
Abstract

We study K-theory of continuous fields of the generalized Anzai and
Furstenberg transformation group C*-algebras. Moreover, we consider the
case of the generalized quantum Anzai and Furstenberg transformation group
C*-algebras.

Introduction

First recall that the Anzai transformation on the 2-torus �2 is defined by 1 ( , )�� z w

= (e2�i�z, zw) � �2 for � a real number. Also recall that the Furstenberg transformation

on �2 is defined by ,
1 ( , )�� f z w = (e2�i�z, e2�if(z)zw) � �2 for f a continuous real

valued function on �. By iterating these transformations as ,,� �� � f
n n  n-compositions

of ,
1 1,� �� � f for an integer n � � respectively, we have the Anzai C*-dymamical

system (C(�2), ����f, �) and the Furstenberg C*-dynamical system (C(�2), ��,f,��),
where C(�2) is the C*-algebra of continuous complex-valued functions on �2. Then
the crossed product C*-algebras A� = C(�2) � �� � and F� = C(�2) � ��,f  � (or the
Anzai and Furstenberg transformation group C*-algebras) are induced from these
C*-dynamical systems in a natural way (see [Pd] for crossed products of
C*-algebras). By viewing � as a parameter on the torus � = [0, 1] (mod 1), we have
the continuous field C*-algebras on �: �(�, {A�}���}) and �(�, {F�}���) with fibers
A� and F�. Our first question is the following:

Question. What are the K-groups of the continuous fields of the Anzai and
Furstenberg transformation group C*-algebras?
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In this paper we will answer this question under a more general situation as
given soon below. On the other hand, recently we have considered K-theory of
continuous fields of quantum (or noncommutative) tori [Sd]. We use some methods
of [Sd]. However, a point different from [Sd] is that the fibers A� and F� are not
quantum tori and their dynamical systems are more complicated. Thus, the situation
becomes more complicated, but fortunately we can compute the K-groups as in the
following.

1. Generalized Anzai and Furstenberg Transformation
Group C*-algebras

Since C(�2) ��C(�) � C(�), we first replace C(�) with C(�n) the C*-algebra of
continuous functions on the n-torus �n. Now we define the generalized Anzai

transformation on �2n by 1
�� (z,w) = (e2�i��z, zw) � �2n for z = (z

j
), w = (w

j
) � �n,

where e2�i�z = (e2�i�z
j
) � �n and zw = (z

j
w

j
) � �n. Also we define the generalized

Furstenberg transformation on �2n by ,
1
�� f (z,w) = (e2�if  z, e2�if(z)zw) � �2n for z =

(z
j
), w = (w

j
) � �n, where e2�if(z) zw = (e2�ifj(zj) z

j
w

j
) � �n, f = (f

j
) and f

j
 are continuous

real valued functions on �. By iterating these transformations, we have the
generalized Anzai C*-dymamical system (C(�2n), ��, �) and the generalized
Furstenberg C*-dynamical system (C(�2n), ��, f , �), where C(�2n) is the C*-algebra
of continuous complex valued functions on �2n. Then the crossed product
C*-algebras A�

n
 = C(�2n) ���,f � and F�

n
 = C(�2n) ���,f � (or the generalized Anzai

and Furstenberg transformation group C*-algebras) are induced from these
C*-dynamical systems in a natural way (see [Pd]). By viewing � as a parameter on
the torus � = [0,1] (mod 1), we have the continuous field C*-algebras on
�: �(�, {A�

n
}���) and �(�, {F�

n
}���).

Theorem 1.1 Let A
n
 = �(�, {A�

n
}���) and F

n
 = �(�, {F�

n
}���}) be the continuous

field C*-algebras defined above. Then for * = 0, 1,

K
* 
(A�

n
) � K*(C(�2n)) � (K*(C(�n) � � ��� �) / K*(C(�

n
)))

� K*(C(�2n)) � K*(C(�n)) � �22n–1 � �2n–1

K*(An
) � K*(C(�) � C(�2n)) � (K*(C(�) � C*(�)) / K*(C(�)))

� K*(C(�2n+1)) � K*(C(�)) ���22n � �,

where C(�n) � � ��� � is the C*-subalgebra of A�
n
 = C(�n) × C(�n) ��� � by the

canonical inclusion. Moreover, we obtain
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K*(A
�
n
) � K*(F

�
n
),   K*(An

) � K*(Fn
)

for * = 0, 1 by the same reasoning and replacing C(�n) � ����� � with C(�n) � �
���, f �.

