Stochastic Modelling and Computational Sciences

AN ASSOCIATION ANALYSIS OF SHOPPING ITEMS IN MACHINE LEARNING

Namkil Kang
Professor, College of Liberal Arts, Far East University, 76-32 Daehak-gil, Gamgok-myeon, Eumseong-gun, Chungbuk, South Korea

Abstract

The ultimate goal of this paper is to provide an in-depth association analysis of my students' transactions in machine learning. As a research tool, we used python and the algorithm apriori. A point to note is that the items bread and coffee have the highest support in all transactions. To go into detail, the two items have the support of 5%. A further point to note is that the probability for the students to buy the item bread after buying the item juice is 10%. It ranks first in all transactions. Exactly the same can be said of the items pudding and bread. Quite interestingly, the probability for my students to buy the item bread after buying the item pudding is 10%. It is worthwhile pointing out that the items cabbage and dressing have the highest probability in their lift. It should be pointed out that the item bread is a core item. What this suggests is that those who bought the item bread bought the items cheese, ramen, snack, tomato, juice, tuna, tissue, pudding, gum, coffee, and snack (11 items). A major point of this paper is that the items essay books and novels have the highest support in all transactions. More specifically, the probability for my students to buy two books is 25%. Additionally, it is worthwhile noting that autobiography-related books and IT-related books, IT-related books and novels, coffee-related books and TOEIC books, coffee-related books and society-related books, etc. have the highest confidence in all transactions. It must be noted that coffee-related books, society-related books, and TOEIC books have the highest lift in all transactions. Finally, it is worth pointing out that the item novel is a core one. What this suggests is that those who bought novels bought essays, humanity-related books, poetry, airplane-related books, IT-related books, and autobiography-related books.

Keywords: support, confidence, lift, association analysis, apriori,

1. INTRODUCTION

The main purpose of this paper is to provide an in-depth association analysis of shopping items. We conducted two surveyes about students' recent shopping. We asked 60 students and 32 students about their recent shopping. More specifically, we asked the following questions: What did you buy at supermarket recently? What books did you buy recently? This research was carried out by python. First, we aim to analyze the support of shopping items in suyvey 1 and survey 2 . The so-called support refers to the probability of buying item A and item B together. Put differently, it refers to the probability of the transactions of two items. Second, we aim at going over the confidence and lift of shopping items in survey 1 and survey 2 . The term confidence refers to the proportion for a person to buy item B after buying item A. On the other hand, the term lift indicates the index about the probability of buying item B after buying item A . If the value of lift is bigger than 1, then there is a high probability to buy item B after buying item A. Finally, we provide the visualization of my students' transactions in which the relevant items are captured by links. The relevant items in turn indicate that my students bought items together.

2. METHODS

The goal of this paper is to provide an association analysis of my students' transactions in their recent shopping. We conducted two surveys about our students' recent shopping. We asked the following main questions: What did you buy at supermarket recently? What books did you buy recently? We analyzed their transactions in terms of the terms support, confidence, and lift. As a research tool, we used python. More specifically, we used the algorithm apriori in this paper. We asked 60 students about their recent shopping in survey 1 . We asked 32 students about their recent shopping in survey 2 . Finally, we provided the visualization of their transactions in survey 1 and survey 2.

Stochastic Modelling and Computational Sciences

3. RESULTS

3.1. Data and Support

This secion is devoted to providing the data and the support of my students' transactions. Table 1 shows my students' transactions. My sudents are attending my classes (Business English and Practical English Conversation: 3 credits each). I asked them about their recent shopping: What did you buy at supermarket recently? 60 students provided thier transactions as follows:

Table 1: Transactions

ID	
$\mathbf{1}$	pork, chicken, onion, egg, lettuce
$\mathbf{2}$	drink, cigarette, ramen
$\mathbf{3}$	onion, mushroom
$\mathbf{4}$	ramen, coke, rice, snack, tissue
$\mathbf{5}$	egg, milk, bread, tuna, tissue
$\mathbf{6}$	water, rice, tuna, ham
$\mathbf{7}$	chocolate, water, drink
$\mathbf{8}$	milk, ice cream, snack, rice
$\mathbf{9}$	coke, strawberry, garlic, beer
$\mathbf{1 0}$	milk, ramen
$\mathbf{1 1}$	whisky, ice, lemon, tonic water
$\mathbf{1 2}$	hamburger, coffee, chicken, tea
$\mathbf{1 3}$	water, lettuce, grape
$\mathbf{1 4}$	water, drink, ramen, gimbap, sausage
$\mathbf{1 5}$	coffee, gimbap, snack, toothbrush, toothpaste
$\mathbf{1 6}$	sweet, chocolate, snack, drink
$\mathbf{1 7}$	pork, lettuce, vegetable, rice
$\mathbf{1 8}$	coffee, tomato, cabbage, dressing
$\mathbf{1 9}$	snack, drink,
$\mathbf{2 0}$	coffee, snack, sweet
$\mathbf{2 1}$	beer, snack, coffee
$\mathbf{2 2}$	drink, snack, ramen
$\mathbf{2 3}$	coffee, snack
$\mathbf{2 4}$	shampoo, drink
$\mathbf{2 5}$	coffee, milk, sweet
$\mathbf{2 6}$	bread, snack, coffee, ramen, sweet
$\mathbf{2 7}$	tea, coke
$\mathbf{2 8}$	coke, snack, tissue,
$\mathbf{2 9}$	ramen, gimbap, drink, snack
$\mathbf{3 0}$	strawberry, chocolate
$\mathbf{3 1}$	milk, salmon
$\mathbf{3 2}$	pork, lettuce,
$\mathbf{3 4}$	cosmetics, coffee
$\mathbf{3 5}$	vitamin, drink, medicine
$\mathbf{3 8}$	shoes, soap, cosmetics
	coffee, beer, pork
	snack, coke, beef, ramen
	shampoo, tomato, cheese, bread, juice

Stochastic Modelling and Computational Sciences

39	onion, milk, strawberry
$\mathbf{4 0}$	ramen, drink, sweet, chocolate,
$\mathbf{4 1}$	rice, ,read, gum, pudding
$\mathbf{4 2}$	milk, cheese, sweet
$\mathbf{4 3}$	snack, chocolate, juice, coffee, bread
$\mathbf{4 4}$	ramen, drink
$\mathbf{4 5}$	coffee, bread, ramen, drink, water
$\mathbf{4 6}$	ramen, chicken, salad, coke, water, rice
$\mathbf{4 7}$	coffee, cigarette, egg, milk, beer
$\mathbf{4 8}$	rice, noodle, garlic, coke
$\mathbf{4 9}$	poke, rice, garlic, onion, coke
$\mathbf{5 0}$	ramen, cheese, coke, butter
$\mathbf{5 1}$	onion, egg,
$\mathbf{5 2}$	rice, , amen
$\mathbf{5 3}$	onion, milk, coke
$\mathbf{5 4}$	tuna, snack, ice cream
$\mathbf{5 5}$	snack, drink, coffee
$\mathbf{5 7}$	bacon, egg, noodle, drink, ice cream
$\mathbf{5 8}$	drink, snack
$\mathbf{5 9}$	chicken, blueberry, beef, lettuce
$\mathbf{6 0}$	chicken, tomato, banana, water

Table 2 shows the support of my students' transactions in their recent shopping. The term support refers to the probability of buying item A and item B together:

Table 2: Support of Transactions

Number	Items	Support
$\mathbf{1}$	drink, bacon	0.016667
$\mathbf{2}$	egg, bacon	0.016667
$\mathbf{3}$	bacon, ice cream	0.016667
$\mathbf{4}$	bacon, noodle	0.016667
$\mathbf{5}$	banana, chicken	0.016667
$\mathbf{6}$	banana, tomato	0.016667
$\mathbf{7}$	banana, water	0.016667
$\mathbf{8}$	blueberry, beef	0.016667
$\mathbf{9}$	chicken, beef	0.016667
$\mathbf{1 0}$	beef, coke	0.016667
$\mathbf{1 1}$	lettuce, beef	0.016667
$\mathbf{1 2}$	ramen, beef	0.016667
$\mathbf{1 3}$	snack, beef	0.016667
$\mathbf{1 4}$	cigarette, beer	0.016667
$\mathbf{1 5}$	beer, coffee	0.050000
$\mathbf{1 6}$	beer, coke	0.033333
$\mathbf{1 7}$	egg, beer	0.016667
$\mathbf{1 8}$	beer, garlic	0.016667
$\mathbf{1 9}$	milk, beer	0.016667
$\mathbf{2 0}$	strawberry, beer	0.016667

Stochastic Modelling and Computational Sciences

$\mathbf{2 1}$	chicken, blueberry	0.016667
$\mathbf{2 2}$	lettuce, blueberry	0.016667
$\mathbf{2 3}$	bread, cheese	0.016667
$\mathbf{2 4}$	bread, chocolate	0.016667
$\mathbf{2 5}$	bread, coffee	0.050000
$\mathbf{2 6}$	bread, egg	0.016667
$\mathbf{2 7}$	bread, gum	0.016667
$\mathbf{2 8}$	bread, juice	0.033333
$\mathbf{2 9}$	bread, pudding	0.016667
$\mathbf{3 0}$	bread, ramen	0.033333
$\mathbf{3 1}$	bread, shampoo	0.016667
$\mathbf{3 2}$	bread, snack	0.033333
$\mathbf{3 3}$	bread, tissue	0.016667
$\mathbf{3 4}$	bread, tomato	0.016667
$\mathbf{3 5}$	bread, tuna	0.016667
$\mathbf{3 6}$	butter, cheese	0.016667
$\mathbf{3 7}$	butter, coke	0.016667
$\mathbf{3 8}$	butter, ramen	0.016667
$\mathbf{3 9}$	coffee, cabbage	0.016667
$\mathbf{4 0}$	cabbage, dressing	0.016667
$\mathbf{4 1}$	tomato, cabbage	0.016667
$\mathbf{4 2}$	cheese, coke	0.016667
$\mathbf{4 3}$	juice, cheese	0.016667
$\mathbf{4 4}$	milk, cheese	0.016667
$\mathbf{4 5}$	ramen, cheese	0.016667
$\mathbf{4 6}$	shampoo, cheese	0.016667
$\mathbf{4 7}$	sweet, cheese	0.016667
$\mathbf{4 8}$	tomato, cheese	0.016667
$\mathbf{4 9}$	chicken, coke	0.016667
$\mathbf{5 0}$	chicken, egg	0.016667
$\mathbf{5 1}$	chicken, hamburger	0.016667
$\mathbf{5 2}$	lettuce, chicken	0.033333
$\mathbf{5 3}$	chicken, onion	0.016667
$\mathbf{5 4}$	chicken, pork	0.016667
$\mathbf{5 5}$	chicken, rice	0.016667
$\mathbf{5 6}$	chicken, salad	0.016667

It is probably worth pointing out that the items bread and coffee have the highest support in all transactions. To be more specific, the two items have the support of 0.05 . This in turn indicates that these two items have the probability of 5%. This implies that they have the highest probability in all transactions. This amounts to saying that my sudents mostly bought the two items. Python produced a lot of data about the support of my students' transactions, but we could not include all of them for the reason of space. It is interesting to note that the items bread and coffee are followed by the items bread and ramen. More specifically, the latter have the support of 0.033 . This in turn suggests that my students bought these items together and that their transactions lead to 3%. Exactly the same can be said of the items bread and juice. As can be seen from Table 2, their support is also 0.033 , which in turn indicates that the probability of buying the two items is 3%. This ranks second in all transactions. The same can be said about the items lettuce and chicken. When it comes to their support, they have 0.033 . This in turn implies that the probability for my students to buy the two items is 3%. It is particluarly

Stochastic Modelling and Computational Sciences

noteworthy that the rest of my students' transactions are the same. Simply put, the other transactions have the support of 1.666%. It must be stressed that the items cheese and coke have the support of 1.666%. It is important to mention that the items sweets and cheese also have the probability of 1.666% in all transactions. We thus conclude that the items bread and coffee have the highest support in all transactions.

