## $\mathscr{B}$-MULTIPLICATIVE FUNCTIONS

## Minir Gjonbalaj, faculty of Mathematics, Prishtina, Kosova


#### Abstract

the properties. 1. $(\mathrm{a}, \mathrm{b}) \varepsilon \mathcal{B} \Leftrightarrow(\mathrm{b}, \mathrm{a}) \varepsilon \mathscr{B}$ 2. (a, bc) $\varepsilon \mathcal{B} \Leftrightarrow(\mathrm{a}, \mathrm{b}) \varepsilon \mathcal{B}$ and $(\mathrm{a}, \mathrm{c}) \varepsilon \mathcal{B}$ 3. $(1, \mathrm{k}) \varepsilon \mathcal{B}$, for $\mathrm{k}=1,2,3, \ldots \ldots \ldots$


By a basic sequence $\mathcal{B}$ we mean a set of pairs (a, b) of positive integers with

In this paper we define $\mathcal{B}$-multiplicative functions.
An arithmetical function $f$ is said to be $\mathcal{B}$-multiplicative if $f$ is not identically zero and $f(m n)=f(m) f(n)$ for all $(m, n) \varepsilon \mathcal{B}$.

Our $\mathcal{B}$-multiplicative function is the generalization of multiplicative and completely multiplicative functions.
In this paper we have shown the following:
(i) If $f$ is $\mathcal{B}$-multiplicative, then $\mathrm{f}(1)=1$
(ii) If $f$ is $\mathcal{B}$-multiplicative and if $f(n) \neq 0$ then we get $f(1) \neq 0$, so the inverse of $f, f^{1}$ exists.
(iii) If $f$ is $\mathcal{B}$-multiplicative function, then $f^{1}$ is also a $\mathcal{B}$-multiplicative function. i.e. $f^{-1}(m n)=f^{-1}(m) f^{-1}(n)$ for all $(m, n) \varepsilon \mathcal{B}$.
(iv) If $f$ and $g$ are $\mathcal{B}$-multiplicative functions, then their Dirchlet product $f * g$ is also a $\mathcal{B}$-multiplicative function.
i.e. $(f * g)(m n)=(f * g)(m)(f * g)(n)$ for all $(m, n) \varepsilon \mathcal{B}$.
(v) If $f$ and $g$ are $\mathcal{B}$-multiplicative functions, then their Unitary product fxg is also a $\mathcal{B}$-multiplicative function.
i.e. $(f x g)(m n)=(f x g)(m)(f x g)(n)$.

We also shown that several more properties of $\mathfrak{B}$-multiplicative functions.

2000 Mathematics Subject Classification: 11B37, 11B50.
Keywords and Phrases: Multiplicative Functions, Completely Multiplicative Functions, Basic Sequence, $\mathcal{B}$-Multiplicative Functions.

## 1. Introduction

A real or complex valued function defined on the set of all positive integers is called an Arithmetical function.

An arithmetical function $f$ is said to be a multiplicative function if $f$ is not identically zero and $f(m n)=f(m) f(n)$ whenever $(m, n)=1, f$ is said to be a completely multiplicative function if $f(m n)=f(m) f(n)$ for all $m, n$.
1.1. Definition: A set of pairs ( $\mathrm{a}, \mathrm{b}$ ) of positive integers is said to be a Basic sequence $\mathcal{B}$, if

1. $(a, b) \varepsilon \mathscr{B} \Leftrightarrow(b, a) \varepsilon \mathcal{B}$
2. $(a, b c) \varepsilon \mathscr{B} \Leftrightarrow(a, b) \varepsilon \mathcal{B}$ and $(a, c) \varepsilon \mathcal{B}$
3. $(1, k) \varepsilon \mathscr{B}(k=1,2,3, \ldots \ldots \ldots)$

Examples: 1. The set $\mathcal{L}$ of all pairs of positive integers forms a basic sequence.
2. The set $\mathcal{M}$ of all pairs of relative prime positive integers forms a basic sequence.
1.2. Definition: An arithmetical function $f$ is said to be $\mathcal{B}$-multiplicative function if $f$ is not identically zero and $f(m n)=f(m) f(n)$ for all $(m, n) \varepsilon \mathcal{B}$.
1.3. Remark: If we take $\mathcal{L}$ as the basic sequence, then our $\mathcal{B}$-multiplicative function becomes completely multiplicative function and if we take $\mathcal{M}$ as the basic sequence, then our $\mathfrak{B}$-multiplicative function becomes multiplicative function.

