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Abstract

Most of the real world optimization problems have more than one objective to
be optimized, and hence they are called Multi-Objective Optimization Problems
(MOOPs). Evolutionary algorithms are gaining popularity for solving MOOPs
due to their inherent advantages. In this paper, MDE-Modified Differential
Evolution (Angira and Babu, 2005b) is extended for solving MOOPs and we
call this extended algorithm as Modified Non-dominated Sorting Differential
Evolution (MNSDE). The proposed algorithm is tested on two different
benchmark test problems. Also, the effect of various key parameters on the
performance of MNSDE is studied and compared with Non-dominated Sorting
Differential Evolution (NSDE)-an extension of Differential Evolution for
solving MOOPs.

1. INTRODUCTION

The field of search and optimization has changed over the last few years by the
introduction of a number of non-classical, unorthodox and stochastic search and
optimization algorithms. Ideally, multi-objective optimization problems require
multiple trade-off solutions (a set of Pareto optimal solutions) to be found. The
presence of multiple conflicting objectives makes the problem interesting to solve.
Due to multiple conflicting objectives, no single solution can be termed as an
optimum solution. Therefore, the resulting multi-objective optimization problem
resorts to a number of trade–off optimal solutions. Classical optimization methods
can at best find one solution in a single run; on the other hand evolutionary
algorithms can find multiple optimal solutions in a single run due to their population
based search approach.

Many engineering applications involve multiple criteria, and recently, the
exploration of Evolutionary Multi-objective Optimization (EMO) techniques has
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increased (Coello, 1999). The ideal approach for a multi-objective problem is the
one that optimizes all conflicting objectives simultaneously. Evolutionary algorithms
inherently explore a set of possible solutions simultaneously. This characteristic
enables the search for an entire set of Pareto optimal solutions in a single run.
Additionally, evolutionary algorithms are less susceptible to problem dependent
characteristics, such as the shape of the Pareto front (convex, concave, or even
discontinuous), and the mathematical properties of the search space, whereas these
issues are of concerns for mathematical programming techniques for mathematical
tractability.

Schaffer (1985) proposed first practical approach to multi-criteria optimization
using EAs, Vector Evaluated Genetic Algorithm (VEGA). After that there have
been several other versions of evolutionary algorithms that attempt to generate
multiple non-dominated solutions such as (Kursawe, 1991; Hajela & Lin, 1992).
The concept of pareto-based fitness assignment was first proposed by Goldberg
(1989), as a means of assigning equal probability of reproduction to all non-
dominated individuals in the population. Fonseca & Fleming (1993) have proposed
a multi-objective genetic algorithm (MOGA). Srinivas and Deb (1995) proposed
NSGA, where a sorting and fitness assignment procedure based on Goldberg’s
version of Pareto ranking is implemented. Horn et al. (1994) proposed Niched
Pareto Genetic Algorithm (NPGA) using a tournament selection method based on
Pareto dominance. Knowles and Corne (2000) proposed a simple evolution strategy
(ES), (1+1)-ES, known as the Pareto Archived Evolution Strategy (PAES) that
keeps a record of limited non-dominated individuals. The more recent algorithms
include the (Strength Pareto Evolutionary Algorithm) SPEA (Zitzler & Thiele,
1999), NSGA-II (Deb et al., 2002), Pareto-frontier Differential Evolution (Abbass
et al., 2001), and Multi-Objective Differential Evolution (Xue et al., 2003; Babu &
Jehan, 2003; Babu et al., 2005a, 2005b; Babu & Anbarasu, 2005; Angira & Babu,
2005a).

Previously, a few researchers (Abbass et al., 2001; Xue et al., 2003; Babu et
al., 2005a, 2005b; Angira & Babu, 2005a) studied the extension of differential
evolution to multi-objective optimization problem in continuous domain, but using
different approach from that described in this chapter. In the present study an
extension of Modified Differential Evolution (MDE) for solving MOOPs is
proposed and the proposed algorithm (where same mutation & crossover scheme
is used as in MDE, however the selection criterion is modified as it is being used
for solving MOOPs) is tested on the two test problems. One test problem is
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Schaffer’s function and the other is cantilever design problem. Also, the effect of
various key parameters on the performance of MNSDE is studied and compared
with Non-dominated Sorting Differential Evolution (NSDE) - an extension of
Differential Evolution for solving MOOPs.

