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Abstract

The behavior of Shape Memory Alloy (SMA) actuators is based on the
transformation of its martensite and austenite phases. The SMA actuation, which
depends on heating and cooling process is a non-linear phenomenon and depends
on various interrelated factors. Fuzzy logic systems are qualified as models of
general nonlinear systems as they are capable of approximating a wide variety
of nonlinear functions. Hence the objective of this paper is to realize a trained
fuzzy logic controller that reduces the number of fuzzy rules using table look-up
scheme for the control of SMA actuators. As the SMA actuation is dependent
upon the amount of heat that is added and removed, its heat transfer analysis is
presented first. The outcome of the same is considered as the basis for the design
of the training algorithm. Simulation has been carried out using MATLAB.

Key words: Set theory, Fuzzy systems, Adaptive control, Non-linear systems,
Smart materials, Shape memory alloys.

1. INTRODUCTION

Since Lotfi Zadeh’s introductory paper in 1965 [25], the fuzzy set theory and the
applications of fuzzy systems have come a long way. The success of the practical
application of fuzzy control theory [7,24] in the form of fuzzy controller in modern
control engineering is an important factor for its development. Fuzzy controllers,
mostly the Mamdani type systems and sometimes the Takagi-Sugeno type systems
are well justified for almost any nonlinear modeling problem due to the Universal
Approximation Theorem [1,6,9,13,16]. These fuzzy controllers are general enough
to perform any non-linear control action. Therefore, by carefully choosing the
parameters of the fuzzy controllers, it is possible to design an adaptive fuzzy
controller [13,22] that is suitable for the control of any non-linear system. The
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capability of the fuzzy logic systems to incorporate linguistic information in a
natural and systematic way, is an unique advantage of the fuzzy logic systems
which is not shared by other types of universal approximators, including
polynomials, neural networks, wavelets or splines.

Conventional fuzzy logic systems together with suitable training algorithms
make the system more powerful to act in the fuzzy environment that consists of
linguistic and numerical information. If the fuzzy logic system is constructed from
linguistic information, by using a set of fuzzy IF-THEN rules formulated with the
help of human experts having a priori knowledge of the system, then the training
algorithm adjusts the parameters or structures of the fuzzy system based on the
numerical information provided by the sensor feedback system. Training algorithms
also make fuzzy logic system more adaptive to the environment in which the fuzzy
rules are automatically generated. The final fuzzy logic system is, therefore,
constructed based on both numerical and linguistic information.

The speed of response of SMA actuators can be enhanced by selecting a
suitable heating and cooling method with suitable controllers which could add
and remove the heat at a faster rate. Light weight, high power and work density,
high thermal conductivity, large recoverable strains, high tensile strength,
possessing two phases with different resistivities and good damping properties,
silent operation etc., are some of the salient features which make SMA actuators
suitable for robotic applications. But the major problem encountered with SMA
actuators is the control difficulty as the actuation is non-linear, possessing large
hysteresis, stress dependant phase transformation, change in Young’s modulus
etc and hence classical control methods are not capable [15] of producing accurate
results. As the fuzzy controller does the job of mapping all the inputs and outputs,
it can be well adopted for controlling SMA actuators provided the controller is
suitably trained.

The structure of this paper consists of the following sections. Components of a
classical fuzzy controller and the way in which its inputs and output are considered
towards SMA actuation and the justification for using the fuzzy controller are
explained in Section 2. The inputs for the fuzzy controller are obtained based on
the output derived from heat transfer analysis and thus is presented in Section 3.
The table look-up scheme as training algorithm for the controller is available in
Section 4. The results and discussion are presented in Section 5, followed by
conclusion in Section 6 and subsequently the references.
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2. THE CLASSICAL FUZZY CONTROLLER

Most of the engineering systems consist of two important information sources,
namely sensors and human experts. Human experts provide linguistic information
like high, low, medium etc., about the system whereas sensors provide numerical
inputs, represented by numbers. Classical engineering approach only makes use of
numerical information. But fuzzy systems are capable of integrating both numerical
and linguistic inputs, which is the major advantage and also a convenient way of
describing the system behavior. Basic information about the fuzzy set theory from
which the fuzzy logic control (FLC) system developed is not covered here and the
interested reader can refer various textbooks like [2,5,8,10,12] and the related
literatures.

