
ISSN: 2752-3829 Vol. 5 No.1, (June, 2025)

Stochastic Modelling and Computational Sciences

Copyrights @ Roman Science Publications Ins. Stochastic Modelling and Computational Sciences

 1

STUDY OF WORKFLOW ORCHESTRATION ENGINES: OPEN-SOURCE & CLOUD-NATIVE

SOLUTIONS

Nikhil Sagar Miriyala
1
Senior Software Engineer, Oracle America Inc., USA

*Corresponding Author: nmiriya7@gmail.com

ABSTRACT:

Workflow orchestration engines have emerged to become one of the efficient methodologies for automating and

managing complex processes across distributed systems. These tools enable seamless coordination between

microservices, ETL pipelines, business workflows, and cloud-based applications by efficiently handling task

dependencies, failures and retry mechanisms, and scalability concerns. This paper presents an in-depth

exploration of four widely used workflow orchestration engines: Apache Airflow, Netflix Conductor, Temporal,

and AWS Step Functions. We discuss their execution models, core components, key features, scalability, and use

cases. Additionally, a comparative analysis highlights their strengths and limitations, aiding organizations in

selecting the most suitable workflow orchestration framework based on their requirements.

Keywords: Workflow Automation, Orchestration Engines, Netflix Conductor, Temporal, Apache Airflow, AWS

Step Functions

1. INTRODUCTION
With the increasing complexity of modern applications, workflow orchestration has become as an essential

framework to develop and handle automation flows with high reliability and scalability. Organizations use

workflow orchestrators to define, execute, and monitor tasks in a structured and efficient fashion. These tools

abstract the complexities such as state management, error handling, and task dependencies, enabling engineers to

focus on business logic rather than infrastructure concerns.

Workflow orchestration engines are particularly valuable in the following scenarios:

1) Data Pipelines: ETL (Extract, Transform and Load) operations, especially within organizations handling

large volumes of data, require structured workflows to run the pipelines in an efficient manner. In such

scenarios, organizations can utilize orchestration engines that designed to move data seamlessly from

different sources, while undergoing necessary transformations, with high resiliency and availability [1].

These data pipelines are majorly used in sectors such as finance, healthcare, and e-commerce, where critical

decision-making tasks depend on properly organized data and its insights.

2) Microservices Coordination: Most of the modern applications are adopting a microservices architecture,

where independent services work together to deliver a seamless end user experience. While this architecture

minimizes the issues involved with monolithic applications, managing the communication between multiple

applications comes with its own challenges. Orchestration engines can be used in such scenarios, in order to

manage the complex dependencies among these microservices, ensuring effective communication, graceful

failure handling, and efficient scaling techniques [2]. For example, an e-commerce application may depend

on a set of microservices for order processing, payment handling, inventory management, and shipping, with

all of them required to be communicating efficiently at all times.

3) Business Process Automation: Large-Scale Organizations heavily depend on certain predefined business

processes that can be automated with minimal human involvement. Orchestration engines can be utilized in

such scenarios [3], and help with streamlining approval workflows, contract management, financial auditing,

and customer support processes. For example, an insurance firm can utilize an orchestration engine that can

automate the processing of claims raised, by managing document verification, detecting fraud, and

coordinating final approval, ensuring that workflows are conducted systematically and in compliance, with

support for human interruption and approval when needed.

mailto:nmiriya7@gmail.com

ISSN: 2752-3829 Vol. 5 No.1, (June, 2025)

Stochastic Modelling and Computational Sciences

Copyrights @ Roman Science Publications Ins. Stochastic Modelling and Computational Sciences

 2

4) Event-Driven Applications: In a lot of real-time workflows, applications have to respond dynamically to

events triggered by users, sensors, or third-party systems. Orchestration engines can be used within an event-

driven systems [4], by designing workflows that can react to incoming data and trigger corresponding

actions. For example, in IoT applications, an orchestration engine can process sensor data in real-time,

triggering alerts, updating databases, or activating other systems when predefined conditions are met.

5) Cloud-Native Applications: Enterprises leveraging cloud infrastructure can automate the process of

provisioning the resources, and monitor and scale them dynamically as needed. Workflow orchestration

engines can efficiently take care of infrastructure-as-code (IaC) deployments, disaster recovery protocols,

and cost-efficient resource management procedures [5]. For example, in a DevOps environment,

orchestration engines can be used to automate CI/CD pipelines, rolling updates, and auto-scaling processes

across cloud providers such as AWS, Azure, etc.

This paper explores the below four well-known workflow orchestration engines:

1) Apache Airflow: A DAG-based orchestration engine optimized for ETL and batch operations.

2) Netflix Conductor: A state-machine based orchestrator designed for microservices coordination.

