Received:07th December 2021 Revised:15th March 2022

Accepted: 10th April 2022

GENERALISED FURTENBERG TRANSFORMATION GROUP C-ALGEBRAS

Huan-Shu Li, Department of Mathematics, Anhui University, China

Abstract

We study K-theory of continuous fields of the generalized Anzai and Furstenberg transformation group C^* -algebras. Moreover, we consider the case of the generalized quantum Anzai and Furstenberg transformation group C^* -algebras.

Introduction

First recall that the Anzai transformation on the 2-torus \mathbb{T}^2 is defined by $\alpha_1^{\theta}(z, w) = (e^{2\pi i\theta}z, zw) \in \mathbb{T}^2$ for θ a real number. Also recall that the Furstenberg transformation on \mathbb{T}^2 is defined by $\alpha_1^{\theta,f}(z,w) = (e^{2\pi i\theta}z, e^{2\pi i f(z)}zw) \in \mathbb{T}^2$ for f a continuous real valued function on \mathbb{T} . By iterating these transformations as $\alpha_n^{\theta}, \alpha_n^{\theta,f}$ *n*-compositions of $\alpha_1^{\theta}, \alpha_1^{\theta,f}$ for an integer $n \in \mathbb{Z}$ respectively, we have the Anzai *C**-dynamical system ($C(\mathbb{T}^2), \alpha^{\theta,f}, \mathbb{Z}$) and the Furstenberg *C**-dynamical system ($C(\mathbb{T}^2), \alpha^{\theta,f}, \mathbb{Z}$), where $C(\mathbb{T}^2)$ is the *C**-algebra of continuous complex-valued functions on \mathbb{T}^2 . Then the crossed product *C**-algebras $\mathfrak{A}^{\theta} = C(\mathbb{T}^2) \rtimes_{\alpha^{\theta}} \mathbb{Z}$ and $\mathfrak{F}^{\theta} = C(\mathbb{T}^2) \rtimes_{\alpha^{\theta,f}} \mathbb{Z}$ (or the Anzai and Furstenberg transformation group *C**-algebras) are induced from these *C**-dynamical systems in a natural way (see [Pd] for crossed products of *C**-algebras). By viewing θ as a parameter on the torus $\mathbb{T} = [0, 1] \pmod{1}$, we have the continuous field *C**-algebras on $\mathbb{T}: \Gamma(\mathbb{T}, {\mathfrak{A}^{\theta}_{\theta\in\mathbb{T}}})$ and $\Gamma(\mathbb{T}, {\mathfrak{F}^{\theta}_{\theta\in\mathbb{T}}})$ with fibers \mathfrak{A}^{θ} and \mathfrak{F}^{θ} . Our first question is the following:

Question. What are the K-groups of the continuous fields of the Anzai and Furstenberg transformation group C*-algebras?

In this paper we will answer this question under a more general situation as given soon below. On the other hand, recently we have considered K-theory of continuous fields of quantum (or noncommutative) tori [Sd]. We use some methods of [Sd]. However, a point different from [Sd] is that the fibers \mathfrak{A}^{θ} and \mathfrak{F}^{θ} are not quantum tori and their dynamical systems are more complicated. Thus, the situation becomes more complicated, but fortunately we can compute the K-groups as in the following.

