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Abstract

In this paper we study the different transient solutions of the M/M/1 Queueing
model by different authors. Then an attempt has been made to derive the
different solutions by different authors on the transient probability distribution
of the number of units in an M/M/1 Queueing System using one as base
formula. While doing so we had also derived all the necessary identities, which
are used in connecting these different expressions.

1. Introduction

Recently the transient distribution of X(t), the number of units in the system at
time ‘t’ for the M/M/1 Queueing system remained a topic of interest, as suggested
by many papers of Abate and Whitt (1987,1988,1989) [1], [2] & [3] and as well as
the paper by Conolly and Langaris (1993)[9] and a number of papers based on
combinatorial methods (See Baccelli-Massey (1989) [4], Kanwar Sen and Jain
(1993) [19], Bohm (1997) [7], Mohanty and Panny (1990) [17], Jain, Mohanty and
Jiran, 2004 [11]).

F. Pollaczek noted the importance of the transient distribution of M/M/1 queue
as early as 1934. Since then a number of mathematical techniques have been used
for obtaining its solution in terms of Modified Bessel functions. A common approach
in most of the techniques (except by combinatorial approach) is to formulate a set
of differential-difference equations governing the Queueing system and then solving
them through some technique.

The distribution of )(tX  with constant rate parameters was first derived by
Ledermann and Reuter (1954) [16] using spectral method. In the special case when
the parameters are independent of the number of units in the system, distribution
of )(tX and � (the length of the busy period) have been derived by Bailey (1954,
1957) [5] and [6] by using generating function coupled with Laplace transformation.
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A different procedure has been used by Clarke (1956) [8] depending on the solution
of a hyperbolic partial differential equation. Clarke’s method is also applicable to
time dependent rates; it transforms the infinite set of differential equations into a
Volterra-type integral equations.

Takacs [15] in 1962 had obtained the trigonometric integral representation for
the transient probability function of the M/M/1 Queueing System. He then had
shown the equivalence of this trigonometric integral representation to the expression,
which is expressed in terms of Modified Bessel functions [10]. There are other
integral representations beside trigonometric integral representation. Some of the
integral representations already exist are remarkably same and are discussed in
Abate and Whitt [2]. It may be noticed that the trigonometric integral representation
may look unsightly to the human eye, but the computer is pleased. Another
computational procedure for the evaluation of the M/M/1 transient state probability
was derived by Jones [22] using Q-function and Pierce E. Cantrell [18] using the
Generalized Q-function.

Here in this paper we try to connect these different expressions by different
authors taking one as a base formula and in the process proving all the necessary
identities, which will be used in connecting these expressions.

2.

From the expression by Takacs [15] of the transient probability solution of the
number of units in an M/M/1 Queueing system we have,
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where g0 is the residue of g(z) at z = 0.

After doing some simplification, )(zg  can be rewritten as;
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We also know that;
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)(zI n  denotes the modified Bessel function of order n, which is given by;
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(Suppress argument of the Bessel function is 2 �� t ).

Using (9) in (5) we have;
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Using (10) in (1) we have;
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Thus, we have shown, the equivalence of the expression obtained by Takacs
and the well-known expression given in [10].

The last term of (11) can be rewritten as;
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Now using the Bessel function property below,
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(Suppress argument of the Bessel function is 2 �� t ).

Using (13) in (11), we have
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Which is the expression obtained by Jain, Mohanty and Jiran [11].
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Again using Identity 2 the above expression can be rewritten as,
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When the above expression is further simplified, we have the expression given
by Sharma [20] in his recent book, where he discussed the problem using a two-
dimensional state model and his solution is;

��
��

�

��

�

�� ����
ink

m

m

k

k
ntn

in m

t
mk

k

t
etP

0

1

0

)(

!

)(
)(

!

)(
)1()(

��
��� ��

�
�

�

����
��
�

�
��
�

�
��

�
��

�
0

)(

)!()!(

1

)!(!

1
)()(

k

kiknt

ikkniknk
tte ����

(17)

Which can also be rewritten as;
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Conolly and Langaris[9] give an alternative expression to Sharma formula as;
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where ),max(),,min( niVandniU ��
When we carefully study (11), (14), (18) and (19), it can be seen that these

expressions involves an infinite sum because of which we need to have some
approximation while doing the mathematical computation which in fact is a major
disadvantage of these expressions, but this can be easily overcome by introducing
another function call Q-function, which is generally denoted by Q(a,b) where a
and b are the parameters and is define as;
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(In the literature ),(1 baQ�  is known as Circular Coverage function).

Consider the R.H.S. of (20), we have
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Using the above result (22) in (11), we have;
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which is the solution obtained by S.K. Jones, R.K. Cavin, III and D.A. Johnston
[22].

We can further write the above equation (23) in more compact form by introducing
another function call Generalized Q-function, which we define as:
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which after repeated integration, reduces to
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Using equation (25), we can easily verify (26), so from (25) we have;
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Putting tbandta �� 22 ��  in (26), we have
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Using (27) in (11), we have;
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Now the finite sum of Bessel function and Q- function in (23) are being replace
by the Generalize Q-function. This expression (28) is the solution given by Pierce
E. Cantrell [18].

3. Conclusion

In this paper an attempt has been made to derive the different solutions by different
authors on the transient probability distribution of the number of units in an M/M/
1 Queueing System using one as base formula. While doing so we had also derived
all the necessary identities, which are used in connecting these different expressions.
The computational aspects of differential expressions are discussed in [12] and
[13] by the authors, which are under communication.
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