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Abstract

We study K-theory of continuous fields of the generalized Anzai and
Furstenberg transformation group C*-algebras. Moreover, we consider the
case of the generalized quantum Anzai and Furstenberg transformation group
C*-algebras.

I ntroduction

First recall that the Anzai transformation on the 2-torus T? is defined by af (z,w)
= (e*%2, 2w) e T2 for 6 areal number. Also recall that the Furstenberg transformation

on T? is defined by (xf'f (z,w) = (e#%2, e™@2w) e T2 for f a continuous real
valued functionon T. By iterating these transformations as aﬂ , aﬂ'f n-compositions

of af,al for an integer n e Z respectively, we have the Anzai C*-dymamical
system (C(T?), o®f, Z) and the Furstenberg C*-dynamical system (C(T?), a’f, Z),
where C(T?) is the C*-algebra of continuous complex-valued functions on T2. Then
the crossed product C*-algebras 2° = C(T?) x o Z and §° = C(T?) x o Z (or the
Anzai and Furstenberg transformation group C*-algebras) are induced from these
C*-dynamical systems in a natural way (see [Pd] for crossed products of
C*-algebras). By viewing 0 as aparameter onthetorus T =[O0, 1] (mod 1), we have
the continuousfield C*-algebrason T: T'(T, {°%,_.}) andI'(T, { 3°},_,) with fibers
2% and F°. Our first question is the following:

Question. What are the K-groups of the continuous fields of the Anzai and
Furstenberg transformation group C*-algebras?



In this paper we will answer this question under a more general situation as
given soon below. On the other hand, recently we have considered K-theory of
continuous fields of quantum (or noncommutative) tori [Sd]. We use some methods
of [Sd]. However, a point different from [Sd] is that the fibers 2° and F° are not
qguantumtori and their dynamical systems are more complicated. Thus, the situation
becomes more complicated, but fortunately we can compute the K-groups asin the
following.

1. Generalized Anzai and Furstenberg Transfor mation
Group C*-algebras

Since C(T?) = C(T) ® C(T), we first replace C(T) with C(T") the C*-algebra of
continuous functions on the n-torus T". Now we define the generalized Anzai
transformation on T*" by o (W) = (€° 2, 20) € T* for 2= (z), w = (W) € T",
where €7°z = (€#%2) € T" and zw = (zw) € T". Also we define the generalized
Furstenberg transformation on T2" by af'f (zw) = (e z, ef@z2w) € T?" for z=
(2), w=(w) e T", where @ 2w = (i@ zw) e T", f = (f) and f, are continuous
real valued functions on T. By iterating these transformations, we have the
generalized Anzai C*-dymamical system (C(T?"), o Z) and the generalized
Furstenberg C*-dynamical system (C(T?"), o, Z), where C(T?") is the C*-algebra
of continuous complex valued functions on T2". Then the crossed product
C*-algebras % = C(T*") x os Z and §° = C(T*") x o Z (or the generalized Anzai
and Furstenberg transformation group C*-algebras) are induced from these
C*-dynamical systems in a natural way (see [Pd]). By viewing 6 as a parameter on
the torus T = [0,1] (mod 1), we have the continuous field C*-algebras on
T: (T, {A%,_) and (T, {3}, _.)-

Theorem1.1LetA =I(T,{A%, ) and3 =I(T,{3%},..}) bethecontinuous
field C*-algebras defined above. Then for * =0, 1,

K. (@19) = K.(C(T*) © (K.(C(T") ® C x4 Z) I K(C(T)))
= K, (C(T?") & K,(C(T") = Z2! @ 721

K.(®) = K.(C(T) ® C(T*)) @ (K.(C(T) ® C'(2)) / K.(C(T)))
= K, (C(T?™)) @ K,(C(T)) = Z*" @ Z,

where C(T") ® C x o Z isthe C'-subalgebra of 2 = C(T") x C(T") x o Z by the
canonical inclusion. Moreover, we obtain



K.(20) = K. (39, K.()=K.(3)

for * =0, 1 by the same reasoning and replacing C(T") ® C x _o Z with C(T") ® C
><|a9'f Z.