3.2. Confidence and Lift

This section focuses on probing into the confidence and lift in my students' transactions. The so-called confidence refers to the probability of buying item B after buying item A . On the other hand, the term lift indicates the index about the probabilty of buying item B after buying item A. Most importantly, if the value of the so-called lift is bigger than 1 , there is a high probability to buy item B after buying item A . On the other hand, if the value of the so-called lift is less than 1 , there is a low probability to buy item B after buying item A:

Table 3: Confidence and Lift of Transactions

Number	Item	Added item	Confidence	Lift
1	bacon	egg	1.0	12.0
2	egg	bacon	0.2	12.0
3	bacon	Ice cream	1.0	20.0
4	Ice cream	bacon	0.3333	20.0
5	bacon	noodle	1.0	30.0
6	noodle	bacon	0.5	30.0
7	banana	chicken	1.0	12.0
8	chicken	banana	0.2	12.0
9	banana	tomato	1.0	20.0
10	tomato	banana	0.3333	20.0
11	beef	blueberry	0.5	30.0
12	blueberry	beef	1.0	30.0
13	beef	chicken	0.5	6.0
14	chicken	beef	0.2	6.0
15	beef	coke	0.5	2.727
16	beef	lettuce	0.5	6.0
17	lettuce	beef	0.2	6.0
18	beef	ramen	0.5	1.142
19	beef	snack	0.5	1.764
20	cigarette	beer	0.5	7.5
21	beer	coffee	0.75	3.0
22	coffee	beer	0.2	3.0
23	beer	coke	0.5	2.727
24	beer	egg	0.25	3.0
25	egg	beer	0.2	3.0
26	beer	milk	0.25	1.666
27	beer	strawberry	0.25	5.0
28	strawberry	beer	0.333	5.0
29	blueberry	chicken	1.0	12.0
30	chicken	blueberry	0.2	12.0
31	blueberry	lettuce	1.0	12.0
32	lettuce	blueberry	0.2	12.0
33	cheese	bread	0.333	3.333
34	chocolate	bread	0.2	2.0

Stochastic Modelling and Computational Sciences

$\mathbf{3 5}$	bread	coffee	0.5	2.0
$\mathbf{3 6}$	coffee	bread	0.2	2.0
$\mathbf{3 7}$	egg	bread	0.2	2.0
$\mathbf{3 8}$	bread	juice	0.333	10.0
$\mathbf{3 9}$	juice	bread	1.0	10.0
$\mathbf{4 0}$	pudding	bread	1.0	10.0
$\mathbf{4 1}$	bread	ramen	0.333	1.428
$\mathbf{4 2}$	bread	snack	0.333	1.716
$\mathbf{4 3}$	tuna	bread	0.333	3.333
$\mathbf{4 4}$	butter	cheese	1.0	20.0
$\mathbf{4 5}$	cheese	butter	0.333	20.0
$\mathbf{4 6}$	butter	ramen	1.0	4.285
$\mathbf{4 7}$	cabbage	dressing	1.0	60.0
$\mathbf{4 8}$	cheese	coke	0.333	1.818
$\mathbf{4 9}$	cheese	juice	0.333	10.0
$\mathbf{5 0}$	juice	cheese	0.5	10.0
$\mathbf{5 1}$	cheese	ramen	0.333	1.428
$\mathbf{5 2}$	cheese	sweet	0.333	3.333
$\mathbf{5 3}$	chicken	coke	0.2	1.090
$\mathbf{5 4}$	chicken	hamburger	0.2	12.0
$\mathbf{5 5}$	chicken	tea	0.2	6.0
$\mathbf{5 6}$	chocolate	juice	0.2	6.0
$\mathbf{5 7}$	chocolate	snack	0.4	1.411
$\mathbf{5 8}$	chocolate	strawberry	0.2	4.0
$\mathbf{5 9}$	chocolate	sweet	0.4	4.0
$\mathbf{6 0}$	cigarette	coffee	0.5	20.0