Proof. First note the following inclusion:

C(�) � C(�2n) � A
n
 = �(�, {A�

n
}���),

where C(�) corresponds to the base space �, and C(�2n) is the canonical
C*-subalgebra of F�

n
 = C(�2n) ��� �. Then it is easy to see the following inclusions

in the K-level:

K*(C(�2n)) ��  K*(A
�
n
),   K*(C(�) � C(�2n)) � K*(An

)

for * = 0, 1. It is well known that K*(C(�k)) ���2k–1 for * = 0,1 and k � 1 (cf. [Wo]).
Furthermore, note that the following inclusion:

C(�n) � � � �� � � C(�n) � C(�n) ��� � = A�
n

implies the following inclusion in the K-level:

K*(C(�n) � � ��� �) � K* (A
�
n
)

for * = 0, 1. Note also that C(�n) ������� � is a noncommutative (n+1)-torus. It is
well known that K*(C(�n) � ����� �) ���2n

 for * = 0, 1 (cf. [Rf]). Since C(�n) �
� of C(�2n) ��C(�n) ��C(�n) is identified with that of C(�n) ������� � in A�

n
, we

in fact have

K* (A
�
n
) � K*(C(�2n)) � (K*(C(�n) � � ��� �) / K*(C(�

n
)))

� K*(C(�2n)) � K*(C(�n)).

Keeping in mind this inclusion, by the aid of the Pimsener-Voiculesce six-
term exact sequence ([Bl]):

* *2 2
0 0 0( ( )) ( ( )) ( )

��� ����� ���id in n
nK C K C K� � A

�    ��������������������������������������������������������

* *2 2
1 1 1( ) ( ( )) ( ( ))i idn n

nK K C K C
���� ��� ����� �A

where id – *
��  is induced from the identity map id on C(�2n) and 1

�� , and i
*
 is

induced from the canonical inclusion i from C(�2n) to A�
n
, we have

K*(A
�
n
) � K*(C(�2n)) � (K*(C(�n) � � � �� �) / K*(C(�))).
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Indeed, let u
j
 , v

j
 (1 � j � n) be the coordinate functions defined by u

j
(z,w) = z

j
 and

v
j
(z,w) = w

j
 for z = (z

k
)n 

k=1, w = (w
k
)n 

k=1 � �n respectively. Since they are unitaries that
generate C(�2n), let [u

j
], [v

j
] (1 � j � n) be the classes of K1(C(�2n)) corresponding

to u
j
, v

j
. Then

1 2 1 1 1
* 1( )[ ] [ ] [( ( )) ] [ ][ ] [ ][ ] [ ] [1],i

j j j j j j j j jid u u u u e u u u u u� � � � � � � � ��� � � � � � �

1 1 1 1 1 1
*( )[ ] [ ][( ) ] [ ][ ] [ ] [ ].j j j j j j j j j j jid v v u v v v u v v u u� � � � � � ��� � � � �

Therefore, [u
j
] are in the kernel of id *

��� . Furthermore, note that the other

generators of K1(C(�2n)) are given by the classes of the following unitaries:

S
j
 = I2 + (u

j
 – 1) � P

k
,  or  T

j
 = I2 + (v

j
 – 1) � P

k
 � M2(C(�2k))

where I2 is the identity matrix of M2(�), 1 is the unit of C(�) and P
k
 are the

(generalized) Bott projections of M2(C(�2k)) corresponding to 2k components of
�2n (see [AP] or [Sd]), and M2(C(�2k)) is naturally identified with elements of
M2(C(�2n)) as coordinate functions. In fact, P

k
 are defined by taking the inner

automorphisms on the rank 1 projection of M2(�) by certain k unitaries of two
variables on �2 (different components of �2n) as the usual Bott projection for k = 1.

Since id – *
��  is the zero map on K0(C(�2n)), so is on P

k
. Thus S

j
 are zero under the

map id – *
��  when P

k
 comes from 2k-components of �n of C(�n) � �, and T

j
 are

nonzero (otherwise). Hence it follows from the six-term exact sequence above that

2
0 0 10 ( ( )) ( ) ( ( )) 0,n n

nK C K K C�� � � �� �A

and moreover, it follows that

2
1 1 00 ( ( )) ( ) ( ( )) 0.n n

nK C K K C�� � � �� �A

To determine K*(An
), we note that any element of the quotient K*(C(�n) � �

��� �) / K*(C(�n)) for C(�n) the canonical subalgebra of C(�n) � � ��� � is
associated with the generalized Rieffel projections defined in [Sd] involving the
implementing unitary w of the action �� by �. In fact, the projections are defined
by two unitaries coming from some products of generating unitaries on different
components of �n and the unitary w involving the same relation as two unitaries
for the usual Rieffel projections (see [Wo]). Since those projections are not definable
at � = 0 as the usual Rieffel projections, elements of K*(C(�n) � � ��� �) / K*(C(�n))
do not produce elements of K*(�(�, {A�

n
}������ Also, since the unitary w commutes
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with C(�) for � the base space of A
n
, we have K*(C(�) � C* (�))/K*(C(�)) is

contained in K*(An
).