3) Temporal: A durable execution system leveraging event sourcing for fault-tolerant workflows.

4) AWS Step Functions: An AWS managed serverless orchestration service built on state machines.

The following sections provide an in-depth review of these workflow engines, where we study their architecture,

key features, use cases, and limitations.

2. CORE COMPONENTS AND HIGH-LEVEL ARCHITECTURE:

2.1 Apache Airflow:

Apache Airflow follows a scheduler-driven execution model where workflows, treated as a DAG (Directed

Acyclic Graph), are parsed, scheduled, and executed based on task dependencies and timing configurations.

Below are the core components of Apache Airflow:

1) DAGs (Directed Acyclic Graphs)

a. A Directed Acyclic Graph (DAG) is a graph-based structure where tasks are executed in such a way that the

flow is always directional, and does not create any cycles, (i.e., no task can be dependent on itself). DAGs

guarantee that workflows move in a topologically sorted sequence, preventing the possibility of infinite loops

and deadlocks.

b. DAGs define the workflow structure, ensuring that tasks execute sequentially or in parallel based on

predefined dependencies. In addition to the dependencies, each task within the workflow can be configured

using multiple options, such as the number of retries, timeout parameters, error scenarios, etc.

c. All the tasks defined in the workflow, are instances or extensions of inbuilt operators (such as

PythonOperator, BashOperator, etc.)

d. Figure 1 shows an example DAG workflow.

Figure 1: Sample DAG Workflow [6]

ISSN: 2752-3829 Vol. 5 No.1, (June, 2025)

Stochastic Modelling and Computational Sciences

Copyrights @ Roman Science Publications Ins. Stochastic Modelling and Computational Sciences

 3

2) Scheduler

a. The scheduler is responsible for invoking the workflows and the corresponding tasks based on defined

schedules and dependencies.

b. It evaluates the DAG on a periodic fashion, and updates the execution state for each task based on its

dependencies. The state of each task can be one among waiting, ready, running, success, failure, shutdown

and up for retry.

3) Executor:

a. The tasks scheduled for execution are invoked using the executor. Airflow supports multiple executor

backends:

 LocalExecutor: Executes tasks on the same machine as the scheduler.

 CeleryExecutor: Distributes tasks to worker nodes using a queue-based system.

 KubernetesExecutor: Runs tasks as Kubernetes pods, improving scalability.

4) Metadata Database:

a. Airflow uses a relational database (e.g., PostgreSQL) to store all the DAG executions, status of the tasks, and

their corresponding logs.

b. The database acts as a single source of truth, tracking DAG execution history and task states. It is used by the

Web Server to provide statistics for monitoring purposes and more importantly, by the scheduler and

executor systems, when tasks are being executed in a distributed fashion.

5) Web Server:

a. The web UI provides real-time observability features, enabling users to visualize workflows, monitor

execution states, and view logs.

6) Task Queue (Only for Celery Executor):

a. When using a CeleryExecutor, all the tasks are placed into a queue, which enables distributed execution

using multiple worker nodes.

Figure 2: Apache Airflow High Level Architecture [7]

ISSN: 2752-3829 Vol. 5 No.1, (June, 2025)

Stochastic Modelling and Computational Sciences

Copyrights @ Roman Science Publications Ins. Stochastic Modelling and Computational Sciences

 4

Figure 2 shows the high-level architecture of Apache Airflow. The metadata database acts as the central point for

communication across all the components. The Scheduler reads DAG definitions from the DAG Directory and

schedules tasks based on dependencies. Tasks are executed using an Executor, which distributes them to Worker

nodes for processing. The database stores execution states, task logs, and scheduling information, ensuring

persistence and recovery. Users interact with Airflow via a Webserver and UI, which provides monitoring,

debugging, and workflow management capabilities. This architecture enables flexible, scalable, and highly

customizable batch processing workflows.

3.2 Netflix Conductor
Netflix Conductor follows a state transition model that provides dynamic execution of workflows, including a

wide variety of observability features, enabling efficient monitoring and debugging. The primary components of

Netflix Conductor include:

1) Workflow Definitions (JSON DSL):

a. Workflows are defined using a JSON-based DSL, that describes the order of execution among the tasks,

along with their conditions, and dependencies.

b. This blueprint-based approach decouples business logic from execution logic, allowing changes to

workflows without modifying microservices.

c. Figure 3 shows an example Workflow Definition JSON file.

Figure 3: Example Workflow in Netflix Conductor (JSON) [8]

2) API Layer:

a. Conductor provides a set of APIs that facilitate communication between the orchestration engine and task

workers. These APIs allow workers to poll for tasks, update task statuses, and retrieve workflow definitions,

enabling seamless integration and coordination.