Proof. First note the following inclusion:
C(T) ® C(T>") <A =T(T, {A°%,_0

where C(T) corresponds to the base space T, and C(T?") is the canonical
C-subalgebra of §° = C(T*") x_, Z. Thenit s easy to seethe following inclusions
in the K-levd:

K.(C(T™) = K.(A), K.(C(T)® C(T*)) = K.(A)

for * =0, 1. It iswel known that K, (C(T¥)) = 72 for*=0,1andk>1 (cf. [Wa]).
Furthermore, note that the following inclusion:

C(TN®C xa®Z < C(T") @ C(T") %107 =2A°
implies the following inclusion in the K-leve:
K.(C(T") ® C x4 Z) < K, (A°)

for * =0, 1. Notealsothat C(T") ® C x g Z is anoncommutative (n+1)-torus. It is
well known that K,(C(T") ® C x 4 Z) = 72" for * = 0, 1 (cf. [Rf]). Since C(T") ®
C of C(T?") = C(T") ® C(T") is identified with that of C(T") ® C x o Z in A%, we
in fact have

K. (29) 5 K.(C(T?") ® (K.(C(T") ® C x4 Z) / K.(C(T)))
= K.(C(T*)) @ K.(C(T").
Keeping in mind this inclusion, by the aid of the Pimsener-Voiculesce six-
term exact sequence ([BI]):
Ko (C(T™) =2 Ko (CT?") —— Ko(2A9)
T 2
Ky(24) i Ky(C(T?") = Ky (C(T™))
where id — 2 is induced from the identity map id on C(T*) and ¢}, and i, is
induced from the canonical inclusion i from C(T") to °, we have

K.(29) = K.(C(T™) @ (K.(C(T") © C 1 4 Z) I K.(C(T))).



Indeed, let u, Vv, (1 <j £ n) be the coordinate functions defined by uj(z,w) =z and
vj(z,w) =W forz=(z),_,, w=(w)p_, € T"respectively. Sincethey are unitaries that

generate C(T*"), let [u], [v] (1 <] <n) be theclasses of K,(C(T*")) corresponding
to U, V.. Then

(id — ) ;T = [u; 1 [(ed (up) ™1 =lu; 11 ui = [u; [uy™] = [uju*] = (4],

(id - o)y, 1 = [v; 10V ™ = v, 10v; ;T =vv; oy T =107,

Therefore, [uj] are in the kernd of id —g?. Furthermore, note that the other
generators of K (C(T#")) are given by the classes of the following unitaries:

S=L,+U-1)®P, or T=1,+(v—1)®P, e My(C(T*))

where |, is the identity matrix of M,(C), 1 is the unit of C(T) and P, are the
(generalized) Bott projections of M,(C(T%)) corresponding to 2k components of
T2 (see [AP] or [Sd]), and M,(C(T%)) is naturally identified with elements of
M.(C(T?") as coordinate functions. In fact, P, are defined by taking the inner
automorphisms on the rank 1 projection of M,(C) by certain k unitaries of two
variables on T? (different components of T2") as the usual Bott projection for k= 1.

Sinceid - o isthe zero map on K (C(T*)), soison P,. Thus S arezero under the

map id— ) when P, comes from 2k-components of T" of C(T") ® C, and T, are
nonzero (otherwise). Hence it follows from the six-term exact sequence above that

0— Ko (C(T?"))— Ko () = Ky (C(T")) > 0,

and moreover, it follows that

0— K, (C(T™)— K, (A > Ky (C(T?")) - 0.

To determine K, (21 ), we note that any eement of the quotient K,(C(T") ® C
X o 2) | K(C(T)) for C(T") the canonical subalgebra of C(T") ® C x o Z is
associated with the generalized Rieffel projections defined in [Sd] involving the
implementing unitary w of the action o by Z. In fact, the projections are defined
by two unitaries coming from some products of generating unitaries on different
components of T" and the unitary w involving the same relation as two unitaries
for theusual Rieffd projections (see[Wo]). Sincethose projections arenot definable
at 0 = O astheusual Rieffd projections, eementsof K, (C(T") ® C x o Z) / K,(C(T"))
do not produce e ements of K, (I'(T, {2A%},_,)). Also, since the unitary w commutes



with C(T) for T the base space of A , we have K,(C(T) ® C* (Z))/K.(C(T)) is
contained in K, (21 ).

