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BOUNDED VARIATION FUNCTIONSAND THE RATE OF CONVERGENCE

Zhou Jin, School of M athematical Sciences, University of Jihan, China

Abstract

In the present paper, we investi gate the rate of approximation by Bezier variant
of a new sequence of linear positive operators for functions of bounded
variation. Here we extend and generalize the results of Gupta [2].

1. I ntrouction

Agrawal and Thamer [1] introduced a sequence of linear positive operatorsM

and estimated some direct results in simultaneous approximation of unbounded
functions. The operators introduced in [1] are defined by

M, (F0 = (=23 P, (0] P O T O+ @40 1O
where

n+k-1) , ik
pn,k(x){ ) jx @+x

Recently, Gupta [2] estimated the rate of pointwise approximation by the
operators (1) for bounded variation functions. He introduced the Bezier variant of

the operators (1), for each o >1, as

M., (F.0 = (13 QY (0] Py O FOX+QUTO
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whereQ (X) = 3% (¥) = %2 (x) and Jnik (X) = JZk) Pr; ()

It is obvious that M, , are positive linear operators and M, (1, X)=1. In the
special case a. = 1, the operators M, reduce to the operators M, defined by (1).

Some basis properties of J,,, (X) are as follows:
(I) 'Jn,k (X) - 'Jn,k+1(x) = pn,k(x)l k = Oalza---;
(i) 'Jr’1,k(x) = npn+1,k71(x), k=123...;

(i) Jni (X) = nj P (Udu, k=123....
0

(iv) Jno(¥) > J (X)) >..> 3 (X)) > T a (X)) >,

and for every natural numberk, 0<J_, (x) <1.

Alternatively we may rewrite the operators (2) as
M, (f,xX)= TWM (t,x) f (t)at
where O
W, () = (1D Q1 (9 Py 413 (9500

S(t) being Dirac ddta function.

Srivastava and Gupta [5] introduced a general sequence of linear positive
operators which includes the operators defined in [6] and [3] as special cases. The
authors investigated the rate of convergence of this operators by means of the
decomposition technique for functions of bounded variation.

Zeng and Gupta [8] introduced Bezier variant of the Baskakov operators and
the rate of convergence for locally bounded functions by using some inequalities
and results probability theory. Zeng and Chen also studied rate of convergence for
Durrmeyer- Bezier operators for functions of bounded variation [7].

This mativated us to extend the results of Gupta [2] and in the present paper,
we obtain the rate of convergence of the operators M (f, X) defined by (2), for
functions of bounded variation.
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2. Auxiliary Results
In order to prove our main result we require following Lemmas.

Lemma 1 [1]. Let the m-th order moment be defined by

M ((t=X",%) =T, .(X) = (n—l)i Pnx (X)j Pt =x)"dt +(1+x) " (=x)"
then we have

2x x2(2n+6)+2nx
Tn,O(x): 1’ Tn,l(x) :—’Tn,Z(x) = ( )
n—2 (n—-2)(n-3)

and
T, m(X) =O(n D72,

Lemma2. For each ;4 > 2 andfor all sufficiently n, wehavefor al x € (0, )

y
() B (900 = W, (60t < 20 g0y oy
' o n(x-y)
) T aAX(L+ X)
(i) 1-8,.(z,X) = .[Wn,a (t,x)dt < W X< Z< 0.

Proof. First, we prove (i). In view of Lemma 1 and using inequality

a® —b”

<ala-b,0<ab<land o >1, wehave

JXWna(t, X)dt < .TWM('[, X)Lt)zzdt <a(x-y) 2T, (X) < M
o o (x-y) ' n(x—y)

The proof of (ii) is similar.

Lemma 3 [2]. For al x e (0,), we have

(n _1).[ Pk (t)dt = z pn—l,j (X)
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Lemma4 [2]. Let {& |, beasequence of independent random variable with
the same geometric distribution

P(él ) (m) F kGN X>O

Then E&, = X, o = E(&, — E&)? = X2 + X, E|&, — E&|” < 3x(L+ x)2.