ISSN: 2752-3829 Vol. 5 No.1, (June, 2025)

Stochastic Modelling and Computational Sciences

Copyrights @ Roman Science Publications Ins. Stochastic Modelling and Computational Sciences

 5

3) Service Layer:

a. The service layer consists of all the core components described below, which are combinedly used for

processing workflows and tasks:

o Workflow Service: Manages workflow lifecycle, tracking execution progress and state transitions.

o Task Service: Handles individual task execution, tracking statuses, retries, and failure handling.

o Decider Service: Evaluates workflow states and determines which tasks to execute next. It is responsible for

scheduling, dependencies, and conditional execution logic.

o Queue Service – Manages distributed task queues, ensuring efficient polling and worker assignments.

4) Task Queues & Workers:

a. Conductor utilizes a distributed queue to manage and schedule tasks. This system ensures tasks are assigned

to workers efficiently and can handle delays or retries as necessary. At Netflix, this is implemented using

dyno-queues on top of Dynomite, facilitating distributed delayed queues.

b. Tasks within workflows are executed by worker applications. These workers can either expose REST

endpoints for the orchestration engine to invoke or implement a polling mechanism to fetch and execute

pending tasks. Workers are designed to be idempotent and stateless, allowing for scalability and resilience.

The polling model helps manage backpressure and supports auto-scaling based on queue depth.

5) Metadata and Persistence Layer:

a. Workflow definitions, task metadata, and execution logs are stored in a persistence layer. Conductor supports

various storage backends, including Cassandra and Dynomite, to maintain the state and history of workflows.

6) Monitoring & Observability

a. A real-time monitoring system can be setup for each workflow, with support for integration using

Prometheus, Datadog, and ELK Stack.

b. A Web UI is available for use as well, which provides an intuitive dashboard for debugging and tracking

workflow execution.

Figure 4 shows a high-level architecture of Netflix Conductor. As mentioned, the system follows a poll-based task

execution model where workers communicate asynchronously with the orchestration engine. The Orchestrator

schedules tasks and persists workflow execution details in a Database and Index. Tasks are pushed into Task

Queues, where worker nodes continuously poll for available tasks (blue lines in the diagram). Once a worker

picks up a task, it executes the logic and updates the task status via the Management/Execution Service (red lines

in the diagram). This architecture enables fault-tolerant, scalable, and distributed workflow execution, making

Conductor suitable for microservices orchestration and business process automation.

ISSN: 2752-3829 Vol. 5 No.1, (June, 2025)

Stochastic Modelling and Computational Sciences

Copyrights @ Roman Science Publications Ins. Stochastic Modelling and Computational Sciences

 6

Figure 4: Netflix Conductor – High Level Architecture [8]

2.3 Temporal:

Temporal works based on event sourcing model, which is designed to manage robust executions, meaning the

workflows will keep running even after the occurrence of a failure. The core components of Temporal are as

follows:

1) Temporal Server

a. Temporal Server acts as the brain behind all the operations. It takes care of scheduling workflows, making

sure they are persistence, executing them and maintain the state of the tasks.

b. This component provides multiple services. The Frontend Service offers a gRPC-based API for interaction

while the History Service keeps track of the workflow event history.

2) Workflows

a. In Temporal, workflows are authored as executable code directly, unlike other orchestrators, which use

configurable files using DSL or YAML. This provides the workflows to be fully programmable and flexible

in nature.

b. The workflow in Temporal runs deterministically, so that they follow the same execution path for the same

inputs. Because of this consistency it allows them to be replayed from the history logs if necessary.

3) Activities & Activity Workers

ISSN: 2752-3829 Vol. 5 No.1, (June, 2025)

Stochastic Modelling and Computational Sciences

Copyrights @ Roman Science Publications Ins. Stochastic Modelling and Computational Sciences

 7

a. Activities are external operations that are executed within the workflows like database queries, API calls or

computational tasks.

b. Activity workers perform the activities asynchronously and handles other features like failures, retries and

state persistence on their own.

4) Task Queues & Matching Service

a. The tasks that are to be performed are placed in the queue, managed by the worker processes, that

communicate with the Matching Service to fetch and execute the workflow steps.

b. Task queues separate the workflow logic from execution which enables horizontal scaling of the worker

nodes.

5) History Service & Event Logs

a. The History Service is used to records the logs of all the events during a workflow’s execution. This captures

every state transition that occurs like the start of workflow, scheduling of task, completion of task and also

termination of the workflow.

b. This is a crucial component as it allows the workflows to resume their execution from the last-known stable

state in case of failures.

c. The event logs function as an audit trail, which helps developers to debug the workflow issues & failures,

and analyze execution patterns.

d. Temporal provides multiple views of workflow history:

o Timeline View: Shows execution primitives and their duration, making it easier to analyze workflow

execution times.

o Compact View: It provides the expandable sections of the groups related workflow events, like scheduled,

started & completed events for an activity, for easier navigation.

o Full History View: Displays the complete event history of a workflow, which can be sorted by either

ascending or descending order. It captures all workflow tasks, activities, and state changes.