Therefore our $\mathfrak{B}$-multiplicative function is generalization of multiplicative and completely multiplicative functions.
1.4. Definition: If $f$ and $g$ are two arithmetical functions, then Donald L. Goldsmith has defined their convolution over $B$ as

$$
\begin{align*}
\left(f 0_{\mathcal{B}} g\right)(n)= & \Sigma f(d) g(\delta)  \tag{1.5}\\
& d \delta=n \\
& (d, \delta) \varepsilon \mathcal{B}
\end{align*}
$$

1.6. Definition : If f and g are two arithmetical functions, then their Dirichlet product, denoted by $f * g$, defined as

$$
\begin{equation*}
(f * g)(n)=\sum_{d \mid n} f(d) \mathrm{g}\left(\frac{\mathrm{n}}{\mathrm{~d}}\right), \quad \text { for all } n \tag{1.7}
\end{equation*}
$$

1.8. Note: If $f$ and $g$ are multiplicative functions then their Dirichlet product $\mathrm{f} * \mathrm{~g}$ is also multiplicative function.
1.9. Definition : If $f$ and $g$ are arithmetical functions then their Unitary Product, denoted by $f x g$ defined as

$$
\begin{equation*}
(f x g)(n)=\sum_{d \| n} f(d) \mathrm{g}\left(\frac{\mathrm{n}}{\mathrm{~d}}\right), \text { for all } n, \tag{1.10}
\end{equation*}
$$

[Here $d \| n$ means $d$ is a unitary divisor of $n$. i.e $d \mid n$ and $\left.\left(d, \frac{n}{d}\right)=1\right]$.
1.11. Note: If $f$ and $g$ are multiplicative functions then their unitary product $f x g$ is also a multiplicative function.

In the second section we first introduce the concept of inverse of a $\mathcal{B}$-multiplicative arithmetical function and proved that inverse of a $\mathcal{B}$-multiplicative function is also a $\mathcal{B}$-multiplicative.

In the third section we proved that "if f and g are $\mathcal{B}$-multiplicative then their Dirichlet product and unitary product are also $\mathcal{B}$-multiplicative". We conclude this section by proving that the convolution $f 0_{\mathcal{B}} g$ of f and g which is the generalization of Dirichlet and Unitary convolutions, is also a $\mathbb{B}$-multiplicative.

In the fourth section we have proved some more properties of $\mathcal{B}$-multiplicative functions.
2. In this section we first discuss the inverse of a $\mathcal{B}$-multiplicative function and then we proved that the inverse of a $\mathfrak{B}$-multiplicative function is also a $\mathcal{B}$ multiplicative function.
2.1. Theorem: If $f$ is a $\mathcal{B}$-multiplicative function then $f(1)=1$.

Proof: We have $f(n)=f(1 n)=f(1) f(n)$
[since $(1, n) \varepsilon \mathfrak{B}$, for $n=1,2, \ldots \ldots$ ]
Since f is not identically zero, we have $f(n) \neq 0$ for some $n$.
Cancelling $f(n)$ both sides, we get $f(1)=1$.
2.2. Definition: The inverse of $\mathcal{B}$-multiplicative function $f$ is given by

$$
f_{(1)}^{-1}=\frac{1}{\mathrm{f}(1)}
$$

and for $n>1, f^{-1}(n)=\frac{-1}{f(1)} \sum_{\substack{d \mid n \\ d<n}} f\left(\frac{n}{d}\right) f^{-1}(d)$
2.3. Theorem: If $f$ is a $\mathscr{B}$-multiplicative function, then $f^{-1}$ is also a $\mathscr{B}$-multiplicative function.
i.e. $f^{-1}(\mathrm{~m} \mathrm{n})=f^{-1}(m) . f^{-1}(n), \quad$ for all $(m, n) \varepsilon \mathscr{B}$