1. Generalized Anzai and Furstenberg Transformation Group C*-algebras

Since $C(\mathbb{T}^2) \cong C(\mathbb{T}) \otimes C(\mathbb{T})$, we first replace $C(\mathbb{T})$ with $C(\mathbb{T}^n)$ the C^* -algebra of continuous functions on the *n*-torus \mathbb{T}^n . Now we define the generalized Anzai transformation on \mathbb{T}^{2n} by $\alpha_1^{\theta}(z,w) = (e^{2\pi i\theta} z, zw) \in \mathbb{T}^{2n}$ for $z = (z_j)$, $w = (w_j) \in \mathbb{T}^n$, where $e^{2\pi i\theta}z = (e^{2\pi i\theta}z_j) \in \mathbb{T}^n$ and $zw = (z_jw_j) \in \mathbb{T}^n$. Also we define the generalized Furstenberg transformation on \mathbb{T}^{2n} by $\alpha_1^{\theta,f}(z,w) = (e^{2\pi i f} z, e^{2\pi i f(z)}zw) \in \mathbb{T}^{2n}$ for $z = (z_j)$, $w = (w_j) \in \mathbb{T}^n$, where $e^{2\pi i f(z)} zw = (e^{2\pi i f(z_j)} z_jw_j) \in \mathbb{T}^n$, $f = (f_j)$ and f_j are continuous real valued functions on \mathbb{T} . By iterating these transformations, we have the generalized Anzai C^* -dynamical system $(C(\mathbb{T}^{2n}), \alpha^{\theta, f}, \mathbb{Z})$, where $C(\mathbb{T}^{2n})$ is the C^* -algebra of continuous complex valued functions on \mathbb{T}^{2n} . Then the crossed product C^* -algebras $\mathfrak{A}_n^{\theta} = C(\mathbb{T}^{2n}) \rtimes_{\alpha^{\theta,f}} \mathbb{Z}$ and $\mathfrak{F}_n^{\theta} = C(\mathbb{T}^{2n}) \rtimes_{\alpha^{\theta,f}} \mathbb{Z}$ (or the generalized Anzai and Furstenberg transformation group C^* -algebras) are induced from these C^* -dynamical systems in a natural way (see [Pd]). By viewing θ as a parameter on the torus $\mathbb{T} = [0,1] \pmod{1}$, we have the continuous field C^* -algebras on $\mathbb{T}: \Gamma(\mathbb{T}, {\mathfrak{A}_n^{\theta}}_{\theta \in \mathbb{T}})$ and $\Gamma(\mathbb{T}, {\mathfrak{F}_n^{\theta}}_{\theta \in \mathbb{T}})$.

Theorem 1.1 Let $\mathfrak{A}_n = \Gamma(\mathbb{T}, {\mathfrak{A}_n^{\theta}}_{\theta \in \mathbb{T}})$ and $\mathfrak{F}_n = \Gamma(\mathbb{T}, {\mathfrak{F}_n^{\theta}}_{\theta \in \mathbb{T}})$ be the continuous field C*-algebras defined above. Then for * = 0, 1,

$$\begin{split} K_*(\mathfrak{A}^{\theta}_n) &\cong K_*(C(\mathbb{T}^{2n})) \oplus (K_*(C(\mathbb{T}^n) \otimes \mathbb{C} \rtimes_{\alpha^{\theta}} \mathbb{Z}) / K_*(C(\mathbb{T}_n))) \\ &\cong K_*(C(\mathbb{T}^{2n})) \oplus K_*(C(\mathbb{T}^n)) \cong \mathbb{Z}^{2^{2n-1}} \oplus \mathbb{Z}^{2^{n-1}} \\ K_*(\mathfrak{A}_n) &\cong K_*(C(\mathbb{T}) \otimes C(\mathbb{T}^{2n})) \oplus (K_*(C(\mathbb{T}) \otimes C^*(\mathbb{Z})) / K_*(C(\mathbb{T}))) \\ &\cong K_*(C(\mathbb{T}^{2n+1})) \oplus K_*(C(\mathbb{T})) \cong \mathbb{Z}^{2^{2n}} \oplus \mathbb{Z}, \end{split}$$

where $C(\mathbb{T}^n) \otimes \mathbb{C} \rtimes_{\alpha^{\theta}} \mathbb{Z}$ is the C*-subalgebra of $\mathfrak{A}^{\theta}_n = C(\mathbb{T}^n) \times C(\mathbb{T}^n) \rtimes_{\alpha^{\theta}} \mathbb{Z}$ by the canonical inclusion. Moreover, we obtain

$$K_*(\mathfrak{A}^{\theta}_n) \cong K_*(\mathfrak{F}^{\theta}_n), \quad K_*(\mathfrak{A}^{\theta}_n) \cong K_*(\mathfrak{F}^{\theta}_n)$$

for *=0, 1 by the same reasoning and replacing $C(\mathbb{T}^n) \otimes \mathbb{C} \rtimes_{\alpha^{\theta}} \mathbb{Z}$ with $C(\mathbb{T}^n) \otimes \mathbb{C} \rtimes_{\alpha^{\theta}, f} \mathbb{Z}$.