What is interesting is that the probability of buying the item bread after buying the item juice is 1.0 . In other words, the confidence of the two items is 10%. It ranks first in all transactions. Exactly the same can be said of the items pudding and bread. Quite interestingly, the probability for my students to buy the item bread after buying the item pudding is 10%. It should be pointed out that the items butter and cheese show the same property. When it comes to the confidence of the items butter and cheese, their confidence is 10%. This in turn means that the probability for my students to buy the item cheese after buying the item butter is 10%. It must be emphasized that the probability of buying the item egg after buying the item bacon is 2%. Particularly noteworthy is that the probability for my students to buy the item beer after buying the item cigarette is 5%. It is interesting to observe that the probability of buying the item sweet after buying the item chocolate is 4%. It important to note that the items cigarette and coffee have the higher confidence than the items chocolate and sweets. The probability for my students to buy the item coffee after buying the item cigarette is 5%. From Table 3, it seems clear that the items juice and bread, the items pudding and bread, the items butter and ramen, the items cabbage and dressing, etc. have the highest confidence in all transactions.

Now attention is paid to the lift of my students' transactions. Perhaps it is worthwhile noting that the items cabbage and dressing have the highest lift in all transactions. More specifically, the probability for my students to buy the item dressing after buying the item cabbage is 60.0 . Note that if the value of the term lift is bigger than 1 , there is a high possibility to buy the item B after buying the item A. As can be seen from Table 3, the items cabbage and dressing have the highest probability in all transactions. Notice that the items cabbage and dressing are followed by the items beef and blueberry and the items blueberry and beef. More specifically, the probability for my students to buy the item blueberry after buying the item beef is 30.0 and vice versa. This in turn indicates

Stochastic Modelling and Computational Sciences

that it ranks second in the lift of my students' transactions. It is also appropriate to mention that the items beef and blueberry are followed by the items banana and tomato. To be more specific, the probability for my students to buy the item tomato after buying the item banana is 20.0. This in turn indicates that the value of lift is bigger than 1. This amounts to saying that my students have the high probability to buy the item tomato after buying the item banana. It therefore seems reasonable to conclude that the items cabbage and dressing have the highest probability in their lift.

3.3. Visualization

This section is focused on going over the visualization of my sudents' transactions. Figure 1 shows the networks among shopping items:

Figure 1: Visualization of Transactions

It is worth pointing out that as exemplified in Figure 1, the item bread showed up in the center, thereby meaning a core item. Simply put, 11 items are linked to the item bread. This in turn indicates that the item bread is a core one. What this suggests is that those who bought the item bread bought the items cheese, ramen, snack, tomato, juice, tuna, tissue, pudding, gum, coffee, and snack (11 items). Quite interestingly, as illustrated in Figure 1, those who bought the item chicken bought the items hamburger, onion, pork, rice, blueberry, lettuce, beef, coke, egg,

Stochastic Modelling and Computational Sciences

and banana (10 items). Note that the students who bought the item bacon bought the items noodle, ice cream, and drink. It should be noted that the students who bought the item cabbage bought the items juice, tomato, and dressing. It is important to mention that those who bought cheese bought the items milk, butter, tomato, shampoo, juice, bread, and ramen. We thus conclude that the item bread is a core one, which is linked to 11 items, as indicated in Figure 1.