Proof: we have $(m, n) \varepsilon \mathscr{B}$
If $m=n=1$, then $f^{-1}(m n)=\frac{1}{f(1)}=1=f^{-1}(m) f^{-1}(n)$

$$
\text { [since } f(1)=1]
$$

Suppose that $m n \neq 1$ and assume that $f^{-1}(c d)=f^{-1}(c) f^{-1}(d)$ whenever $c d<m n$. If either $m=1$ or $n=1$, then $f^{-1}(m n)=f^{-1}(m) f^{-1}(n)$. Therefore, suppose that $m \neq 1$ and $n \neq 1$. Take $a$ divisor $d$ of $n$ such that $d d^{\prime}=n$.
$\operatorname{So}\left(m, d d^{\prime}\right) \varepsilon \mathscr{B} \Leftrightarrow(m, d) \varepsilon \mathscr{B}$ and $\left(m, d^{\prime}\right)=\left(m, \frac{n}{d}\right) \varepsilon \mathscr{B}$
Now, $(m, d) \varepsilon \mathscr{B} \Leftrightarrow(d, m) \varepsilon \mathscr{B}$
Take $a$ divisor $c$ of $m$ such that $\mathrm{cc}^{\prime}=\mathrm{m}$.

$$
\operatorname{So}\left(d, c c^{\prime}\right) \varepsilon \mathscr{B} \Leftrightarrow(d, c) \varepsilon \mathscr{B} \text { and }\left(d, c^{\prime}\right)=\left(d, \frac{m}{c}\right) \varepsilon \mathscr{B}
$$

Now, $(d, c) \varepsilon \mathscr{B} \Leftrightarrow(c, d) \varepsilon \mathscr{B}$

$$
\begin{align*}
\text { Again }\left(m, \frac{n}{d}\right) \varepsilon \mathscr{B} & \Leftrightarrow\left(c c^{\prime}, \frac{n}{d}\right) \varepsilon \mathscr{B}  \tag{1}\\
& \Leftrightarrow\left(\frac{n}{d}, c c^{\prime}\right) \varepsilon \mathscr{B} \\
& \Leftrightarrow\left(\frac{n}{d}, c\right) \varepsilon \mathscr{B} \text { and }\left(\frac{n}{d}, c^{\prime}\right)=\left(\frac{n}{d}, \frac{m}{c}\right) \varepsilon \mathscr{B} \\
\left(\frac{n}{d}, \frac{m}{c}\right) \varepsilon B & \Leftrightarrow\left(\frac{m}{c}, \frac{n}{d}\right) \varepsilon \mathscr{B} \tag{2}
\end{align*}
$$

By the formula of inverse of an arithmetical function.
we have $f^{-1}(m n)=-\frac{1}{f(1)} \sum_{\substack{c|m \\ d| n \\ c d>1}} f(\mathrm{~cd}) f^{-1}\left(\frac{m n}{c d}\right)$.
Since $f(1)=1, c d<m n,\left(\left(\frac{m}{c}\right)\left(\frac{n}{d}\right)\right)<m n$ and from (1) \& (2), also by our assumption,

$$
\begin{aligned}
& \text { we have } \begin{aligned}
& f^{-1}(m n)=-\sum_{\substack{c|m \\
d| n \\
c d>1}} \mathrm{f}(\mathrm{c}) \mathrm{f}(\mathrm{~d}) \mathrm{f}^{-1}\left(\frac{m}{c}\right) \mathrm{f}^{-1}\left(\frac{n}{d}\right) \\
&=-f^{-1}(\mathrm{~m}) \sum_{\substack{d \mid n \\
d>1}} \mathrm{f}(\mathrm{~d}) \mathrm{f}^{-1}\left(\frac{n}{d}\right)-f^{-1}(\mathrm{n}) \sum_{\substack{c \mid m \\
c>1}} f(c) f^{-1}\left(\frac{m}{c}\right) \\
& {\left[\begin{array}{l}
\left.-\sum_{c \mid m} f(c) f^{-1}\left(\frac{m}{c}\right)\right]\left[\sum_{d \mid n}^{d>1}\right. \\
d>1
\end{array}\right] } \\
&=\left(-f^{-1}(m)\right)\left(-f^{-1}(n)\right)-\left(f^{-1}(n)\right)\left(-f^{-1}(m)\right)-\left(-f^{-1}(m)\right)\left(-f^{-1}(n)\right) \\
&=f^{-1}(m) f^{-1}(n)+f^{-1}(m) f^{-1}(n)-f^{-1}(m) f^{-1}(n) \\
&=f^{-1}(m) f^{-1}(n) .
\end{aligned}
\end{aligned}
$$