Figure 5 shows the high-level architecture of a Temporal Cluster. Once the workflow execution starts, all the

execution metadata is persisted using the Temporal History Service, ensuring that execution can be replayed if

needed. Workers poll Temporal’s Task Queues to fetch tasks and execute them, while the Temporal Frontend

Service handles API requests and workflow coordination. The Matching Service routes tasks to appropriate

workers, and the History Service maintains execution logs, allowing workflows to resume even after failures. This

model enables deterministic execution, long-running workflows, and high scalability across distributed

environments.

ISSN: 2752-3829 Vol. 5 No.1, (June, 2025)

Stochastic Modelling and Computational Sciences

Copyrights @ Roman Science Publications Ins. Stochastic Modelling and Computational Sciences

 8

Figure 5: Temporal – High Level Architecture [9]

2.4 AWS Step Functions
AWS Step Functions provides a serverless orchestration service by following a state machine model which

seamlessly integrates with AWS services. The core components of AWS Step Functions include:

1) State Machine Execution:

a. In the AWS Step Functions, the state machines are called as workflows. Each step in the workflow

represented as a state.

b. Each state transition occurs based on the predefined set of conditions which enables different type of work

like sequential, parallel& execution flows.

c. Using the Amazon States Language (ASL), which is JSON based used to define the state of the machine i.e.

execution logic & transitions.

d. Figure 6 shows the sample workflow.

ISSN: 2752-3829 Vol. 5 No.1, (June, 2025)

Stochastic Modelling and Computational Sciences

Copyrights @ Roman Science Publications Ins. Stochastic Modelling and Computational Sciences

 9

Figure 6: AWS Step Functions Sample Workflow

2) Task States & AWS Integrations:

a. Task States enables serverless and container-based execution which invoke the various AWS services like

AWS Lambda, Elastic Cloud Compute (ECS), Batch, DynamoDB and SageMaker.

b. Supports the external service invocation using API Gateway which can directly integrate with over 200 AWS

Services.

c. It integrates the services and simplify the automation thus reducing the need for standard custom code in

AWS environments.

3) Choice & Parallel States:

a. Choice States allow conditional branching, allowing for decision-making within workflows.

b. Parallel States enable concurrent execution of multiple workflows, enhancing efficiency for large-scale batch

operations.

c. Wait States introduce delays for scheduled execution or external event handling.

4) Execution Logging & Monitoring:

a. AWS Step Functions capture every step, state transitions and failure points by maintaining an execution log.

b. Real-time monitoring and alerting can be performed for workflows based on its performance and failures by

integrating with the AWS CloudWatch service.

c. The AWS Management console supports step-by-step debugging, providing details on inputs, outputs, and

execution timelines.

5) Workflow History & Event Logs:

a. AWS Step Functions log workflow history, detailing all the aspects of the execution, from inputs and outputs

to any error state encountered along the flow.

b. Execution History acts as an audit trail, monitoring workflow progress, failures & retries.

c. Event logs allow for the workflows to be retired from the last known state without having to restart the entire

workflow.

ISSN: 2752-3829 Vol. 5 No.1, (June, 2025)

Stochastic Modelling and Computational Sciences

Copyrights @ Roman Science Publications Ins. Stochastic Modelling and Computational Sciences

 10

Figure 7: An example of AWS Step Function workflow

Figure 7 shows a sample high level flow diagram for AWS Step functions. In this case, the workflows begin with

a choice state, directing execution based on conditions. Tasks are executed using integrations with AWS services

such as Lambda (compute logic), Glue (data processing), Textract (document analysis), and API Gateway

(external API calls). In addition, Step Functions can handle parallelism, retries, and error handling automatically.

Further, the execution history is persisted and maintained, ensuring reliable and scalable workflow management.

This architecture allows for event-driven automation, complex business logic execution, and seamless AWS-

native service coordination.

3. Use Cases

Each of these orchestration engines can serve distinct use cases, thus catering to various operational needs. Below

are the specific use cases best suited for each of the workflow orchestration engine.

3.1 Apache Airflow
[10]

1) ETL & Analytics

 Apache Airflow is widely used to orchestrate ETL (Extract, Transform, Load) workflows, ensuring reliable

data ingestion, transformation, and storage in data warehouses.

 It enables data pipeline automation, handling dependencies, scheduling jobs, and monitoring task execution

across different data sources and analytical platforms.

2) Business Operations Automation

 Airflow helps automate business processes such as report generation, financial transactions, customer

onboarding, and supply chain management.