4. RESULTS

4.1 Data and Support

This section is deveoted to providing the data and the support of my students' transactions. Note that 32 students participated in my survey. I asked my students about their recent shopping: What books did you buy recently? My students provided their transactions as follows:

Table 4: Transactions

ID	Shopping Items
$\mathbf{1}$	essay, novel, music
$\mathbf{2}$	essay, English
$\mathbf{3}$	IT, novel
$\mathbf{4}$	engineering, religion, society
$\mathbf{5}$	novel, essay, humanity
$\mathbf{6}$	arts, music, religion
$\mathbf{7}$	English, TOEIC
$\mathbf{8}$	stock
$\mathbf{9}$	humanity, novel, arts
$\mathbf{1 0}$	novel, society, engineering
$\mathbf{1 1}$	novel, automobile, stock
$\mathbf{1 2}$	poetry, novel, essay
$\mathbf{1 3}$	TOEIC, novel, English
$\mathbf{1 4}$	ToEIC, English
$\mathbf{1 5}$	society, TOEIC, coffee
$\mathbf{1 6}$	English, education
$\mathbf{1 7}$	IT, novel, autobiography
$\mathbf{1 8}$	poetry, novel, essay
$\mathbf{1 9}$	novel, TOEIC
$\mathbf{2 0}$	arts, humanity
$\mathbf{2 1}$	movie
$\mathbf{2 2}$	essay, novel
$\mathbf{2 3}$	Novel, airplane, novel
$\mathbf{2 4}$	airplane, novel,
$\mathbf{2 5}$	Society,
$\mathbf{2 6}$	novel, essay, society
$\mathbf{2 7}$	movie
$\mathbf{2 8}$	novel, automobile, movie
$\mathbf{2 9}$	novel, essay
$\mathbf{3 0}$	TOEIC, novel,
$\mathbf{3 1}$	essay
$\mathbf{3 2}$	society, politics

Stochastic Modelling and Computational Sciences

Now let us turn our attention to the support of my students' transactions:
Table 5: Support of Transactions

Number	Items	Support
$\mathbf{1}$	English, TOEIC	0.09375
$\mathbf{2}$	English, education	0.03125
$\mathbf{3}$	English, stock	0.03125
$\mathbf{4}$	autobiography, IT	0.03125
$\mathbf{5}$	IT, novel	0.06250
$\mathbf{6}$	arts, humanity	0.06250
$\mathbf{7}$	arts, music	0.03125
$\mathbf{8}$	autobiography, novel	0.03125
$\mathbf{9}$	movie, automobile	0.03125
$\mathbf{1 0}$	automobile, novel	0.03125
$\mathbf{1 1}$	automobile, stock	0.03125
$\mathbf{1 2}$	coffee, society	0.03125
$\mathbf{1 3}$	religion, engineering	0.03125
$\mathbf{1 4}$	society, engineering	0.06250
$\mathbf{1 5}$	humanity, essay	0.03125
$\mathbf{1 6}$	movie, essay	0.03125
$\mathbf{1 7}$	essay, music	0.03125
$\mathbf{1 8}$	essay, novel	0.25000
$\mathbf{1 9}$	essay, poetry	0.06250
$\mathbf{2 0}$	humanity, novel	0.06250
$\mathbf{2 1}$	religion, music	0.03125
$\mathbf{2 2}$	novel, poetry	0.06250
$\mathbf{2 3}$	society, politics	0.03125
$\mathbf{2 4}$	society, religion	0.03125
$\mathbf{2 5}$	English, novel	0.03125

It is worthwhile noting that the items essay books and novels have the highest support in all transactions. More specifically, the probability for my students to buy essay books and novels is 0.2500 . What this suggests is that the possibility for my students to buy two books is 25%. This in turn indicates that the two items have the highest support in all transactions. Note that the items essay books and novels are followed by the items English books and TOEIC books. To be more specific, the probability for my students to buy the two items in all transactions is 9.375\% (the second highest). It is worth noting that as illustrated in Table 5, the items English books and TOEIC books are followed by the items IT-related books and novels. To go into detail, the probability for the sudents to buy the two books is 6.25% (the third highest in all transactions). Exactly the same can be said of society-related books and engineering books. They have the third highest support in all transactions. That is to say, they have the support of 6.25%. It is interesting to point out that coffee-related books and society-related books have the support of 3.125%. As indicated in Table 5, the probability for the sudents to buy society-related books and politicsrelated books is 3.125% (the fourth highest). We thus conclude that the probability for the students to buy essay books and novels is the highest (26%) in all transactions.