2. MODIFIED NONDOMINATED SORTING
DIFFERENTIAL EVOLUTION

In the previous studies it has been found that MDE took less computational time
due to the use of single array of population (Angira & Babu, 2005b; Babu & Angira,
2006; Angira & Babu, 2006). In this study, MDE (Angira & Babu, 2005b; Babu &
Angira, 2006; Angira & Babu, 2006) is extended for solving multi-objective
optimization problems and the extended algorithm is called as MNSDE (Modified
Non-dominated Sorting Differential Evolution). MNSDE is similar to NSDE
(Angira & Babu, 2005a) except for the selection criterion. Also, MNSDE maintains
only one set of population as against two sets in NSDE. The selection criterion
used in MNSDE is different from that of NSDE and is as follows:

After mutation & crossover the trial solution is generated. Selection is made
between this trial solution and target solution. If trial solution dominates the target
solution, then the target solution is replaced by the trial solution in the population
of current generation itself otherwise the target solution is kept as it is. The remaining
procedure is same as that of NSDE. The use of single array of population in MNSDE
as against two in NSDE may lead to reduction in memory and computational efforts
required as is found for MDE. The pseudo code of MNSDE algorithm used in the
present study is given below:

Set the values of NSDE parameters D, NP, CR and Max_gen (maximum generations).

Initialize all the vectors of the population randomly within the bounds.

for i = 1 to NP

      for j = 1 to D

X
i,j

 =Lower bound+ random number* (upper bound-lower bound);

      End for

     End for

Perform mutation, crossover, selection and evaluation of the objective function
for trial and target vector for a specified number of generations.
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While (gen < Max_gen)

{for i = 1 to NP /** first for loop***/

{ For each vector Xi (target vector), select three distinct vectors Xa, Xb and Xc

randomly from the current population other than the vector Xi

do

{ r1 = random number *NP

r2 = random number *NP

r3 = random number *NP

} While (r1=i) OR (r2=i) OR (r3=i) OR (r1=r2) OR (r2=r3) OR (r1=r3)

Perform mutation and crossover for each target vector X
i
 and create a trial vector,

X
t,i

. For binomial crossover:

{ p = random number

j
rand

 = int (rand[0,1]* D)+1

for n = 1 to D

{ if ( p<CR or n = j
rand

)

X
t,i

 = X
a,i

 + F (X
b,i

 - X
c,i

)

}  else X
t,i

 = X
i,j

}

Perform selection for each target vector, X
i
 by comparing its function value with

that of the trial vector, X
t,i

. If X
t,i

 dominates X
i
 then replace X

,i
 with X

t,i
 otherwise

discard X
t,i

.

If (X
t,i

 dominates X
i
)

Replace X
,i
 with X

t,i
 into current generation population

else discard X
t,i

} /** End of first for loop***/
}     /** End of while loop***/

Evaluate the objective functions for each vector.

for i = 1 to NP

C
i,j

 = funct
j
( ). j = 1,.., no of objectives

Remove all the dominated solutions using any one of the
approaches proposed by Deb (2001).

Print the results (after the stopping criteria is met).
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Nondominated Sorting can be done using any of the standard approaches
reported in Deb (2001). In the present study, naïve and slow approach is used. In
this approach, each solution i is compared with every other solution in the population
to check if it is dominated by any solution in the population. If no solution is found
to dominate solution i, it is member of the non-dominated set otherwise it does not
belong the non-dominated set. This is how any other solution in the population can
be checked to see if it belongs to the non-dominated set.

The stopping criteria for the algorithm can be any one of the following
conditions:

(a) There is no new solution added to the non-dominated front for a specified
number of generations.

(b) Till the specified number of generations.

However, in this study, the second condition is used as termination criterion.

3. TEST PROBLEMS

The algorithm is tested on the following two test problems (Deb, 2001). The first
problem is of one dimension while the other is of two dimensions.

Schaffer’s function

Minimize f (x) = x2

Minimize g (x) = (x-2)2

where -1000< x <1000

Cantilever Design Problem

A cantilever design problem with two decision variables is considered, i.e.,
diameter (d) and length (l). The beam has to carry an end weight load P. the
objectives are minimization of weight (f1) and minimization of end deflection (f2).
The first objective will resort to an optimum solution having the smaller dimensions
of d and l, so that the overall weight of the beam is minimum. Since the dimensions
are small, the beam will not be adequately rigid and the end deflection of the beam
will be large. On the other hand, if the beam is minimized for end deflection, the
dimensions of the beam are expected to be large, thereby making the weight of the
beam large.

Minimize  f1 and f2
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4. RESULTS & DISCUSSION

4.1. Schaffer’s Function

Many experiments have been carried out in order to test the proposed algorithm by
studying the effect of Max_gen and F & CR for Schaffer’s function. Fig. 1 shows
the Pareto front using the two techniques, i.e., NSDE, and MNSDE.