Thus, $f^{-1}(m n)=f^{-1}(m) f^{-1}(n)$, for all $(m, n) \varepsilon \mathscr{B}$
i.e. $f^{-1}$ is a $\mathscr{B}$-multiplicative function.
3. In this section we have proved that if f and g are $\mathscr{B}$-multiplicative then their Dirichlet product $f * g$ and Unitary product $f x g$ are also $\mathscr{B}$-multiplicative.
3.1. Theorem: If f and g are $B$-multiplicative, then their dirichlet product $f * g$ is also a $\mathscr{B}$-multiplicative,

$$
\text { i.e. }(f * g)(m n)=(f * g)(m)(f * g)(n), \quad \text { for all }(m, n) \varepsilon \mathscr{B}
$$

Proof: Write $h=f * g$ and we prove

$$
h(m n)=h(m) h(n), \text { for all }(m, n) \varepsilon \mathscr{B} .
$$

If one of $m$ and $n$ is 1 , then the result is obvious.
Now, suppose that $m>1$ and $n>1$, and $(m, n) \varepsilon \mathscr{B}$.
Take a divisor $b$ of $n$ such that $b b^{\prime}=n$,
$\operatorname{So}\left(m, \mathrm{bb}^{\prime}\right) \varepsilon \mathscr{B} \Leftrightarrow(\mathrm{m}, \mathrm{b}) \varepsilon \mathscr{B}$ and $\left(\mathrm{m}, \mathrm{b}^{\prime}\right)=\left(m, \frac{n}{b}\right) \varepsilon \mathscr{B}$.
Now $(m, b) \Leftrightarrow(b, m) \varepsilon \mathscr{B}$
Take a divisor a of m such that $\mathrm{aa}^{\prime}=m$,

$$
\begin{equation*}
\text { So }(\mathrm{b}, \mathrm{aa}) \varepsilon \mathscr{B} \Leftrightarrow(\mathrm{b}, \mathrm{a}) \varepsilon \mathscr{B} \text { and }\left(\mathrm{b}, \mathrm{a}^{\prime}\right) \varepsilon \mathscr{B} \tag{1}
\end{equation*}
$$

Now, $(\mathrm{b}, \mathrm{a}) \varepsilon \mathscr{B} \Leftrightarrow(\mathrm{a}, \mathrm{b}) \varepsilon \mathscr{B}$
Also $\quad\left(m, \frac{n}{b}\right) \varepsilon \mathscr{B} \Leftrightarrow\left(\frac{n}{b}, m\right)=\left(\frac{n}{b}, a a^{\prime}\right) \varepsilon \mathscr{B}$
$\Leftrightarrow\left(\frac{n}{b}, a\right) \varepsilon \mathscr{B}$ and $\left(\frac{n}{b}, a^{\prime}\right) \varepsilon \mathcal{B}$
so, $\left(\frac{n}{b}, a^{\prime}\right)=\left(\frac{n}{b}, \frac{m}{a}\right) \varepsilon \mathscr{B} \Leftrightarrow\left(\frac{m}{a}, \frac{n}{b}\right) \varepsilon \mathscr{B}$
Therefore, by definition,

$$
\begin{aligned}
\mathrm{h}(\mathrm{~m} \mathrm{n}) & =\sum_{a b \mid m n} f(a b) g\left(\frac{m n}{a b}\right) \\
& =\sum_{a b \mid m n} \mathrm{f}(\mathrm{a}) \mathrm{f}(\mathrm{~b}) g\left(\frac{m}{a}\right) g\left(\frac{n}{b}\right)(\text { from (1) \& (2)) } \\
& =\left(\sum_{a \mid m} f(a) g\left(\frac{m}{a}\right)\right)\left(\sum_{b \mid n} f(b) g\left(\frac{n}{b}\right)\right) \\
& =h(m) h(n)
\end{aligned}
$$