We can use the same argument above for computing K, (3°) and K,(3,). In
particular, note that for u, v, the coordinate functions of C(T?") defined above,

(id—ad") [u;] = [1] by the same calculation, and
(id-o") [v] = [v ]I “uy;)

_ 1, —1_—2mif; (uj) —1_—2mif; (u;) -1
= [v;]lvjupe 0 =[upte T = (U]

since the unitary =27 () is homotopic to the identity 1.
Remark. For instance, see [Ko] for thecasen = 1.
2. Generalized Quantum Anzai and Furstenberg Transfor mation
Group C*—algebras
We next replace C(T") with the quantum (or noncommutative) n-torus T generated
by n unitaries U, with the commutation relation U U, = eznie”UiU j withe=(0,)a
skew-adjoint matrix over R. We say that T isirrational if all 0, are rationally
independent each other. We define the generalized quantum Anzai transformation
on the tensor product TA® TS by af (U; ®U;) = €™U; ®U7 e Tg ®T§ for
1<j<nand6 areal number. Also deifne the generalized quantum Furstenberg
transformation on TH® TS by ay'(U;®U;)= &V, ®e”i (ZJ)sze
']I‘C[‘) ® Tc[)‘ 1<j<n, wheref= (fj) and fj are continuous real valued functionson T.
By iterating these transformations, we have the generalized quantum Anzai
C’-dymamical system (T ® Tg,ae ,Z) and the generalized quantum Furstenberg
C’-dynamical system (T} ®’}1‘3,a9'f ,Z)) - Then the crossed product C'-algebras
B = Tg ® Tg x,0 Z and 0 = Te ® Ty <05 Z (or the generalized quantum

Anzai and Furstenberg transformation group C’-algebras) are induced from these
C’-dynamical systems in a natural way (see [Pd]). By viewing 6 as a parameter on



thetorus T = [0,1] (mod 1), we have the continuous field C'-algebras on T: I'(T,
(B} ) and I(T, {&7} o).

Theorem2.1LetB =T(T,{&%, )and& =I(T,{&}, ) bethecontinuous

field C'-algebras defined above. Supposethat T of &) areirrational inthe sense
above. Thenfor * =0, 1,

K.(B%) =K, (T§® T)® (K. (Td ® Cx_oZ) /K. (T§))

= 727" o K. (1)) 227" @2
K.(B,) =K.(C(T)) ® (@ K.(C(TH)/K,(C(T)))
® (K.(C(T) ® C'(2)) / K.(C(T)))
VAYARYA

where Tg ® C %, Z isthe C'-subalgebra of B} = ®Tj x_, Z by the canonical
inclusion. Moreover, we obtain

K.(B9) =K, (&%, and K(B)=K.(&)
for * =0, 1 by the same reasoning and replacing Ty ® C x o Z with T ® C %
Z.
Proof. We usethe same argument of the proof of Theorem 1.1 for computing K, (89)
for * =0, 1 by replacing C(T") with T . Notethat K-groups of T arethe sameas

C(T"), and their generators of K  and K, are given by the generalized Rieffel
projections and the unitaries involving those projections and generating unitaries

of Ty (see[Sd] and [Rf, p. 330]).

For computing K, (%8) for * = 0, 1, weuse the similar argument of the proof of
Theorem 1.1. Thefirst K, (C(T)) in the statement corresponds to the base space T.

The second @”2 K, (C(’]l‘z)) correspond to choosing one generating unitary from

Ty ® Cin T{® Tg and one generating unitary from C ® Tg in it. The third

K.(C(T) ® C'(Z)) corresponds to the base space T and the implementing unitary
of the action o®.

Furthermore, we can use the same argument above for computing K, (&?) and
K.(&,).



Remark. More other variations could be obtained by using our methods given
in this paper.
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