Proof. First note the following inclusion:

$$C(\mathbb{T}) \otimes C(\mathbb{T}^{2n}) \subset \mathfrak{A}_n = \Gamma(\mathbb{T}, \{\mathfrak{A}_n^\theta\}_{\theta \in \mathbb{T}}),$$

where $C(\mathbb{T})$ corresponds to the base space \mathbb{T} , and $C(\mathbb{T}^{2n})$ is the canonical C^* -subalgebra of $\mathfrak{F}^{\theta}_n = C(\mathbb{T}^{2n}) \rtimes_{\alpha^{\theta}} \mathbb{Z}$. Then it is easy to see the following inclusions in the K-level:

$$K_*(C(\mathbb{T}^{2n})) \subset K_*(\mathfrak{A}^{\theta}_n), \quad K_*(C(\mathbb{T}) \otimes C(\mathbb{T}^{2n})) \subset K_*(\mathfrak{A}_n)$$

for * = 0, 1. It is well known that $K_*(C(\mathbb{T}^k)) \cong \mathbb{Z}^{2^{k-1}}$ for * = 0, 1 and $k \ge 1$ (cf. [Wo]). Furthermore, note that the following inclusion:

$$C(\mathbb{T}^n) \otimes \mathbb{C} \rtimes \alpha^{\theta} \mathbb{Z} \subset C(\mathbb{T}^n) \otimes C(\mathbb{T}^n) \rtimes_{\alpha^{\theta}} \mathbb{Z} = \mathfrak{A}^{\theta}_n$$

implies the following inclusion in the K-level:

$$K_*(C(\mathbb{T}^n)\otimes\mathbb{C}\rtimes_{\alpha^\theta}\mathbb{Z})\subset K_*(\mathfrak{A}^\theta)$$

for * = 0, 1. Note also that $C(\mathbb{T}^n) \otimes \mathbb{C} \rtimes_{\alpha^{\theta}} \mathbb{Z}$ is a noncommutative (n+1)-torus. It is well known that $K_*(C(\mathbb{T}^n) \otimes \mathbb{C} \rtimes_{\alpha^{\theta}} \mathbb{Z}) \cong \mathbb{Z}^{2^n}$ for * = 0, 1 (cf. [Rf]). Since $C(\mathbb{T}^n) \otimes \mathbb{C}$ of $C(\mathbb{T}^{2n}) \cong C(\mathbb{T}^n) \otimes C(\mathbb{T}^n)$ is identified with that of $C(\mathbb{T}^n) \otimes \mathbb{C} \rtimes_{\alpha^{\theta}} \mathbb{Z}$ in \mathfrak{A}^{θ}_n , we in fact have

$$K_*(\mathfrak{A}^{\theta}_n) \supset K_*(C(\mathbb{T}^{2n})) \oplus (K_*(C(\mathbb{T}^n) \otimes \mathbb{C} \rtimes_{\alpha^{\theta}} \mathbb{Z}) / K_*(C(\mathbb{T}_n)))$$

 $\cong K_*(C(\mathbb{T}^{2n})) \oplus K_*(C(\mathbb{T}^n)).$

Keeping in mind this inclusion, by the aid of the Pimsener-Voiculesce sixterm exact sequence ([B1]):

$$K_{0}(C(\mathbb{T}^{2n})) \xrightarrow{id-\alpha^{\theta}_{*}} K_{0}(C(\mathbb{T}^{2n})) \xrightarrow{i_{*}} K_{0}(\mathfrak{A}^{\theta}_{n})$$

$$\uparrow \qquad \qquad \downarrow$$

$$K_{1}(\mathfrak{A}^{\theta}_{n}) \xleftarrow{i_{*}} K_{1}(C(\mathbb{T}^{2n})) \xleftarrow{id-\alpha^{\theta}_{*}} K_{1}(C(\mathbb{T}^{2n}))$$

where id $-\alpha_*^{\theta}$ is induced from the identity map id on $C(\mathbb{T}^{2n})$ and α_1^{θ} , and i_* is induced from the canonical inclusion *i* from $C(\mathbb{T}^{2n})$ to \mathfrak{A}_n^{θ} , we have

$$K_*(\mathfrak{A}^{\theta}_n) \cong K_*(C(\mathbb{T}^{2n})) \oplus (K_*(C(\mathbb{T}^n) \otimes \mathbb{C} \rtimes_{\alpha^{\theta}} \mathbb{Z}) / K_*(C(\mathbb{T}))).$$

