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Abstract

In the present paper, we investigate the rate of approximation by Bezier variant
of a new sequence of linear positive operators for functions of bounded
variation. Here we extend and generalize the results of Gupta [2].

1. Introuction

Agrawal and Thamer [1] introduced a sequence of linear positive operators nM

and estimated some direct results in simultaneous approximation of unbounded
functions. The operators introduced in [1] are defined by
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Recently, Gupta [2] estimated the rate of pointwise approximation by the
operators (1) for bounded variation functions. He introduced the Bezier variant of
the operators (1), for each 1�� , as

         )0()()()()()1(),( )(
0,

1 0

1,
)(

,, fxQdttftpxQnxfM n
k

knknn
��

� ��� � �
�

�

�

� (2)

 Stochastic Modelling and Computational Sciences
Vol. 2 No. 1 (June, 2022) 
 
Received:30th January 2022            Revised: 29th March 2022              Accepted: 25th April 2022   

BOUNDED VARIATION FUNCTIONS AND THE RATE OF CONVERGENCE 

Zhou Jin, School of Mathematical Sciences, University of Jihan, China 

39



where )()()( 1,,
)(

, xJxJxQ knknkn
���

���  and �
�

�

�
kj

jnkn xpxJ )()( ,, .

It is obvious that M
n,� are positive linear operators and M

n,��(1, x)=1. In the
special case � = 1, the operators M

n,� reduce to the operators M
n
 defined by (1).

Some basis properties of )(, xJ kn are as follows:
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Srivastava and Gupta [5] introduced a general sequence of linear positive
operators which includes the operators defined in [6] and [3] as special cases. The
authors investigated the rate of convergence of this operators by means of the
decomposition technique for functions of bounded variation.

Zeng and Gupta [8] introduced Bezier variant of the Baskakov operators and
the rate of convergence for locally bounded functions by using some inequalities
and results probability theory. Zeng and Chen also studied rate of convergence for
Durrmeyer- Bezier operators for functions of bounded variation [7].

This motivated us to extend the results of Gupta [2] and in the present paper,
we obtain the rate of convergence of the operators M

n,� (f, x) defined by (2), for
functions of bounded variation.
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2. Auxiliary Results

In order to prove our main result we require following Lemmas.

Lemma 1 [1]. Let the m -th order moment be defined by
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Proof. First, we prove (i). In view of Lemma 1 and using inequality

1,0, ����� bababa ���  and 1�� , we have
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The proof of (ii) is similar.

Lemma 3 [2]. For all ),0( ��x , we have
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Lemma 4 [2]. Let � ���1ii�  be a sequence of independent random variable with

the same geometric distribution
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Lemma 5 [4]. Let � ���1ii�  be a sequence of independent and identically

distributed random variables with the expectation ,11 aE ��  the variance
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The following Lemma can be prove by Lemma 4 and Lemma 5.

Lemma 6. For all ),0( ��x  and Nk � , we have
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For the last integral, we can write

)2/1(22

1
2
1

122/
2

1

2

A

AA
dte

A

A

t

�

�
�� �

�� .

If 231 ��� nxk , then

)1(

)44.1()2.4(
)

)1(1

1

1
(

)1(

1
12

xnx

x

nnnn

k

nn

x

xx
AA

�
�

�
���

�
�

���
�� .

If 23 �� nxk , then

)1(

23
)

))1/()(21(

)1(2
(

)1(

1

)2/1( 22
1

12

xnx

x

knxnxkn

xnx

n

x

xxA

AA

�
�

�
����

�
�

�
�

�
�

.

Thus

)1(

)68.0()44.1(

2

1 2

1

2 2/

xnx

x
dte

A

A

t

�
�

�� �

�  and )1(

)68.6()44.7(

xnx

x
I

�
�

� .

The proof of (ii) is similar.

3. Main Theorem

As main result we derive the following estimation the rate of convergence.
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Theorem. Let f  be a function of bounded variation on every finite subinterval

of [ �,0 ). If 1�� ,  ),0( ��x ,  Nr �  and 2��  are given, then for
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In order to prove the theorem we need the estimates for ),(, xgM xn �  and

).,(, xsignM xn �  Considering Lemma 3, we first estimate ),(, xsignM xn �  as
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We first estimate 2E . For ]/,/[ nxxnxxt ���  we have
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Thus arguing similarly as in estimate of 1E , we get
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Combining the estimates of (3) we reach the require result. This completes
proof of the theorem.

Remarks

1. If we take � = 1, then our result reduces to the main result of Gupta [2].

2. The analogous estimates can be obtained the general sequence of Srivastava
and Gupta [6], the methods are different we shall discuss them elsewhere.
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