Hence $h(m n)=h(m) h(n)$, for all $(m, n) \varepsilon \mathcal{B}$
i.e. $(f * g)(m n)=(f * g)(m)(f * g)(n)$, for all $(m, n) \varepsilon \mathcal{B}$, and the theorem is proved.
3.2. Theorem: If $f$ and $g$ are $\mathscr{B}$-multiplicative then, their Unitary product is also $\mathscr{B}$-multiplicative.

$$
\text { i.e. }(f \times g)(m n)=(f x g)(m)(f x g)(n) \text {, for all }(m, n) \varepsilon \mathscr{B}
$$

Proof: Write $u=f x g$
We show that $u(m n)=u(m) u(n)$ for all $(m, n) \varepsilon \mathcal{B}$.
Take $a$ divisor $b$ of $n$ such that $b b^{\prime}=n$ and $\left(b, b^{\prime}\right)=1$
We have $(m, n) \varepsilon \mathscr{B}$
So $\left(m, b b^{\prime}\right) \varepsilon \mathscr{B} \Leftrightarrow(m, b) \varepsilon \mathscr{B}$ and $\left(m, b^{\prime}\right) \varepsilon \mathscr{B}$
So, $(m, b) \Leftrightarrow(b, m) \varepsilon \mathscr{B}$
Take a divisor $a$ of $m$ such that $a a^{\prime}=m$ and $\left(a, a^{\prime}\right)=1$

$$
\begin{equation*}
\text { As }(b, m)=\left(b, a a^{\prime}\right) \varepsilon \mathscr{B} \Leftrightarrow(b, a) \varepsilon \mathscr{B} \text { and }\left(b, a^{\prime}\right) \varepsilon \mathscr{B} \tag{1}
\end{equation*}
$$

We have, $(b, a) \varepsilon \mathscr{B} \Leftrightarrow(a, b) \varepsilon \mathscr{B}$
Also $\quad\left(m, b^{\prime}\right) \varepsilon \mathscr{B} \Leftrightarrow\left(b^{\prime}, \mathrm{m}\right)=\left(b^{\prime}, a a^{\prime}\right) \varepsilon \mathscr{B}$

$$
\Leftrightarrow\left(b^{\prime}, a\right) \varepsilon \mathscr{B} \text { and }\left(b^{\prime}, a^{\prime}\right) \varepsilon \mathscr{B},
$$

$\operatorname{So}\left(b^{\prime}, a^{\prime}\right) \varepsilon \mathscr{B} \Leftrightarrow\left(a^{\prime}, b^{\prime}\right) \varepsilon \mathscr{B}$
Therefore, by definition,

$$
\begin{aligned}
& \mathrm{u}(\mathrm{~m} \mathrm{n})= \sum^{a b a^{\prime} b^{\prime}=m n} \begin{array}{l}
\left(a b, a^{\prime} b^{\prime}\right)=1 \\
\\
=
\end{array} \sum_{\substack{a b a^{\prime} b^{\prime}=m n \\
\left(a b, a^{\prime} b^{\prime}\right)=1}} \mathrm{f}(\mathrm{a} \mathrm{~b}) \mathrm{g}\left(\mathrm{a}^{\prime} \mathrm{b}^{\prime}\right) \mathrm{f}(\mathrm{~b}) \mathrm{g}\left(\mathrm{a}^{\prime}\right) \mathrm{g}\left(\mathrm{~b}^{\prime}\right) \\
&= \sum^{a a^{\prime}=m} \mathrm{f}(\mathrm{a}) \mathrm{f}(\mathrm{~b}) \mathrm{g}\left(\mathrm{a}^{\prime}\right) \mathrm{g}\left(\mathrm{~b}^{\prime}\right) \\
&\left(a, a^{\prime}\right)=1 \\
& b b^{\prime}=n \\
&\left(b, b^{\prime}\right)=1
\end{aligned}
$$

$$
\begin{aligned}
& =\left(\sum_{\substack{a a^{\prime}=m \\
\left(a, a^{\prime}\right)=1}} f(a) g\left(a^{\prime}\right)\right)\left(\sum_{\substack{b^{\prime}=n \\
\left(b, b^{\prime}\right)=1}} f(b) g\left(b^{\prime}\right)\right) \\
& =u(m) u(n)
\end{aligned}
$$