4.2 Confidence and Lift

The goal of this section is to probe into the confidence and lift of the sudents' transactions:

Stochastic Modelling and Computational Sciences

Table 5: Confidence and Lift of Transactions

Number	Item(s)	Added item(s)	Confidence	Lift
1	education	English	1.0	5.333
2	stock	English	0.5	2.666
3	IT	autobiography	0.5	16.0
4	autobiography	IT	1.0	16.0
5	IT	novel	1.0	1.6
6	coffee	TOEIC	1.0	4.571
7	movie	TOEIC	0.333	1.523
8	airplane	novel	1.0	1.6
9	arts	humanity	0.666	7.111
10	humanity	arts	0.666	7.111
11	music	arts	0.333	5.333
12	arts	religion	0.333	5.333
13	religion	arts	0.5	5.333
14	autobiography	novel	1.0	1.6
15	automobile	movie	0.5	5.333
16	automobile	novel	1.0	1.6
17	automobile	stock	0.5	8.0
18	coffee	society	1.0	5.333
19	engineering	religion	0.5	8.0
20	engineering	society	1.0	5.333
21	humanity	essay	0.333	1.066
22	movie	essay	0.333	1.066
23	essay	novel	0.8	1.28
24	novel	essay	0.4	1.28
25	essay	poetry	0.2	3.2
26	poetry	essay	1.0	3.2
27	music	essay	0.5	1.6
28	humanity	novel	0.666	1.066
29	music	religion	0.5	8.0
30	religion	music	0.5	8.0
31	poetry	novel	1.0	1.6
32	politics	society	1.0	5.333
33	religion	society	0.5	2.666
34	novel, English	TOEIC	1.0	4.5714
35	Novel, TOEIC	English	0.333	1.777
36	IT	autobiography, novel	0.5	16.0
37	autobiography	IT, novel	1.0	16.0
38	autobiography, it	novel	1.0	1.6
39	IT, novel	autobiography	0.5	16.0
40	autobiography, novel	IT	1.0	16.0
41	coffee	society, TOEIC	1.0	32.0
42	coffee, TOEIC	society	1.0	5.333
43	society, TOEIC	coffee	1.0	32.0
44	coffee, society	TOEIC	1.0	4.571
45	arts	humanity, novel	0.333	5.333

Stochastic Modelling and Computational Sciences

$\mathbf{4 6}$	humanity	arts, novel	0.333	10.666
$\mathbf{4 7}$	arts, novel	humanity	1.0	10.666
$\mathbf{4 8}$	humanity, novel	arts	0.5	5.333
$\mathbf{4 9}$	arts	religion, music	0.333	10.666
$\mathbf{5 0}$	music	arts, religion	0.5	16.0
$\mathbf{5 1}$	religion	arts, music	0.5	16.0
$\mathbf{5 2}$	arts, music	religion	1.0	16.0
$\mathbf{5 3}$	arts, religion	music	1.0	16.0
$\mathbf{5 4}$	religion, music	arts	1.0	10.666
$\mathbf{5 5}$	automobile	movie, novel	0.5	16.0
$\mathbf{5 6}$	movie	automobile, novel	0.333	5.333
$\mathbf{5 7}$	movie, automobile	novel	1.0	1.6
$\mathbf{5 8}$	automobile, novel	movie	0.5	5.333
$\mathbf{5 9}$	movie, novel	automobile	1.0	16.0
$\mathbf{6 0}$	automobile	novel, stock	0.5	16.0

It is worthwhile saying that education-related books and English books have the highest confidence. More specifically, the probability for the students to buy English books after buying education-related books is 10%. Exactly the same can be said about autobiography-related books and IT-related books, IT-related books and novels, coffee-related books and TOEIC books, coffee-related books and society-related books, etc. They have the highest confidence in all transactions. It is important to note that the probability for the sudents to buy automobile-related books after buying movie-related books and novels is also 10% (the highest). It is worth mentioning that the probability for the students to buy TOEIC books after buying movie-related books is 3.33% (the fifth higest). Quite interestingly, the probability for the students to buy society-related books and TOEIC books after buying coffee-related books is also 10%. We thus conclude that autobiography-related books and ITrelated books, IT-related books and novels, coffee-related books and TOEIC books, coffee-related books and society-related books, etc. have the highest confidence in all transactions.