Fuzzy controllers are most suitable for systems which are complex, non-linear,
or do not have mathematical models. The FLC system, shown in Fig.1 [20], is an
approximate reasoning based controller, that does not require exact analytical or

Fig. 1: Classical Fuzzy Logic Controller

mathematical model. In classical control systems, control action is reached through
an algorithm, based on multiplication by constant (proportional control), taking a
derivative (derivative control), integration or a combination of two or all the three
(PID control). Where as in fuzzy control, mapping of all input and output variables
are done with linguistic rules, based on the priori knowledge and executed through
the inference mechanism. The FLC system mainly consists of three modules,
fuzzification, and defuzzification and in between these two is the inference engine,
which are described below.

2.1 Fuzzification

Fuzzification is converting the numerical inputs into fuzzy sets using suitable
functions, with a membership value between 0 and 1, so that they could be
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interpreted by the fuzzy control system. Different kinds of membership functions
are used for the fuzzification of both inputs and outputs. Functions like triangular,
trapezoidal, bell shaped, sigmoid, beta functions [1] etc, are widely used. The widths
of the functions need not be uniform as the narrow regions provide tight control
and the wide regions provide looser control.

The fuzzifier performs a mapping from a crisp point,

1 2[ , ,....., ]Tnx x x x U� � , into a fuzzy set �A in U . Mostly singleton and
nonsingleton fuzzifiers are used for the mapping of input crisp values into fuzzy
sets. Singleton fuzzification is that, if �A  is a fuzzy singleton with support x , then

� �( ) 1 ( ) 0A Ax for x x and x� �� � �� � �  for  all other x U with x x� �� � .
Whereas for nonsingleton fuzzifier, � ( ) 1A x� � and � ( )A x� � decreases from 1 as x�

moves away from x  and finally reaches zero. If Gaussian membership functions
are considered, as used here, then the function is of the form
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where i = 1, 2,….R (number of rules) and j = 1,2,…n(number of inputs), i
jc  =

centre of the membership of the ‘i’th rule for ‘j’th universe of discourse.

2.2 Fuzzy Rule Base and Inference Engine

A fuzzy rule base consists of a collection of fuzzy IF-THEN rules in the following
form

1 1: ... ,i i i i
n nR IF x is F and and x is F THEN y is G (2)

where i
jF and iG  are fuzzy sets in jU R�  and V R�  respectively and the

linguistic variables are

1 2 1 2( , ,..... ) ......T
n nx x x x U U U and y V� � � � � � (3)

The number of rules used in controlling the system using fuzzy control is
represented by, R=(m)n , where m-number of membership functions in each input
(Fuzzy sets), n-number of input variables. For SMA actuation, after having a priori-
knowledge of the system, a general fuzzy system [20,21] can be formulated with
temperature and the heating time as two inputs and power required for heating the
SMA as output. Each input variable can be divided into seven membership functions
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as Extremely Low (EL), Very Low (VL), Low (LO), Medium (ME), High (HI),
Very High (VH), Extremely High (EH). Hence n=2, m=7 and R=49. Therefore 49
Fuzzy IF...THEN… Rules can be formed as under.

R1: IF temperature is ‘EL’ and heating time is ‘EL’, THEN power required is ‘EH’

R2: IF temperature is ‘EL’ and heating time is ‘VL’, THEN power required is ‘EH’

.

.
R49: IF temperature is ‘EH’ and heating time is ‘EH’, THEN power required is ‘EL’

These 49 fuzzy rules are presented in the form of ‘Rule-Base Matrix Array’ as
shown in Table 1. The ‘*’ marked values are just to identify the above rules with
the matrix and also to help formulating the other rules.