 It streamlines operational workflows by enabling event-driven task execution, reducing manual effort, and

ensuring process efficiency.

3) Infrastructure Management & DevOps

ISSN: 2752-3829 Vol. 5 No.1, (June, 2025)

Stochastic Modelling and Computational Sciences

Copyrights @ Roman Science Publications Ins. Stochastic Modelling and Computational Sciences

 11

 Airflow is used for cloud infrastructure provisioning, continuous deployment, and resource scaling,

integrating with tools like Terraform and Kubernetes.

 It allows organizations to automate CI/CD workflows, infrastructure updates, and system monitoring,

ensuring operational stability and efficiency.

4) MLOps & Machine Learning Pipelines

 Airflow is a key component in MLOps workflows, orchestrating data preprocessing, model training,

validation, and deployment.

 It supports automated model retraining, hyperparameter tuning, and version tracking, ensuring ML models

are continuously updated with fresh data for improved performance.

3.2 Netflix Conductor
[11]

1) Microservices Workflow Orchestration

 Netflix Conductor is designed to orchestrate microservices in distributed environments, ensuring that

dependent services communicate efficiently.

 It enables asynchronous execution, fault tolerance, and retry mechanisms, helping teams coordinate multi-

step workflows across independently deployed services.

2) Realtime API Orchestration

 Conductor allows dynamic API workflows where multiple APIs are invoked in sequence or parallel to

perform complex business operations.

 It supports conditional branching, error handling, and rate-limiting to ensure seamless real-time API

processing while reducing latencies.

3) Event-Driven Architecture

 Conductor integrates well with event-driven architectures, allowing workflows to be triggered by external

events such as Kafka messages, database changes, or webhook calls.

 It supports asynchronous task execution, making it ideal for reactive workflows where components

communicate through events rather than synchronous calls.

4) Agentic Workflows

 Conductor enables agentic workflows where AI-driven decision-making can be integrated into automated

processes.

 It facilitates adaptive and intelligent orchestration by incorporating AI/ML models, feedback loops, and

autonomous decision-making workflows.

3.3 Temporal
[12]

1) Long-Running & Fault-Tolerant Workflows:

 Manages long-running tasks without separate state management, ensuring high reliability for workflows that

need to persist state over time.

 It allows workflows to continue seamlessly when failures occur. By persisting state over time, it allows

workflows to resume from the last known stable state.

2) Distributed Transactions & Human-in-the-Loop Processes:

ISSN: 2752-3829 Vol. 5 No.1, (June, 2025)

Stochastic Modelling and Computational Sciences

Copyrights @ Roman Science Publications Ins. Stochastic Modelling and Computational Sciences

 12

 Temporal enables consistency across multiple services, ensuring reliable and accurate transactions.

 Temporal enables human approval, making the process more flexible and adaptable. It adds an extra layer of

reliability since critical decisions can be made with human insights.

3) Reliable Event-Driven Microservices Execution:

 Temporal provides a central place to manage all the tasks, which helps in managing complex workflows

more efficiently.

 Temporal maintains the state of the workflows, providing high resilience and automatic retries in case of

failures for cloud-based event-driven workflows.

3.4 AWS Step Functions
[13]

1) Serverless Application Orchestration:

 Coordinates the AWS services like AWS Lambda, DynamoDB queries & API Gateways, in the workflow. It

can execute the tasks in parallel and handle errors using retry and catch clauses.

 AWS Event Bridge service can be used to trigger Step Function workflow process for specific events.

 Express workflows can be used to manage large volumes of events and workflow executions, offering

scalability and high throughput.

2) Cloud-Native Infrastructure Automation:

 Step Functions can be utilized for synchronization by running parallel independent workflows, maintaining

consistency, and optimizing the performance.

 Step Functions can be used to configure and manage the cloud provisioning for a smoother, more reliable

setup.

3) CI/CD Pipelines & Secure AWS Resource Management:

 Step Functions can be used to automate CI/CD workflows thus creating a fully managed continuous delivery

of system that can build, test & deploy applications in a dependable & repeatable manner.

 Step Functions are utilized to automatically create security incident responses with the capability to trigger

manual approval steps when needed, providing an additional layer of security.

4) ETL & Data Processing:

 Step Functions enable the automation of the ETL pipeline procedure which includes data extraction,

transformation, and loading. The jobs can run in parallel which improves the performance, reduce processing

time and ensure fault-tolerant data pipelines.

 Step Functions enables scalable, fault-tolerant large scall data processing via parallel workflows and

integrating with other AWS Service.