 Parameters used are same in both the techniques except for the Max_gen. For
MNSDE, Max_gen is 100, while it is 200 for NSDE. This is done in order to

Fig. 1: Pareto front using MNSDE & NSDE
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examine the effect of use of single array instead of double in NSDE. It is clear that
both MNSDE & NSDE are able locate global Pareto optimal front but with different
spread. It is to be noted that even though the Max_gen used in MNSDE is half of
that used in NSDE, it is able to locate the global Pareto front.

4.1.1. Effect of Max_gen on MNSDE & its comparison with NSDE

The Fig. 2 shows the effect of Max_gen on MNSDE and its comparison with
that of NSDE. From Fig. 2, it is clear that effect of Max_gen is same on the two
techniques. Key parameters used are F = 0.5, CR = 0.5, NP = 100.

Fig. 2: Effect of Max_gen on NPS using MNSDE & NSDE

However, there is no significant change in NPS after Max_gen = 100 for
MNSDE while same trend is observed for NSDE but after Max_gen = 200. Also
maximum NPS obtained using NSDE is 99 as compared to 96 using MNSDE.

4.1.2. Effect of CR on MNSDE & its Comparison with NSDE

Fig. 3 shows the effect of CR on the performance of MNSDE. Fig. 4 shows the
effect of seed and its comparison with NSDE. Keeping F = 0.5, NP = 100, and seed
= 10, the CR value is changed from 0.1 to 1.0 in steps of 0.1. The parameters used
are same for MNSDE & NSDE except Max_gen = 200 & 300 respectively. The
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effect of change in CR value on MNSDE is similar to that found for NSDE, i.e.,
there is no effect on NPS and Pareto front obtained (Fig. 3). Also, different seed
values give different spread of Pareto front (Fig. 4a & 4b). However as compared
to NSDE, the spread is different.

Fig. 3: Effect of CR using MNSDE
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Table-1 shows the effect of seed value of on maximum objective function value.
It is observed that for the two seed value maximum objective function values are
almost same as was expected. It is also seen that NPS is slightly affected (95 & 98)
in case of MNSDE but it is nearly same (98 & 99) for NSDE.

Table 1
Comparison of Maximum Function Values for two Different Seeds

Seed NPS f (max) g (max)

(NSDE/MNSDE MNSDE NSDE MNSDE NSDE

10 99/98 3.9290 3.9949 3.9972 4.0137

23 98/95 4.0016 4.0086 3.9928 3.9981

4.1.3. Effect of F on MNSDE & its Comparison with NSDE

It is found that F not only affects NPS, but also the spread as found in NSDE too.
The variation of NPS with F is shown in Fig. 5 for both MNSDE & NSDE. It is
clear that the effect of F on MNSDE is more significant than that on NSDE for the
same seed value. In case of MNSDE, NPS varies from 88 to 99, while for NSDE it
varies from 95 to 99. Fig. 6 shows the comparison of MNSDE & NSDE for F =
0.2. Both the techniques are able to find out global Pareto front but spread is
different.

(b). Seed =23

Fig. 4: Effect of seed for Schaffer’s function using MNSDE and NSDE
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4.2. Cantilever Design Problem

Various experiments have been carried out in order to test the proposed algorithm
by studying the effect of Max_gen and F & CR for Schaffer’s function.

Fig. 5: Effect of F on NPS for Schaffer’s function (MNSDE and NSDE)

Fig. 6: Comparison of MNSDE and NSDE at seed =10 and F = 0.2
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4.2.1. Effect of Max_gen on MNSDE & its Comparison with NSDE

Fig. 7 shows the effect of Max_gen on the performance of MNSDE and its
comparison with that of NSDE. The key parameters used are F = 0.5, CR = 0.5, NP
= 100. It is seen from Fig. 7 that there is not significant difference in NPS till
Max_gen = 500 for the two techniques. And after Max_gen = 500, NPS in case of
NSDE becomes almost constant with further increase in Max_gen. But in the case
of MNSDE, it increases even after Max_gen = 500 and becomes nearly constant
after Max_gen = 900. NPS is more in the case of MNSDE than for NSDE for
higher values of Max_gen (>500). This is different from what is observed in the
result with Schaffer’ function.