Lemma 5 [4]. Let {&}°, be a sequence of independent and identically

dlstrlbuted random variables with the expectation E¢& =a,, the variance
o’ =E(¢,-a)>>0, p=E|§-al <o, and let F, standard distribution

(é:k_
function of z—n Then there exists an absolute constant
k=1 O

C,1/4/27 <C<0.8,suchthatforall ne N,
1 ¢ e Cp
suplF, (X) —— | e "?dt| < ———.
xeR 27 '[O O_s\/ﬁ
The following Lemma can be prove by Lemma 4 and Lemma 5.

Lemma 6. For al X € (0,0) and k € N, we have

a(9X+8)

A NX(1+ X)

(i) Ik = )‘

and

) e a(9x+8)

(||) nk(X) n-1,k— 1( )‘ ,—nx(1—+ X) )
Proof (i). [J55 (00 = I 1 (9] < 230 () = Iy 1 (W] = o, say.
Then

| =|P(7,, <k-1)—P(y, <k-1)

1 % . .
_t2/2 _t2/2 —t2/2
<|P(,, <k- 1)—7je dt|+|P(y, <k-1)— @Je dt+7£e dt
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_ k—-1-nx A - k-1-(n-1x
nx(1+ x) and J(n=)x@+x)

From Lemma 4 and Lemma 5

where

1 % e p (3.6)(x+1)
P(7,,<k-1)—-——— |e"?dt|< (0.8 <
s = [@ ( )a3dn—1 Jx(@+x)
and
1% e o (24)(x+])
P(n,<k-1)-— e'?dt| < (0.8 <
¥ ) \/277'[0 ( )03\/5 JX(L+X) -
For the last integral, we can write
o2 < A -A
V2 (1+A1/2)
If 1<k <3nx+ 2, then
k-1 (4.2)x+ (1.44)

AA= ,WH S N N TN s Yl =

If k> 3nx+ 2, then

A -A < 1 2nX(1+ x) < 3X+2

A+ A?12) "~ Jx(L+X) J_ Jn(k—1-2nx+ (X)2 I(k-1))"  /nx(L+X) °
Thus

L (Q49x+ (068 | _ (744)x+(6.68)

NX(1+ X) and nx(1+ x)

The proof of (ii) is similar.

3. Main Theorem
As main result we derive the following estimation the rate of convergence.
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Theorem. Let f beafunction of bounded variation on every finite subinterval
of [0,0). If ¢g>1, Xe€(0,0), reN andj >2 are given, then for
f(t)=0(1+t)"), t— oo, there exists a constant K( f,,r,x) such that for
sufficiently large n
< 2a(9x+8)

— x4+ x)
+ 6a/1(1+ X) iv x+x//k
k=1

- ik (G + K(f,a,r,x)n™

‘Mna(f,x)—[if(x+)+Lf(x—)} | (x+) = £ (x)
' a+l a+l

where

f(t)- f(x-), 0<t<x
g.(t) = 0, t=x
F)—f(xt), t>x

V?(g,) isthetotal variation of g, on [a,b].

Proof. For any f bounded variation function, it is known that

=2 10+ 1) 0,0+ L O 210D ign, 9+ 2

() f(x)
+§x(t)|:f(x) 2 2 }
where
-1 t<X
.00 1% g0 [} X
1 t>x 0, t=x
Obvioudy M, (5,,X) = 0. Hence we have
I\/Ina(f,x)—[lf(x+)+af(x—)}sMM(gX,x)
’ a+l a+l '

L (sign,, )+ 21

. f(x+) - f(x_)l\/l
2 a+1
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In order to prove the theorem we need the estimates for M, (d,,X) and

M, (sign,,x). Considering Lemma 3, we first estimate M (sign,,X) as
follows,

M., (Sgn,,x) = -1+ 2(n—1)iQ<“> [ Pri Ot

=-1+ 22 Poy; (%) ZQ“”)(X)

k=j+1

=-1+ 22 pn -1, (X)'Jn J+1(X)-
Therefore, we obtain

M, (sign,,X) +TL = ZZ Po_1; ()5 5.1(X) ——ZQéaﬁ)(x)

since ZQn"‘ﬁ)(x) =1
By mean value theorem, it follows
Qr(ﬁf? J:Jrllj (X) 'J a+lj+1(X) (a +1) pn -1, j (X)}/n -1, (X)
where 'Jn—l,j+1(X) <7Vnu1j (x) < 'Jn—l,j (X).