4. Key Features and Limitations

4.1 Key Features

1) Apache Airflow:

a. DAG-based workflow orchestration with support for sequential, parallel, and conditional task execution.

b. Flexible scheduling options through time-based and event-driven triggers.

c. Supports various execution backends (CeleryExecutor, KubernetesExecutor, LocalExecutor) allowing

efficient scalability of the system.

d. Provides extensive integrations with databases, APIs, cloud services (AWS, GCP, Azure), and other external

platforms.

ISSN: 2752-3829 Vol. 5 No.1, (June, 2025)

Stochastic Modelling and Computational Sciences

Copyrights @ Roman Science Publications Ins. Stochastic Modelling and Computational Sciences

 13

e. Includes observability features bundled and made available through an interactive web interface that tracks

tasks in real-time.

f. Built-in support for error management & retry mechanisms which increases the resiliency of the system.

2) Netflix Conductor:

a. Designed with a microservices-first approach, it supports asynchronous execution and workflow

management through APIs.

b. Allows for dynamic execution paths in workflows, enabling real-time adjustments based on external factors.

c. Is highly distributed and scalable, capable of handling high-throughput and concurrent executions.

d. Incorporates fault tolerance with automatic retries, compensation strategies, and prioritization of tasks.

e. Supports human-in-the-loop workflows, facilitating manual approvals and human decision-making points.

3) Temporal:

a. Temporal uses event sourcing techniques to ensure durable workflow execution, which helps in maintaining

the integrity of the workflow even in the case of intermediate failures.

b. It supports deterministic replay and automatic state preservation, increasing the resiliency of long-running

workflows.

c. Temporal framework can scalable easily, so that the cluster can simultaneously handle thousands of

workflows using efficient task queues and concurrent workers.

d. Temporal SDKs are available in a variety of programming languages (Java, Go, Python, TypeScript, .NET),

which improves the flexibility in terms of implementing a workflow.

4) AWS Step Functions:

a. AWS Step functions are serverless, with infrastructure fully managed by AWS. It comes with in-built deep

integration with multiple AWS services, such as Lambda, DynamoDB, ECS, API Gateway, SageMaker, S3,

etc.

b. All the AWS security and compliance features such as IAM permissions, audit logging, and encryption are

available for AWS Step functions, similar to other services that AWS provides.

c. Step functions are built on top of state machine-based execution principles, which means, they support

parallel runs, choice states, and wait states for complex workflows.

d. Provides high resiliency using integrated error management, retries, and automatic recovery techniques, thus

reducing the operational burden.

e. Step functions can scale easily to support millions of workflow executions, making it an ideal fit for cloud-

native applications.

4.2 Limitations

1) Apache Airflow:

a. Complex Configuration and Maintenance: Unlike fully managed solutions like AWS Step Functions, the

operational complexity of deploying Airflow based workflows to production like environments can be

comparatively high, since it includes managing several components, such as the scheduler, executors, and the

metadata database. [14]

ISSN: 2752-3829 Vol. 5 No.1, (June, 2025)

Stochastic Modelling and Computational Sciences

Copyrights @ Roman Science Publications Ins. Stochastic Modelling and Computational Sciences

 14

b. No Native Support for Pipeline Versioning: Airflow does not support versioning of workflows, which can

make rollbacks difficult when needed. [15] [16]

c. Limited Data Quality Monitoring: Airflow lacks built-in capabilities for monitoring data quality, thus

requiring engineers to utilize external tools in order to validate data accuracy and consistency. [16]

d. Scaling Limitations: Although the workers can scale horizontally, Airflow workflows can potentially

experience performance challenges under heavy workloads, requiring careful resource management.

2) Netflix Conductor:

a. Complex Deployment and Management: Unlike fully managed solutions like AWS Step Functions,

implementing Conductor based workflows requires managing several components, such as Elasticsearch,

Redis, and a relational database, which increases the operational complexity of the system.

b. Possible Database Limitations: When dealing with workflows that can be resource heavy, components like

the relational database or Elasticsearch can introduce some bottlenecks, effecting the overall performance of

the system. [17]

c. Performance Issues in Highly Nested Workflows: Since Conductor uses a polling-based task execution

model, the performance of the system could be degraded, when dealing with workflows that have significant

nesting or excessive branching. [18]

3) Temporal

a. Complex Deployment and Maintenance: Similar to Airflow and Conductor, Temporal also requires handling

multiple services, which can make self-hosted deployments difficult.

b. Strict Deterministic Execution Model: Given that the execution model of temporal is strictly deterministic,

developers must make sure that the workflows are authored accordingly, which requires certain code

changes, especially when transitioning from non-deterministic orchestrators.

c. High Storage Demands for maintaining Execution History: Since Temporal retains complete execution

history of workflows, the cluster requires an efficient large storage system for workloads with significant

throughput, which can add up to the overall cost. [18]

d. Limited built-in UI and monitoring tools: While Temporal comes with a user interface for visualizing

workflows, detailed tracing and debugging requires the use of external tools.