Table 1
Fuzzy Rule Matrix for 49 Rules

Power (Output) Heating Time (Input 2)

EL VL LO ME HI VH EH

EL EH* EH* EH EH VH VH VH

VL VH VH VH VH HI HI HI

LO HI HI HI ME ME ME ME

ME ME ME ME ME LO LO LO

HI LO LO LO LO LO VL VL

VH VL VL VL VL VL VL VL

EH EL EL EL EL EL EL EL*

If ( )i x�  is the certainty of the premise (IF part) of the ‘i’th rule or the
membership function value, then it can be expressed as

1

( ) ( )
n

i
i j

j

x x� �
�

�� (4)

In the fuzzy inference mechanism the fuzzy IF-THEN rules are combined to
map the fuzzy sets in 1 2 ...... nU U U U� � � � to fuzzy sets inV  which is based
on the interpretation of the rules using sup-star composition. The interpretations
are generally based on the fuzzy implications, mini-operation rule, product-operation
rule, arithmetic rule, max-min rule, Boolean rule and Goguen’s rule [13]. However
mini-operation rule, following from the fuzzy conjunction by using the fuzzy
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intersection operator, is considered here as it is widely used. These are expressed
by

: ( , ) [ ( , ) ( , )]P Q v V P QSup Star Composition u w sup u v v w�� � ��� � � (5)

: ( , ) [ ( ), ( )]A B A BMini Operation Rule x y min x y� � ��� � (6)

Here P and Q are fuzzy relations in U×V and V×U where U and V are two
universe of discourses. The sup-star composition P and Q is the fuzzy relation
denoted by P o Q, u�U, w�W, ‘*’ is the ‘min’ operator in the class of t-norm [13].

2.3 Defuzzification

It is the process of converting a fuzzified value into a numerical (crisp) value. It is
required for generating the real world output. The defuzzifier performs a mapping
from fuzzy sets in V to a crisp point v. At least seven methods are popular for
defuzzifying the fuzzy output functions (membership functions). They are, Max
membership principle; Centroid method (also called as “centre of gravity-COG”
or “centre of area-COA” methods); Weighted average method; Mean-max
membership (also called as “middle of maxima method”); Center of sums; Center
of largest area; First (or last) of maxima method. Center of sums method that is
also called as centre average defuzzifier, can be expressed as
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where b
i is the centre of the output membership function due to the ith rule. For

characterizing the shape of the membership function, like making the width unequal
or making it nonsymmetrical, a parameter di [13] can be introduced. Now the above
expression can be modified as
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The modified centre average defuzzifier implies that the sharper the shape of
the membership function, output y will be nearer to the center of the membership
function and hence better control.

2.4 The Total Controller

The overall fuzzy control system with center average defuzzification with product-
inference rule, singleton fuzzifier and Gaussian membership function [10],
considered for our application, can be expressed by
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If the system is used with modified average defuzzifier, then the expression will be
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(10)

The parameters ib , i
ja , 

i
jx  and i

j�  are with the constraints [9,13,16] ib �V,,
i
ja �(0,1), 

i
jx �Uj and i

j� >0 respectively..

2.5 Universal Approximation Theorem

The fuzzy logic system as expressed in Eq. 9 or 10, is capable of uniformly
approximating any nonlinear function over U to any degree of accuracy if U is
compact based on Universal Approximation Theorem. It states that for any given
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real function ‘g’ on a compact set nU R�  and any arbitrary value e < 0, there
exists a fuzzy logic system ‘f ’ in the form, Eq. 9 or 10, such that

( ) ( )x Usup f x g x �� � � (11)

And a corollary is that for any 2( )g L U�  and arbitrary value e<0, there exists
a fuzzy logic system f in the form, Eq. 9 or 10 such that

2
2

( ) ( )
U

f x g x d x and�
� ��� �� � ��� �� ���� �
� (12)

2
2 ( ) [ : ( )

U

L U g R g x d x� ��� (13)

The integrals are in the Lebesgue sense. Based on this universal approximation
theorem, SMA actuation system can be controlled by a fuzzy controller with an
arbitrary accuracy if the controller is in the form as expressed in the Eq. 9 or 10.
Proof of this theorem and corollary are available in [13], based on Stone-Weierstrass
Theorem [6,16].