Hence $u(m n)=u(m) u(n)$ for all $(m, n) \varepsilon \mathcal{B}$ and the theorem is proved.
3.3. Theorem: If $f$ and $g$ are $\mathcal{B}$-multiplicative then $f_{0_{\mathcal{B}}} g$ is also a $\mathcal{B}$-multiplicative i.e. $\left(\mathrm{f} 0_{\mathcal{B}} \mathrm{g}\right)(\mathrm{mn})=\left(\mathrm{f} 0_{\mathcal{B}} \mathrm{g}\right)(\mathrm{m})\left(\mathrm{f} 0_{\mathcal{B}} \mathrm{g}\right)(\mathrm{n})$, for all $(\mathrm{m}, \mathrm{n}) \varepsilon \mathscr{B}$

Proof: The Proof of this result follows at once from the theorems 3.1 and 3.2.
4. In this section we have proved some properties of $\mathcal{B}$-multiplicative functions in which the divisors of $m$ and $n$ are involved.
4.1. Theorem: If both $g$ and $f * g$ are $\mathscr{B}$-multiplicative then $f$ is also $\mathcal{B}$ multiplicative.

Proof: Assuming that f is not $\mathcal{B}$-multiplicative, we show that $f * g$ is also not $\mathcal{B}$ multiplicative.

Write $h=f * g$.
Since f is not $\mathcal{B}$-multiplicative, we can find positive integers $m$ and $n$ with $(m, n) \varepsilon \mathcal{B}$

Such that $\quad f(m n) \neq f(m) f(n)$.
We choose such a pair m and n for which the product mn is as small as possible.
Suppose $m n=1$
So $f(1)=f(1.1) \neq f(1) f(1) \quad[$ since $(1,1) \varepsilon \mathcal{B}]$
So $f(1) \neq 1$
Now $h(1)=f(1) g(1)$

$$
=f(1)
$$

$$
\neq 1 \text { [since } g \text { is } \mathscr{B} \text {-multiplicative } g(1)=1]
$$

which shows $h(1) \neq 1$ and $h$ is not $\mathfrak{B}$-multiplicative
Now, suppose $m n>1$.
Take a divisor $a$ of $m$ and $b$ of $n$ so that $f(a b)=f(a) f(b)$ such that $(a, b) \varepsilon \mathcal{B}$ and $a b<m n$. (such $a, b$ exist, for example we may take $a=b=1$.)

Now, we apply the argument used in the above theorem 4.1.
i.e. if $m n>1$, then we have $f(a b)=f(a) f(b)$ for all positive integers $a$ and $b$ whenever $(a, b) \varepsilon \mathscr{B}$ and $a b<m n$.

Here in the sum defining $h(m n)$, we seperate the term corresponding to $a=m$ and $b=n$.

Therefore, we have

$$
\begin{aligned}
\mathrm{h}(\mathrm{mn})= & \sum_{\substack{a|m \\
b| n \\
a b<m n}} \mathrm{f}(\mathrm{ab}) g\left(\frac{m n}{a b}\right)+\mathrm{f}(\mathrm{mn}) \mathrm{g}(1) \\
& =\sum_{\substack{a|m \\
b| n \\
a b<m n}} \mathrm{f}(\mathrm{a}) \mathrm{f}(\mathrm{~b}) g\left(\frac{m}{a}\right) g\left(\frac{n}{b}\right)+\mathrm{f}(\mathrm{mn}) \\
& {\left[\text { since } \mathrm{g} \text { is } \mathscr{B}-\text { multiplicative and }\left(\frac{m}{a}, \frac{n}{b}\right) \varepsilon \mathscr{B}\right] } \\
& =\left(\sum_{a \mid m} f(a) g\left(\frac{m}{a}\right)\right)\left(\sum_{b \mid n} f(b) g\left(\frac{n}{b}\right)\right)-f(m) f(n)+f(m n)
\end{aligned}
$$