Indeed, let u_j , v_j $(1 \le j \le n)$ be the coordinate functions defined by $u_j(z,w) = z_j$ and $v_j(z,w) = w_j$ for $z = (z_k)_{k=1}^n$, $w = (w_k)_{k=1}^n \in \mathbb{T}^n$ respectively. Since they are unitaries that generate $C(\mathbb{T}^{2n})$, let $[u_j]$, $[v_j]$ $(1 \le j \le n)$ be the classes of $K_1(C(\mathbb{T}^{2n}))$ corresponding to u_j , v_j . Then

$$(id - \alpha_*^{\theta})[u_j] = [u_j][(\alpha_1^{\theta}(u_j))^{-1}] = [u_j][e^{-2\pi i \theta}u_j^{-1}] = [u_j][u_j^{-1}] = [u_ju_j^{-1}] = [1],$$

$$(id - \alpha_*^{\theta})[v_j] = [v_j][(u_jv_j)^{-1}] = [v_j][v_j^{-1}u_j^{-1}] = [v_jv_j^{-1}u_j^{-1}] = [u_j^{-1}].$$

Therefore, $[u_j]$ are in the kernel of id $-\alpha_*^{\theta}$. Furthermore, note that the other generators of $K_1(C(\mathbb{T}^{2n}))$ are given by the classes of the following unitaries:

$$S_j = I_2 + (u_j - 1) \otimes P_k$$
 or $T_j = I_2 + (v_j - 1) \otimes P_k \in M_2(C(\mathbb{T}^{2k}))$

where I_2 is the identity matrix of $M_2(\mathbb{C})$, 1 is the unit of $C(\mathbb{T})$ and P_k are the (generalized) Bott projections of $M_2(C(\mathbb{T}^{2k}))$ corresponding to 2k components of \mathbb{T}^{2n} (see [AP] or [Sd]), and $M_2(C(\mathbb{T}^{2k}))$ is naturally identified with elements of $M_2(C(\mathbb{T}^{2n}))$ as coordinate functions. In fact, P_k are defined by taking the inner automorphisms on the rank 1 projection of $M_2(\mathbb{C})$ by certain k unitaries of two variables on \mathbb{T}^2 (different components of \mathbb{T}^{2n}) as the usual Bott projection for k = 1. Since id $-\alpha_*^{\theta}$ is the zero map on $K_0(C(\mathbb{T}^{2n}))$, so is on P_k . Thus S_j are zero under the map id $-\alpha_*^{\theta}$ when P_k comes from 2k-components of \mathbb{T}^n of $C(\mathbb{T}^n) \otimes \mathbb{C}$, and T_j are nonzero (otherwise). Hence it follows from the six-term exact sequence above that

$$0 \to K_0(C(\mathbb{T}^{2n})) \to K_0(\mathfrak{A}_n^{\theta}) \to K_1(C(\mathbb{T}^n)) \to 0,$$

and moreover, it follows that

$$0 \to K_1(C(\mathbb{T}^n)) \to K_1(\mathfrak{A}_n^\theta) \to K_0(C(\mathbb{T}^{2n})) \to 0.$$

To determine $K_*(\mathfrak{A}_n)$, we note that any element of the quotient $K_*(C(\mathbb{T}^n) \otimes \mathbb{C} \rtimes_{\alpha^{\theta}} \mathbb{Z}) / K_*(C(\mathbb{T}^n))$ for $C(\mathbb{T}^n)$ the canonical subalgebra of $C(\mathbb{T}^n) \otimes \mathbb{C} \rtimes_{\alpha^{\theta}} \mathbb{Z}$ is associated with the generalized Rieffel projections defined in [Sd] involving the implementing unitary *w* of the action α^{θ} by \mathbb{Z} . In fact, the projections are defined by two unitaries coming from some products of generating unitaries on different components of \mathbb{T}^n and the unitary *w* involving the same relation as two unitaries for the usual Rieffel projections (see [Wo]). Since those projections are not definable at $\theta = 0$ as the usual Rieffel projections, elements of $K_*(\mathbb{C}(\mathbb{T}^n) \otimes \mathbb{C} \rtimes_{\alpha^{\theta}} \mathbb{Z}) / K_*(C(\mathbb{T}^n))$ do not produce elements of $K_*(\Gamma(\mathbb{T}, {\mathfrak{A}_n^{\theta}}_{\theta\in\mathbb{T}}))$. Also, since the unitary *w* commutes

with $C(\mathbb{T})$ for \mathbb{T} the base space of \mathfrak{A}_n , we have $K_*(C(\mathbb{T}) \otimes C^*(\mathbb{Z}))/K_*(C(\mathbb{T}))$ is contained in $K_*(\mathfrak{A}_n)$.