3. HEAT TRANSFER ANALYSIS

The major disadvantage of using SMA actuator is its slow response, which is
generally in the range of 2Hz. It mainly depends on how fast the heat is added and
removed. Of the various heating and cooling methods, joule heating combined
with forced convective cooling results in higher frequency of operation [21]. The
following fundamental heat transfer expressions are considered for obtaining the
input and output variables for the proposed fuzzy controller [4,15,20].

2( )  - ( - )p a
dT

mc i R hA T T
dt
� …for heating (14)

( )  - ( - )p a
dT

mc hA T T
dt
� …for cooling (15)

where, m-mass of the SMA wire, c
p 

-specific heat constant, T-instantaneous
temperature, T

a
 -ambient temperature, i -current required, R -resistance of the wire,

h –convective heat transfer coefficient, A – surface area of the wire, and dT/dt-rate
of change of temperature with respect to time t.
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Fast SMA actuation basically depends upon the rate of addition and removal
of heat. Resistive heating is considered for heat input and natural convective cooling
is considered for the removal of heat. As the temperature of the wire increases
from T

a
, Eq.14 can be solved as under in order to obtain the temperature of the

wire, T at any time, t.

( ) ( )2

( )p p

hA hA
t t

mc mc
a

i R
T e T e c

hA
� � � (16)

( )2

( ) p

hA
t

mc
a

i R
T T c e

hA

�

� � � (17)

In the above equation, c is the constant of integration which can be obtained
using the boundary condition, when t=0, then T=T

2
, and hence:

2

2( )a
i R

c T T
hA

� � � (18)

Using Eq. 17 and 18, the general equation of heat transfer during the heating phase
is

( ) ( )2

2( ) ( ) (1 )p p

hA hA
t t

mc mc
a a

i R
T T T T e e

hA

� �

� � � � � (19)

If the time constant of the system is denoted as t and using another boundary
condition, when t = �, then T = T

1, the general expression is modified as

( ) ( )2

1 2( ) ( ) (1 )p p

hA hA

mc mc
a a

i R
T T T T e e

hA

� �� �

� � � � � (20)

In Eq. 20, T
1
 is the maximum temperature of the wire, which can be just above

the austenite finish (A
f
) temperature in order to ensure complete transformation. T

a

is the minimum temperature of the wire that is the ambient temperature. T
2
 is the

temperature at any time t, which determines the power requirement in order to
increase the temperature of the wire to T

1, for achieving the complete phase
transformation. The factor / phA mc  represents the frequency component. Further,,
Eq.14 can be modified as under which simplifies the expression, Eq. 20 to Eq. 23.
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For simulation, the following values [11,17,18] are considered. SMA wire
diameter=0.25mm, length=50mm, h=110 W/m2 °C, R=27.5 W/m, A

f
=90°C [3],

T
1 
= A

f 
+ 10°C = 100°C, T

a 
= 25°C, c

p 
= 837.2 J/kg °C, Hence the calculated values

of a and b are 4.050671x10-6 and 4.07412x10-4 respectively. In this application, �
values of 0.1, 0.5 and 1.0 are considered with the restriction that, i<1.0. Fig. 2
shows the relationship between T

2
 and i for � values of 0.01, 0.1, 0.5 and 1.0 and

the value of 0.5 or 1.0 are better as the power required for heating the SMA wire is
in the reasonable range. However the value of 0.5 is best compared to 1.0 in terms
of speed of response.

4. TRAINING WITH TABLE-LOOKUP SCHEME

When the design of a fuzzy controller is undertaken, many design parameters have
to be considered such as scaling factors, membership functions, control rules etc.
Adjustment of these parameters is called as ‘tuning’ and is required in order to
obtain optimum results and to make the system adaptive to the environment. Back
propagation, orthogonal least squares [14], table look-up scheme, nearest
neighborhood clustering and gradient methods are the generally used training
algorithms. The first two training algorithms are not very simple and their
computational requirements are intense for complex problems. Training using table
look-up scheme is simple to construct, it just performs a one-pass operation on the
training data and hence considered for this application. Moreover, the training
scheme simplifies the control algorithm by reducing the number of rules and
hence the memory requirements, maintaining the required accuracy of the control
system.