From Lemma 6 and by inequality

n, J+1(X) 'Jn -1, ) (X) < 'Jn j+l(X) }/n -1, ] (X) < 'Jn j+l(X) 'Jn lj+l(X)
we obtain
a(9x+8)

<22pnlj J+1(X) ]/nlj()‘ m

Wenow estimate M, , (9, X) . By Lebesgue- Stidtjesintegral representation,
we have

M., (sign,,X) +

x—x/«/ﬁ x+x/«/ﬁ )
Mo (@ X)=( [ + [ + [ W, (txg,tad
0 x=x//n x+x/n (3)
=E +E, + E;,say.
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We first estimate E, . For t e [x— x/+/n, x+ x/+/n] we have

x+x/n

E|< [lo.(OW,, (t,x)dt
x—x/~/n

b
Since|g, (0] <V*(0,) <V (g) and  [Wo,(t0dt<1 g

(a,b) =[0,), we conclude
E <£ 3 Vx+x/«/i
| 2| - n; x=x/K (gx)

Next we estimate E . Writingy = x_x/\/ﬁ and using Lebesgue- Stidtjes
integration by parts, we have

E, = [9,1)d, (8, (€. %) =8, (DA, (¥, — [ B, (t.9d, (g, ©)).
Since|gX (y)| <V, (9,) we conclude that

B V() Bre (99 + [ B (€00, (V1 (9,))-

Lemma 2 implies that

aAX(1+ X) N aX(1+ X)
n(x-y)* n

[ d, (VX (g,).
) (x

Bl <V, (9,) i

Integrating the last term by parts, we get

n o (X=1)

Now replacing the variabley in the last integral byx_x/\/a we abtain

IXA+X) | o o1&«
|E1| S%{X 2VO (gx)-I-X zﬁzvxx/«/?(gx)}

k=1
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Hence

|E1| < 20A(1+X) 2a}t(1+ X) Z - X/f(g )

Finally we estimate E,. We put

1-4,.tx), 0<t<2x

t,X) =
O (1, X) {o, ‘o

and 7= x+ x/+/n , then
E; = [ 9,(t), (0, (£,29) -9, (2X) [W,, (t, )dt + [ 9, (), (B, (¢, X))

=E; +E;, + E;, say.

We estimate E,,.

2X
Ey = 0,(2)0,, (2 %)+ [T, (6,0, (9, (1)
whered,, (z,X) is normalized form of q,,(z X).

Sinced,, (z—,X) = fin,a (z,x) and g,(z-) <V,” (g,), we have

Ey <V (90, (2 x)+jqn0,(t X)d, (-V, (9,)).

Applying Lemma 2

. aAX(1+ X) a/ix(1+ X) %f 1
Eal <V (07 T j( (Vi@
2{sz(g )IW (u, x)du}
<V (g )aﬂx(1+x)+a/1x(l+x)2f 1 A,V (0,)

n(z-x)°* n 1)

;[V 2 (g.) X1+ x)}
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Thus arguing similarly as in estimate of E,, we get

2 /1(1+ X) o X+X
|E31|SaT;Vx "(g,).

Again by Lemma 2, we get
AA(d+ X) Oy, wex
Ey| < PR Sy (),
nx

Finally for n > r, we can write

[Egx|<M mwnya t,X[A+t)" + L+ x)"]dt

X

r r 1+x)' r
Using the inequalities @+t)' <2 ()(T)(t—x)2 and

1+ X)"
@+x) <2 (XT)('[ —X)* for t > 2x, Lemma 1 and Lemma 2, we obtain

[Eg|< M2 al@+x)’ o

X2r n,2r r

() < Mz”leln’r <K(f,a,r,X)n™.
X

Combining the estimates of (3) we reach the require result. This completes
proof of the theorem.

Remarks
1. If wetake o = 1, then our result reduces to the main result of Gupta [2].

2. The analogous estimates can be obtained the general sequence of Srivastava
and Gupta [6], the methods are different we shall discuss them esewhere.
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