Fig. 7: Effect of Max_gen on NPS (MNSDE and NSDE) for cantilever design
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4.2.2. Effect of F on MNSDE & its Comparison with NSDE

Fig. 8 shows the effect of F on NPS using MNSDE and its comparison with
that using NSDE. From Fig. 8 it is seen that for MNSDE, NPS is high for lower
value of F while a value of F = 0.5 gives highest NPS for NSDE. This is in agreement
with what is observed in Schaffer’s function. It is interesting to note that at F = 0.5,
NPS is same for both the techniques. Hence this value can be used for further
comparison of Pareto front obtained in the two algorithms. It is found that F not
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only affects the NPS but also the spread of Pareto front. Also, the spread of Pareto
front is different for different seed value. Fig. 9 shows the Pareto front obtained
using the two algorithms for F = 0.5. Although the spread is different yet both the
algorithms are able to locate the global Pareto front.

Fig. 8: Effect of F on NPS for cantilever design problem using
MNSDE and NSDE (CR = 0.5)

Fig. 9: Pareto front for Cantilever Design Problem using MNSDE and NSDE
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4.2.3. Effect of CR on MNSDE & its Comparison with NSDE

The effect of CR on NPS (for both MNSDE & NSDE) for cantilever design
problem is significant as compared to Schaffer’s function. The variation of NPS
with CR is shown in Fig. 10. Best value of CR seems to be 0.7 for MNSDE and 1.0
for NSDE. However, the value of NPS is nearly same for CR = 0.9 & 1.0 for both
the algorithms.

Fig. 10: Effect of CR on NPS for Cantilever Design problem (MNSDE and NSDE)
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Fig. 11 shows the Pareto fronts for different CR values using MNSDE. It is
evident that as CR value is increased for given F & Max_gen, the shape of the
Pareto front gets improved. In other words, it is closest to global Pareto front for
CR � 1.0 (Fig. 11c) rather than for lower CR values (Fig. 11a & 11b). This is
similar to what is observed with the results using NSDE. The effect of CR value on
the maximum value of objective function and NPS is shown in Table-2. Also a
comparison is made with the results obtained using NSDE.
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(a) CR = 0.1

(b) CR = 0.5

(c) CR = 1.0
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Fig. 11. Effect of CR on shape of Pareto front for cantilever design problem (MNSDE)
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Table 2
Effect of CR on Maximum value* of Objective Functions

CR NPS (NSDE/MNSDE) Weight (max) Deflection (max)

MNSDE NSDE MNSDE NSDE

0.1 33/32 2.6789 2.9703 2.0929 2.0723

0.5 58/58 2.9683 2.7960 2.0173 2.0095

1.0 62/63 2.9591 2.9103 1.8434 1.9982

*Literature values for maximum Deflection = 2.04, and maximum Weight = 3.06

It is clear from Table 2 that for both MNSDE and NSDE, the NPS increases
with CR and also the NPS value is same. At CR value of 0.5, NPS is almost double
the value at CR = 0.1. Further increase in CR dose not increases NPS significantly.
At CR = 0.5, the MNSDE is closer to literature value for maximum deflection and
weight rather than NSDE.

5. CONCLUSIONS

The two test problems are solved using MNSDE and results are also compared
with those obtained using NSDE. The effect of various parameters (Max_gen, CR,
and F) is discussed and analyzed. It is observed that NPS increases with Max_gen
up to a certain value which is problem dependent. For Schaffer’s function, it is
about 100 while for cantilever design problem it is about 900. The effect of CR is
significant in case of cantilever design problem. A high value of CR (� 0.7) is
found suitable. It is important to note that scaling factor not only affects the NPS
but also the shape and spread of Pareto optimal front.

Schaffer’s function: The effect of Max_gen is same for both the algorithms
(NSDE and MNSDE). CR does not affect the NPS as well as shape & spread of
Pareto front for given value of F, Max_gen and seed. This is found to be true for
both the algorithms. Effect of F on NPS is more pronounced in MNSDE as compared
to NSDE. However for both the algorithms, the spread of Pareto front is different
for different values of F for same seed value.

Cantilever Design Problem: In both the algorithms, NPS increases with
Max_gen till a certain value. But this ‘certain value’ is problem dependent. Also,
in the two algorithms, F not only affects the spread but also the NPS. Lower values
of F (0.1, 0.2, and 0.3) are found to give higher NPS for MNSDE while for NSDE
best value is 0.5. It is found that the parameter CR not only affects the NPS but also
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the shape and spread of Pareto front, for the two algorithms. Use of high CR value
(� 1.0) is found to beneficial in the two algorithms.

It is important to note that even though all controlling parameters are same still
the spread of Pareto front can be different in the two algorithms.

Based on the results, it is recommended to use a high CR value for both NSDE
& MNSDE and lower value of F for MNSDE and a value of 0.5 for NSDE. Max_gen
is found to be problem dependent.
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