So $h(m n)=h(m) h(n)-f(m) f(n)+f(m n)$
Since $f(m n) \neq f(m) f(n)$, this shows that $h(m n) \neq h(m) h(n)$ and $h$ is not $\mathcal{B}$-multiplicative.

This contradiction completes the proof.
4.2. Note: We can prove the inverse of $\mathscr{B}$-multiplicative function is also a $\mathfrak{B}$-multiplicative function directly by using the above theorem 4.1 as follows.
4.3. Theorem : If $g$ is $\mathscr{B}$-multiplicative function, then its dirichlet inverse $g^{-1}$ is also $\mathfrak{B}$-multiplicative.

Proof: In the above theorem 4.1 we proved that if both g and $f * g$ are $\mathscr{B}$-multiplicative, then $f$ is also $\mathfrak{B}$-multiplicative.

Writing $g^{-1}$ in place of $f$, we get if both $g$ and $g^{-1} * g=\mathrm{I}$ are $\mathscr{B}$-multiplicative functions. So we get $g^{-1}$ is $\mathscr{B}$-multiplicative function.
4.4. Theorem : Let $k$ be a positive integer.

Write $\quad h(n)=\sum_{d^{k} \mid n} f(d) g\left(\frac{n}{d^{k}}\right)$
where $f$ and $g$ are $\mathcal{B}$-multiplicative functions then $h$ is also a $\mathcal{B}$-multiplicative function.

Proof: Let $(m, n) \in \mathcal{B}$
If $m=n=1$, then $h(m n)=h(1)=1=1.1=h(m) h(n)$
If one of $m$ and $n$ is 1 , then $h(1 n)=h(1) h(n)$ and $h(m 1)=h(m) h(1)$
[since $(1, n) \varepsilon \mathcal{B}$ for $n=1,2, \ldots$.
and $(1, m) \varepsilon \mathcal{B} \Leftrightarrow(m, 1) \varepsilon \mathcal{B}$ for $m=1,2, \ldots$.
Now, suppose that $\mathrm{m}>1$ and $n>1$
Take a divisor $\mathrm{b}^{\mathrm{k}}$ of n such that $b^{k} b^{\prime}=n$
So, $\left(m, b^{k} b^{\prime}\right) \varepsilon \mathcal{B} \Leftrightarrow\left(m, b^{k}\right) \varepsilon \mathcal{B}$ and $\left(m, b^{\prime}\right)=\left(m, \frac{n}{b^{k}}\right) \varepsilon \mathcal{B}$
So, $\left(m, b^{k}\right) \varepsilon \mathcal{B} \Leftrightarrow\left(b^{k}, m\right) \varepsilon \mathcal{B}$.
Take a divisor $a^{\mathrm{k}}$ of m such that $a^{\mathrm{k}} a^{\prime}=\mathrm{m}$
So $\left(b^{k}, m\right)=\left(b^{k}, a^{k} a^{\prime}\right) \varepsilon \mathcal{B} \Leftrightarrow\left(b^{k}, a^{k}\right) \varepsilon \mathcal{B}$ and $\left(b^{k}, a^{\prime}\right) \varepsilon \mathcal{B}$
Now

$$
\left(b^{k}, a^{k}\right) \varepsilon \mathcal{B} \Leftrightarrow\left(a^{k}, b^{k}\right) \varepsilon \mathcal{B}
$$

also $\quad\left(m, \frac{n}{b^{k}}\right) \varepsilon \mathcal{B} \Leftrightarrow\left(\frac{n}{b^{k}}, m\right)=\left(\frac{n}{b^{k}}, a^{k} a^{\prime}\right) \varepsilon \mathcal{B}$

$$
\Leftrightarrow\left(\frac{n}{b^{k}}, a^{k}\right) \varepsilon \mathcal{B} \text { and }\left(\frac{n}{b^{k}}, a^{\prime}\right)=\left(\frac{n}{b^{k}}, \frac{m}{a^{k}}\right) \varepsilon \mathcal{B}
$$