4) AWS Step Functions:

a. Payload Size Restrictions: The request payloads sent to Step Functions cannot exceed a maximum size of

256KB, thus requiring developers to carefully construct the workflow. [19]

b. Execution Duration and Event Limitations: Step Functions based workflows can only last up to one year and

support a maximum of 25,000 events per workflow. Workflows that exceed these thresholds will require

segmentation in order to prevent hitting hard limits configured by AWS.

c. Execution history limitations: The execution history is captured and stored for a maximum of 90 days, which

can go against applications needing longer audit trails or historical evaluations. [19]

d. Vendor Lock-In & Cost Considerations: Since Step Functions are proprietary to AWS, it could be difficult to

transition to other cloud providers without extensive re-engineering. Moreover, costs can increase

significantly at scale, as there are charges for each state transition, leading to high expenses for workflows

with large number of events.

5. CONCLUSION

Workflow orchestration engines are essential for managing complex, distributed workflows in data engineering,

microservices architecture, machine learning, and cloud automation. The four orchestration tools examined—

ISSN: 2752-3829 Vol. 5 No.1, (June, 2025)

Stochastic Modelling and Computational Sciences

Copyrights @ Roman Science Publications Ins. Stochastic Modelling and Computational Sciences

 15

Apache Airflow, Netflix Conductor, Temporal, and AWS Step Functions—each have unique strengths and

weaknesses, making them more suitable for specific scenarios.

Apache Airflow is known for its DAG-centric approach to workflow orchestration, efficient scheduling features,

and extensive integrations with databases, public cloud providers, and monitoring tools. Nonetheless, it is not

well-suited for real-time event-driven workflows, has limited fault tolerance outside of task retries, and can

experience scalability issues when faced with high loads.

Netflix Conductor, originally created for orchestrating microservices, works well within asynchronous processing

flows, supporting high concurrency, and allowing real-time modifications of workflows. Its adaptability makes it

an excellent choice for API-driven workflows and event-driven setups, but it demands more effort to configure

and manage, and has a higher learning curve compared to declarative orchestrators.

Temporal offers stateful, fault-tolerant execution of workflows by utilizing event sourcing and deterministic

execution to guarantee that workflows can resume without issues even after failures. It is highly scalable, making

it perfect for long-running workflows, managing distributed transactions, and coordinating microservices.

However, its intricate architecture, the code changes required for supporting deterministic execution, and the

operational burden, add up to the overall complexity of the system.

AWS Step Functions serves as a fully managed, serverless orchestration solution that streamlines workflow

execution by tightly integrating with AWS services while providing built-in security, error management, and

scalability. While it is a great option for AWS-native applications, it can incur high expenses for large-scale

workflows, offers limited flexibility due to the constraints of Amazon States Language (ASL), and can lead to

vendor lock-in.

Selecting the most appropriate workflow orchestration tool depends on certain business requirements,

architectural considerations, and operational limitations. Airflow is a reliable option for ETL and batch

processing, Conductor excels in microservices orchestration, Temporal is best suited for stateful long-running

workflows, and AWS Step Functions is a great fit for serverless cloud automation. While each of these

frameworks has its own limitations, they improve the overall reliability, scalability, and automation of workflows

within modern distributed systems.

ACKNOWLEDGEMENT

The authors would like to thank open-source and cloud community for developing and contributing to the

Workflow Orchestration Frameworks used by the industry.

6. REFERENCES

[1] Anas Nadeem and Muhammad Zubair Malik. 2022. A case for microservices orchestration using workflow

engines. In Proceedings of the ACM/IEEE 44th International Conference on Software Engineering: New

Ideas and Emerging Results (ICSE-NIER '22). Association for Computing Machinery, New York, NY,

USA, 6–10. https://doi.org/10.1145/3510455.3512777

[2] A. Barker, J. B. Weissman and J. van Hemert, "Orchestrating Data-Centric Workflows," 2008 Eighth IEEE

International Symposium on Cluster Computing and the Grid (CCGRID), Lyon, France, 2008, pp. 210-217,

doi: 10.1109/CCGRID.2008.50

[3] Stoilov, Todor, and Krasimira Stoilova. "Automation in business processes." Proceedings of the 20th

International Conference SAER-2006. 2006

[4] Chen, Wei, et al. "Developing a concurrent service orchestration engine based on event-driven

architecture." OTM Confederated International Conferences" On the Move to Meaningful Internet

Systems". Berlin, Heidelberg: Springer Berlin Heidelberg, 2008

https://doi.org/10.1145/3510455.3512777

ISSN: 2752-3829 Vol. 5 No.1, (June, 2025)