We can use the same argument above for computing $K_*(\mathfrak{F}_n^0)$ and $K_*(\mathfrak{F}_n)$. In particular, note that for u_j , v_j the coordinate functions of $C(\mathbb{T}^{2n})$ defined above,

 $(id - \alpha_*^{\theta, f})[u_j] = [1]$ by the same calculation, and $(id - \alpha_*^{\theta, f})[v_j] = [v_j][(e^{2\pi i f_j(u_j)}u_j v_j)^{-1}]$ $= [v_j][v_j^{-1}u_j^{-1}e^{-2\pi i f_j(u_j)}] = [u_j^{-1}e^{-2\pi i f_j(u_j)}] = [u_j^{-1}]$

since the unitary $e^{-2\pi i f_j(u_j)}$ is homotopic to the identity 1.

Remark. For instance, see [Ko] for the case n = 1.

2. Generalized Quantum Anzai and Furstenberg Transformation Group C*-algebras

We next replace $C(\mathbb{T}^n)$ with the quantum (or noncommutative) *n*-torus \mathbb{T}^n_{Θ} generated by *n* unitaries U_j with the commutation relation $U_jU_i = e^{2\pi i \theta_{ij}} U_i U_j$ with $\Theta = (\theta_{ij})$ a skew-adjoint matrix over \mathbb{R} . We say that \mathbb{T}^n_{Θ} is irrational if all θ_{ij} are rationally independent each other. We define the generalized quantum Anzai transformation on the tensor product $\mathbb{T}^n_{\Theta} \otimes \mathbb{T}^n_{\Theta}$ by $\alpha^0_1 (U_j \otimes U_j) = e^{2\pi i \theta} U_j \otimes U_j^2 \in \mathbb{T}^n_{\Theta} \otimes \mathbb{T}^n_{\Theta}$ for $1 \le j \le n$ and θ a real number. Also deifne the generalized quantum Furstenberg transformation on $\mathbb{T}^n_{\Theta} \otimes \mathbb{T}^n_{\Theta}$ by $\alpha^{0,f}_1 (U_j \otimes U_j) = e^{2\pi i \theta} U_j \otimes e^{2\pi i f_j (z_j)} U_j^2 \in$ $\mathbb{T}^n_{\Theta} \otimes \mathbb{T}^n_{\Theta}$ $1 \le j \le n$, where $f = (f_j)$ and f_j are continuous real valued functions on \mathbb{T} . By iterating these transformations, we have the generalized quantum Furstenberg C^* -dynamical system $(\mathbb{T}^n_{\Theta} \otimes \mathbb{T}^n_{\Theta}, \alpha^{0,f}, \mathbb{Z})$. Then the crossed product C^* -algebras $\mathfrak{B}^n_n = \mathbb{T}^n_{\Theta} \otimes \mathbb{T}^n_{\Theta} \rtimes_{\alpha^0} \mathbb{Z}$ and $\mathfrak{B}^n_n = \mathbb{T}^n_{\Theta} \otimes \mathbb{T}^n_{\Theta} \rtimes_{\alpha^{0,f}} \mathbb{Z}$ (or the generalized quantum Anzai and Furstenberg transformation group C^* -algebras) are induced from these C^* -dynamical systems in a natural way (see [Pd]). By viewing θ as a parameter on the torus $\mathbb{T} = [0,1] \pmod{1}$, we have the continuous field C^* -algebras on \mathbb{T} : $\Gamma(\mathbb{T}, \{\mathfrak{B}_n^{\theta}\}_{\theta \in \mathbb{T}})$ and $\Gamma(\mathbb{T}, \{\mathfrak{G}_n^{\theta}\}_{\theta \in \mathbb{T}})$.

Theorem 2.1 Let $\mathfrak{B}_n = \Gamma(\mathbb{T}, {\mathfrak{G}_n^{\theta}}_{\theta \in \mathbb{T}})$ and $\mathfrak{G}_n = \Gamma(\mathbb{T}, {\mathfrak{G}_n^{\theta}}_{\theta \in \mathbb{T}})$ be the continuous field C^* -algebras defined above. Suppose that \mathbb{T}_{Θ}^n of \mathfrak{G}_n^{θ} are irrational in the sense above. Then for * = 0, 1,