We can use the same argument above for computing K*(F
�
n
) and K*(Fn

). In
particular, note that for u

j
, v

j
 the coordinate functions of C(�2n) defined above,

     ,
*(id ) [ ]f

ju��� = [1] by the same calculation, and

     ,
*(id ) [ ]f

jv��� = 2 ( ) 1[ ][( ) ]j jif u
j j jv e u v

� �

= 2 ( ) 2 ( )1 1 1 1[ ] [ ] [ [ ]j j j jif u if u
j j j j jv v u e u e u

� � � �� � � �� �

since the unitary 2 ( )j jif u
e
� �  is homotopic to the identity 1.

Remark. For instance, see [Ko] for the case n = 1.

2. Generalized Quantum Anzai and Furstenberg Transformation
Group C*–algebras

We next replace C(�n) with the quantum (or noncommutative) n-torus n
��  generated

by n unitaries U
j
 with the commutation relation U

j
U

i
 = 2 iji

i je U U
� �  with � = (�

ij
) a

skew-adjoint matrix over �. We say that n
��  is irrational if all �

ij
 are rationally

independent each other. We define the generalized quantum Anzai transformation

on the tensor product n n
� ��� �  by 1 ( )j jU U�� �  = 2 2i n n

j je U U� �
� �� � �� �  for

1 � j � n and � a real number. Also deifne the generalized quantum Furstenberg

transformation on n n
� ��� �  by ,

1 ( )f
j jU U�� � = 2 ( )2 2j jif zi

j je U e U
�� � � �

n n
� ��� �  1 � j � n, where f = (f

j
) and f

j
 are continuous real valued functions on �.

By iterating these transformations, we have the generalized quantum Anzai

C*-dymamical system ( , , )n n �
� �� �� � �  and the generalized quantum Furstenbergg

C*-dynamical system ,( , , )n n f�
� �� �� � � . Then the crossed product C*-algebras

B�
n
 = n

��  �� n
�� ���

��� and G�
n
 = n

�� � n
��  ���,f � (or the generalized quantum

Anzai and Furstenberg transformation group C*-algebras) are induced from these
C*-dynamical systems in a natural way (see [Pd]). By viewing � as a parameter on
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the torus � = [0,1] (mod 1), we have the continuous field C*-algebras on �: �(�,
{B�

n
}���) and �(�, {G�

n
}���).

Theorem 2.1 Let B
n
 = �(�, {G�

n
}���) and G

n
 = �(�, {G�

n
}���) be the continuous

field C*-algebras defined above. Suppose that n
��  of G�

n
 are irrational in the sense

above. Then for * = 0, 1,

    K*(B
�
n
) � K* * *( ) ( ( ) / ( ))�� � � ��

� � �n n n nK K� � � � � ��

� 
2 1 2 1 12 2 2

* ( )
� � �

�� � �
n n nnK� � � �

    K*(Bn
) � K*(C(�)) � (�n2 K*(C(�2))/K*(C(�)))

���� (K*(C(�) � C*(�)) / K*(C(�)))

��� � �n2 � �,

where n
�� � ����� � is the C*-subalgebra of B�

n
 = �2 �n

� ��� Z by the canonical

inclusion. Moreover, we obtain

K
*
(B�

n
) � K*(G

�
n
),   and   K*(Bn

) ��K*(Gn
)

for * = 0, 1 by the same reasoning and replacing �n
��� �����

�� with �n
���������,f

�.

Proof. We use the same argument of the proof of Theorem 1.1 for computing K*(B
�
n
)

for * = 0, 1 by replacing C(�n) with n
�� . Note that K-groups of n

��  are the same as

C(�n), and their generators of K0 and K1 are given by the generalized Rieffel
projections and the unitaries involving those projections and generating unitaries

of n
��  (see [Sd] and [Rf, p. 330]).

For computing K* (Bn
) for * = 0, 1, we use the similar argument of the proof of

Theorem 1.1. The first K* (C(�)) in the statement corresponds to the base space �.

The second 
2 2

*( ( ))n K C� �  correspond to choosing one generating unitary from

n
��  � � in n

�� � n
��  and one generating unitary from � � n

��  in it. The third

K*(C(�) � C*(�)) corresponds to the base space � and the implementing unitary
of the action ��.

Furthermore, we can use the same argument above for computing K*(G
�
n
) and

K*(Gn
).

6



Remark. More other variations could be obtained by using our methods given
in this paper.
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