Stochastic Modelling and Computational Sciences

Copyrights @ Roman Science Publications Ins. Stochastic Modelling and Computational Sciences

 16

[5] Pandey, Suraj, Dileban Karunamoorthy, and Rajkumar Buyya. "Workflow engine for clouds." Cloud

computing: principles and paradigms (2011): 321-344

[6] Apache Software Foundation, ―Apache Airflow Overview,‖ Accessed: Feb 2025. [Online]. Available:

https://airflow.apache.org/docs/apache-airflow/stable/core-concepts/overview.html

[7] Run.ai, ―Apache Airflow: Use Cases,‖ Accessed: Feb 2025. [Online]. Available:

https://www.run.ai/guides/machine-learning-operations/apache-airflow#Airflow-Use-Cases

[8] Netflix, ―Netflix Conductor: A Microservices Orchestrator,‖ 2016. Accessed: Feb 2025. [Online].

Available: https://netflixtechblog.com/netflix-conductor-a-microservices-orchestrator-2e8d4771bf40

[9] Temporal Technologies, ―Clusters Overview,‖ Accessed: Feb 2025. [Online]. Available:

https://docs.temporal.io/clusters

[10] Apache Software Foundation, ―Apache Airflow Use Cases,‖ Accessed: Feb 2025. [Online]. Available:

https://airflow.apache.org/use-cases/

[11] Orkes, ―Microservices Orchestration Use Cases,‖ Accessed: Feb 2025. [Online]. Available:

https://www.orkes.io/use-cases/microservices-orchestration

[12] Temporal Technologies, ―Use Cases and Design Patterns,‖ Accessed: Feb 2025. [Online]. Available:

https://docs.temporal.io/evaluate/use-cases-design-patterns

[13] Amazon Web Services, ―AWS Step Functions Use Cases,‖ Accessed: Feb 2025. [Online]. Available:

https://aws.amazon.com/step-functions/use-cases/

[14] Datamation, ―Apache Airflow Review,‖ 2024. Accessed: Feb 2025. [Online]. Available:

https://www.datamation.com/applications/apache-airflow-review/

[15] Restack, ―Apache Airflow: A Knowledge of Apache Airflow and Its Use Cases,‖ 2024. Accessed: Feb

2025. [Online]. Available: https://www.restack.io/docs/airflow-knowledge-apache-airflow-cons

[16] Decube, ―Why Apache Airflow Is Not the Best Tool for Data Quality Checks,‖ 2024. Accessed: Feb 2025.

[Online]. Available: https://www.decube.io/post/why-apache-airflow-is-not-the-best-tool-for-data-quality-

checks

[17] N. Kumar, ―Decoding Challenges with Netflix Conductor,‖ 2024. Accessed: Feb 2025. [Online]. Available:

https://nitish1503.medium.com/decoding-challenges-with-netflix-conductor-6a623b47291f

[18] N. Somanna, ―Comparing Orchestration Frameworks: Uber's Cadence, Netflix Conductor, and Temporal,‖

2024. Accessed: Feb 2025. [Online]. Available: https://medium.com/%40natesh.somanna/comparing-

orchestration-frameworks-ubers-cadence-netflix-conductor-and-temporal-3778cff24574

[19] A. Helton, ―When Not to Use Step Functions,‖ 2022. Accessed: Feb 2025. [Online]. Available:

https://www.readysetcloud.io/blog/allen.helton/when-not-to-use-step-functions/

https://airflow.apache.org/docs/apache-airflow/stable/core-concepts/overview.html
https://www.run.ai/guides/machine-learning-operations/apache-airflow#Airflow-Use-Cases
https://netflixtechblog.com/netflix-conductor-a-microservices-orchestrator-2e8d4771bf40
https://docs.temporal.io/clusters
https://airflow.apache.org/use-cases/
https://www.orkes.io/use-cases/microservices-orchestration
https://docs.temporal.io/evaluate/use-cases-design-patterns
https://aws.amazon.com/step-functions/use-cases/
https://www.datamation.com/applications/apache-airflow-review/
https://www.restack.io/docs/airflow-knowledge-apache-airflow-cons
https://www.decube.io/post/why-apache-airflow-is-not-the-best-tool-for-data-quality-checks
https://www.decube.io/post/why-apache-airflow-is-not-the-best-tool-for-data-quality-checks
https://nitish1503.medium.com/decoding-challenges-with-netflix-conductor-6a623b47291f
https://medium.com/%40natesh.somanna/comparing-orchestration-frameworks-ubers-cadence-netflix-conductor-and-temporal-3778cff24574
https://medium.com/%40natesh.somanna/comparing-orchestration-frameworks-ubers-cadence-netflix-conductor-and-temporal-3778cff24574
https://www.readysetcloud.io/blog/allen.helton/when-not-to-use-step-functions/