$$\begin{split} K_*(\mathfrak{B}^{\theta}_n) &\cong K_* \left(\mathbb{T}^n_{\Theta} \otimes \mathbb{T}^n_{\Theta} \right) \oplus \left(K_* \left(\mathbb{T}^n_{\Theta} \otimes \mathbb{C} \rtimes_{\alpha^{\theta}} \mathbb{Z} \right) / K_* \left(\mathbb{T}^n_{\Theta} \right) \right) \\ &\cong \mathbb{Z}^{2^{2n-1}} \oplus K_* \left(\mathbb{T}^n_{\Theta} \right) \cong \mathbb{Z}^{2^{2n-1}} \oplus \mathbb{Z}^{2^{n-1}} \\ &K_*(\mathfrak{B}_n) &\cong K_*(C(\mathbb{T})) \oplus \left(\oplus^{n^2} K_*(C(\mathbb{T}^2)) / K_*(C(\mathbb{T})) \right) \\ &\oplus \left(K_*(C(\mathbb{T}) \otimes C^*(\mathbb{Z})) / K_*(C(\mathbb{T})) \right) \\ &\cong \mathbb{Z} \oplus \mathbb{Z}^{n^2} \oplus \mathbb{Z}, \end{split}$$

where $\mathbb{T}_{\Theta}^{n} \otimes \mathbb{C} \rtimes_{\alpha^{\theta}} \mathbb{Z}$ is the C^{*}-subalgebra of $\mathfrak{B}_{n}^{\theta} = \otimes^{2} \mathbb{T}_{\Theta}^{n} \rtimes_{\alpha^{\theta}} \mathbb{Z}$ by the canonical inclusion. Moreover, we obtain

$$K_*(\mathfrak{B}^{\theta}_n) \cong K_*(\mathfrak{G}^{\theta}_n), \text{ and } K_*(\mathfrak{B}^{\theta}_n) \cong K_*(\mathfrak{G}^{\theta}_n)$$

for * = 0, 1 by the same reasoning and replacing $\mathbb{T}_{\Theta}^n \otimes \mathbb{C} \rtimes_{\alpha^{\theta}} \mathbb{Z}$ with $\mathbb{T}_{\Theta}^n \otimes \mathbb{C} \rtimes_{\alpha^{\theta,f}} \mathbb{Z}$.

Proof. We use the same argument of the proof of Theorem 1.1 for computing $K_*(\mathfrak{B}^{\theta}_n)$ for * = 0, 1 by replacing $C(\mathbb{T}^n)$ with \mathbb{T}^n_{Θ} . Note that K-groups of \mathbb{T}^n_{Θ} are the same as $C(\mathbb{T}^n)$, and their generators of K_0 and K_1 are given by the generalized Rieffel projections and the unitaries involving those projections and generating unitaries of \mathbb{T}^n_{Θ} (see [Sd] and [Rf, p. 330]).

For computing $K_*(\mathfrak{B}_n)$ for * = 0, 1, we use the similar argument of the proof of Theorem 1.1. The first $K_*(C(\mathbb{T}))$ in the statement corresponds to the base space \mathbb{T} . The second $\bigoplus^{n^2} K_*(C(\mathbb{T}^2))$ correspond to choosing one generating unitary from $\mathbb{T}_{\Theta}^n \otimes \mathbb{C}$ in $\mathbb{T}_{\Theta}^n \otimes \mathbb{T}_{\Theta}^n$ and one generating unitary from $\mathbb{C} \otimes \mathbb{T}_{\Theta}^n$ in it. The third $K_*(C(\mathbb{T}) \otimes C^*(\mathbb{Z}))$ corresponds to the base space \mathbb{T} and the implementing unitary of the action α^{θ} .

Furthermore, we can use the same argument above for computing $K_*(\mathfrak{G}_n^{\theta})$ and $K_*(\mathfrak{G}_n)$.

Remark. More other variations could be obtained by using our methods given in this paper.

REFERENCES

- [AP] J. Anderson and W. Paschke, *The rotation algebra*, Houston J. Math. **15** (1989), 1-26.
- [B1] B. Blackadar, K-theory for Operator Algebras, Second Edition, Cambridge, (1998).
- [Ko] K. Kodaka, The positive cones of K_0 -groups of crossed products associated with Furstenberg transformations on the 2-torus, Proc. Edinb. Math. Soc. 43 (2000), 167-176.
- [Pd] G.K. Pedersen, C*-Algebras and their Automorphism Groups, Academic Press (1979).
- [Rf] M.A. Rieffel, Projective modules over higher-dimensional non-commutative tori, Canad. J. Math. XL (1988), 257-338.
- [Sd] T. Sudo, *K-theory of continuous fields of quantum tori*, Nihonkai Math. J. **15** (2004), 141-152.
- [Wo] N.E. Wegge-Olsen, K-theory and C*-algebras, Oxford Univ. Press (1993).