 3.1. For
any (U, U, ) € H, we write (U, U, n) = (U, U, n,) + (U, U, n,), here (U, u,,n)=
(P, u,Pu,Pmn).

Choose 0 < o < 1, taking the scalar product in H of the first equation of (1.3)

with v, = U, + oU,, combining the second equation of (1.3), we obtain

1d
5 P +1v P+, ) +ollu P +@—o) v, [ (4.3)

N o
—6(8-0)(Uy,V,) +(k(u )z,V2)+Z|n2 [y HOW),v)<(hv,).
Take o small enough, like (3.11), we have

o o
ollu, [P +@-o)|v, [ —0(5—6)(U2,V2)25|| u, | +5|V2 .

Thanks to u is uniformly bounded in V and exploiting |u*| < |u|, by the Sobolev
embedding theorem, for above any € > 0, we obtain |(U"),| < €. Therefore, we

(4.4)

conclude that

2k?*e?
o

+ + 0
k(™)) < KT, LV, [ < gklv, [< 21V, "+ (4.5)

Combining with (4.1)-(4.5), we find
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d 30 o
a(”uz ”2 +‘V2 |2 +\1‘|2 |;21,v)+GHU2 ||2 +?|V2 |2 +5|n2 |;21v

g2 2k’
<t
20 o)

, t2t

0°

Let
VO = WP+ VP L, 2t

Take o small enough, such that
d >
aV(t) +oV(1)<Ce”, txt,.

2

where C = 25 + 5 By the Gronwall lemma, we have

C¢?

VOV () exp (ot —t) +——(1-exp(~o(t —t,))).

(¢}

2
Taket, —t = —log p—;’, then we conclude
c €

V (t) < [1+9j82, t>t,.
c

Thus, the semigroup {1)} .  satisfies Condition (C).

>0
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