The basic idea here is to generate the rules based on the training data and then
combine the generated rules with the rules from human experts into the final fuzzy
logic system.
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For the two input (x) and one output (y) system, the data pairs are in the
following form.

(1) (1) (2) (2) ( ) ( )(1) (2) ( )
1 2 1 2 1 2( , ; ), ( , ; ),......., ( , ; )n n nx x y x x y x x y (24)

These data pairs can now generate a set of fuzzy IF-THEN rules in order to
find the fuzzy logic system, which is of the form 1 2: ( , )f x x y� . The data pairs
for the SMA actuator are presented in Table 2. These are generated with the help of
Eq. 23. T is the temperature that is the same as T2 in the expression. The data pairs
are considered with the condition that the current i is always less than 1.0 so that,
the overall power requirement for heating the SMA become less. Training of the
controller is accomplished with the help of the following steps.

4.1 Dividing the Input and Output Spaces into Fuzzy Regions

The domain interval of each variable, two inputs (Temperature, T and Time constant,
t) and one output (current supplied, i) can be divided into 7 regions as explained in
Sec.2.2. The width of the regions is not same, as close control is possible where the
width is low and vice versa. For example, if the temperature of the SMA wire is
approaching its austenite finish temperature (Af), minimum current has to be applied
in order to avoid over heating or overshoot and hence the width of these regions

Fig. 2: Relationship between T
2
 and i for various 
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are low compared to lower temperature regions. Reduction in width ultimately
increases the sensitivity of the system in that region as it increases the slope of the
membership function. The width of the membership functions are reduced or
increased by a factor, i� =1.5, from the preceding membership function. These are
in the form of Gaussian as they have smooth transition property [13]. Fig. 3a and b
shows the fuzzification of inputs using ‘gaus2mf’ [23], which is applicable for
nonsymmetric or skewed type Gaussian function. Fuzzification of output (current)
is similar to the input (time constant) and hence not shown.

(a) Input variable 1

(b) Input variable 2

Fig. 3: Fuzzification
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4.2. Generating Fuzzy IF-THEN Rules from Given Data Pairs

For the temperature 25�T<100, with the increment of 1 and � values 0.1, 0.5 and
1.0, Eq. 23 generates 225 data pairs. By putting the restriction that i<1.0, there are
139 data pairs and hence 139 rules which are very high in number from the
implementation point of view. In order to reduce the data pairs further, the following
strategies are adopted again with the restriction, i<1.0.

Strategy-I:

90 � T < 100 : ��= 0.1; 65 < T < 90 : ��= 0.5; 25 � T � 65 : t =1.0

This means that when the temperature is on the higher side, the power to be
applied for a short time and vice versa. This strategy reduces the number of rules to
75. Further reduction is also possible by selecting the data pairs as shown in the
next strategy. Here the pairs with increments are selected when the temperature is
in the lower range where severe control is not required.

Strategy-II:

25 � T � 65 : Increment of 3°C ; 65 < T � 89 : Increment of 2°C ; 89 � T � 99:
Increment of 1°C

Now the data pairs are reduced to 36, which are shown in Table 2, and hence a
total of 36 rules are being generated. A general fuzzy controller can be constructed
using the procedure mentioned in Section 2 with the help of 49 rules by having
priori knowledge about the heating system of the SMA. The general rule matrix
for this controller is shown in Table 1 earlier, which is based on dividing the inputs
into seven membership functions. But the disadvantage of this control system is
that in certain areas the control is not required.

4.3 Assigning a Degree to each Rule

Considering only the maximum membership value for the given data, the respective
linguistic terms are identified. For example, for T=25�EL, �=1.0�EH,
i=0.86�EH and for the next pair T=30�EL, �=1.0�EH, i=0.83�EH. It is to be
noted that for some data pairs the IF and THEN part are same and for some data
pairs, IF part alone same and sometimes THEN part alone same. Hence this kind of
conflicting rules can be identified and the rules with maximum degree are accepted.
Accordingly the rules are reduced to 9 as shown in the following rule matrix,
Table 3.