Now, $\left(\frac{n}{b^{k}}, \frac{m}{a^{k}}\right) \varepsilon \mathcal{B} \Leftrightarrow\left(\frac{m}{a^{k}}, \frac{n}{b^{k}}\right) \varepsilon \mathcal{B}$.
We have $\left(a^{k}, b^{k}\right) \varepsilon \mathcal{B} \Leftrightarrow\left(a^{k}, b b^{k-1}\right) \varepsilon \mathscr{B} \Leftrightarrow\left(a^{k}, b\right) \varepsilon \mathcal{B}$ and $\left(a^{k}, b^{k-1}\right) \varepsilon \mathcal{B}$
Now, $\quad\left(a^{k}, b\right) \varepsilon \mathcal{B} \Leftrightarrow\left(b, a^{k}\right) \varepsilon \mathscr{B}$

$$
\Leftrightarrow\left(b, a a^{k-1}\right) \varepsilon \mathscr{B} \Leftrightarrow(b, a) \varepsilon \mathscr{B} \text { and }\left(b, a^{\mathrm{k}-1}\right) \varepsilon \mathscr{B}
$$

Now

$$
(b, a) \varepsilon \mathscr{B} \Leftrightarrow(a, b) \varepsilon \mathscr{B}
$$

Thus, we have $(a, b) \varepsilon \mathscr{B}$ and $\left(\frac{m}{a^{k}}, \frac{n}{b^{k}}\right) \varepsilon \mathscr{B}$.
Therefore, by definition,

$$
\begin{aligned}
h(m n) & =\sum_{(a b)^{k} \mid m n} \mathrm{f}(\mathrm{ab}) g\left(\frac{m n}{(a b)^{k}}\right) \\
& =\sum_{a^{k} b^{k} \mid m n} \mathrm{f}(\mathrm{ab}) g\left(\frac{m n}{a^{k} b^{k}}\right) \\
= & \sum_{a^{k} b^{k} \mid m n} \mathrm{f}(\mathrm{a}) \mathrm{f}(\mathrm{~b}) g\left(\frac{m}{a^{k}}\right) g\left(\frac{n}{b^{k}}\right) \\
= & \sum_{a^{k} \mid m} \mathrm{f}(\mathrm{a}) g\left(\frac{m}{a^{k}}\right) \mathrm{f}(\mathrm{~b}) g\left(\frac{n}{b^{k}}\right) \\
& b^{k} \mid n \\
= & \sum_{a^{k} \mid m} \mathrm{f}(\mathrm{a}) g\left(\frac{m}{a^{k}}\right) \sum_{b^{k} \mid n} \mathrm{f}(\mathrm{~b}) g\left(\frac{m}{b^{k}}\right) \\
= & \mathrm{h}(\mathrm{~m}) \mathrm{h}(\mathrm{n})
\end{aligned}
$$

Thus, $\quad h(m n)=h(m) f(n)$, for all $(m, n) \varepsilon \mathscr{B}$
i.e. h is $\mathscr{B}$-multiplicative function.

## REFERENCES

[1] Tom M. Apostol; Introduction to Analytic Number Theory, Springer International student edition, Narosa Publishing House, New Delhi.
[2] Paul J. Mc Carthy; Introduction to Arithmetical Functions, Springer-Verlag New York Berlin Heidelberg Tokyo.
[3] Donald L. Goldsmith; A Generalized Convolution for Arithmetic Functions, Pacific J. Math, May, 1969.
[4] Pentti Haukkanen; Classical Arithmetical Identities Involving A Generalization of Ramanujan's Sum, Annales Academiae Scientiarum Fennicae, Series A, I. Mathematic, Dissertationes.
[5] V. Sitaramaiah; Arithmetical Sums in Regular Convolutions. Journal fur die reine und ange wandte Mathematik Band, 303/304 (pages 263-283).