74



Table 3
Fuzzy Rule Matrix for Selected data pairs

HI VH EH

EL EH

VL EH VH

LO VH

ME EH VH

HI VH

VH VH

EH HI

Membership functions EL, VL, LO and ME of Input 2 are not involved and
hence can be removed. In order to simplify the design with 9 rules, the range of
both input variables are divided into three Gaussian membership functions as LO
(Low), ME (Medium) and HI (High). The simplified fuzzification for the inputs
and outputs are shown in Fig. 4 and rule matrix in Table 4.

Table 2
Input and Output data pairs in SMA actuation

T � i T � i

25 1.0 0.86 74 0.5 0.72

28 1.0 0.85 76 0.5 0.69

31 1.0 0.83 78 0.5 0.66

34 1.0 0.81 80 0.5 0.63

37 1.0 0.79 82 0.5 0.60

40 1.0 0.77 84 0.5 0.56

43 1.0 0.75 86 0.5 0.53

46 1.0 0.73 88 0.5 0.49

49 1.0 0.71 90 0.5 0.45

52 1.0 0.69 91 0.1 0.95

55 1.0 0.67 92 0.1 0.89

58 1.0 0.65 93 0.1 0.83

61 1.0 0.62 94 0.1 0.77

64 1.0 0.60 95 0.1 0.71

66 0.5 0.82 96 0.1 0.63

68 0.5 0.80 97 0.1 0.55

70 0.5 0.77 98 0.1 0.45

72 0.5 0.75 99 0.1 0.32
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Table 4
Fuzzy Rule Matrix for 9 Rules

LO ME HI

LO HI HI HI

ME ME ME ME

HI LO LO LO

5. RESULTS AND DISCUSSION

Researchers have explored various control schemes like P, PI, PID, PWM, Variable
Structure Control, Sliding Mode Control etc. for the control of SMA actuators. But
the fuzzy control scheme has not been implemented effectively as it contains large
number of parameters that are required to be tuned for obtaining optimal results.
When we tune the fuzzy controller, it changes the shape of the control surface,
which in turn affects the behavior of the closed loop control system. However, in
[19], authors confirmed that the fuzzy controller was effective in controlling the
oscillations of a SMA actuated vibration absorber. The nonlinear relationships
between T2, � and i, before being considered as inputs to the fuzzy controller, are

Fig. 4: Fuzzification of Selected data pairs

(a) Inputs
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shown in Fig. 5. It can be inferred that when the time constant is less than 0.1s, the
power requirements are very high and hence the minimum value of 0.1s is considered
and the maximum value is set at 1.0s with respect to the SMA actuation properties.
The simulation results, Fig. 6 and 7, shows the 3D control surface plotted between
the inputs and output of the fuzzy controller. Fig. 6 has some similarity with the
Fig. 5 as the entire ranges of values are considered with 49 rules for obtaining the
surface. The control surface, Fig. 7, is the result of the tuned fuzzy controller with
9 rules that shows that the unwanted control area has been removed. This is also
similar to the control surface for a PD controller that is a plane in three dimensions.

Fig. 5: The Nonlinear relationship between T
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,  and i
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6. CONCLUSIONS

This paper presented the design of a MISO (Multiple Inputs and Single Output),
Mamdani type fuzzy controller with table-lookup scheme as its training algorithm
for the control of shape memory alloy actuators. Fuzzy controllers are most effective
to map the nonlinearity present in any nonlinear control problems as justified by
the universal approximation theorem. The inputs and output for the controllers are
obtained from the heat transfer model and arranged in a table. The various rules
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formed with the help of the table were studied and only the required rules were
considered after dropping the rules from the unwanted control area. The simulation
results proved that the trained fuzzy controller is most effective, simple to construct
and adaptive to the environmental inputs. The training scheme is capable of reducing
the number of rules from 225 to just 9 and hence 9 data pairs are well enough to

Fig. 6: Control Surface for 49 Rules

Fig. 7: Control Surface for 9 Rules
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represent and map the 225 data pairs. The study is made only for the heating system
but it can also be applied for a cooling system or both. Though the final control
surface is smooth, due to the Gaussian membership functions, further tuning is
required for making the surface similar to the classical PD controller.
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