Now attention is paid to the lift of the students' transactions. It is worthwhile pointing out that coffee-related books, society-related books, and TOEIC books have the highest lift in all transactions. More specifically, the probability for the students to buy society-related books and TOEIC books after buying coffee-related books is the highest (32.0) in all transactions. Note that if the value of the term lift is bigger than 1, there is a high probability to buy item B after buying item A. Quite interestingly, the probability for the students to buy coffeerelated books after buying society-related books and TOEIC books is the same (32.0). This in turn indicates that these items have the highest lift in all transactions. Quite interestingly, when it comes to the lift of transactions, coffee-related books, society-related books, and TOEIC books are followed by IT-related books and autobiography-related books, and vice versa. Interestingly, the probability of buying autobiography-related books after buying IT-related books is the second highest (16.0). More importantly, the probability of buying autobiography-related books and novels after buying IT-related books is 16.0 (the third highest). We thus conclude that coffee-related books, society-related books, and TOEIC books have the highest lift in all transactions.

4.3. Visualization

In this section, we aim at providing the visualization of the students' transactions. As exemplified in Figure 2, the item novel is a core one since it is linked to 7 items. This in turn indicates that those who bought novels bought essays, humanity-related books, poetry, airplane-related books, IT-related books, and autobiography-related books. It is worth noticing that those who bought essays bought novels, movie-related books, music-related books, humanity-related books, and poetry. It must be noted that as indicated in Figure 2, the students who bought music-related books bought religion-related books, arts-related books, and essays. Quite interestingly, those who

Stochastic Modelling and Computational Sciences

bought movie-related books bought automobile-related books, essays, and TOEIC books. It should be pointed out that the students who bought English books bought education-related books, TOEIC books, and stock-related books. Finally, it is worth pointing out that the students who bought society-related books bought coffee-related books, religion-related books, politics-related books, and engineering books. For the analysis of big data, see Kang (2023a, 2023b, 2023c, 2023d, 2023e, 2023f).

Figure 2: Visualization of Transactions

5. CONCLUSION

To sum up, we have provided an association analysis of my students' transactions. In section 3.1, we have maintained that the items bread and coffee have the highest support in all transactions. To go into detail, the two items have the support of 5%. In section 3.2 , we have also maintained that the probability of buying the item bread after buying the item juice is 10%. It ranks first in all transactions. Exactly the same can be said of the items pudding and bread. Quite interestingly, the probability for my students to buy the item bread after buying the item pudding is 10%. In section 3.2, we have argued that the items cabbage and dressing have the highest probability in their lift. In this section 3.3, we have contended that the item bread is a core one. What this suggests is that those who bought the item bread bought the items cheese, ramen, snack, tomato, juice, tuna, tissue, pudding, gum, coffee, and snack (11 items). In section 4.1, we have argued that the items essay books and novels

Stochastic Modelling and Computational Sciences

have the highest support in all transactions. More specifically, the probability for my students to buy two books is 25%. In section 4.2, we have further argued that autobiography-related books and IT-related books, IT-related books and novels, coffee-related books and TOEIC books, coffee-related books and society-related books, etc. have the highest confidence in all transactions. In section 4.2, we have shown that coffee-related books, societyrelated books, and TOEIC books have the highest lift in all transactions. Finally, we have shown that the item novel is a core one. This in turn indicates that those who bought novels bought essays, humanity-related books, poetry, airplane-related books, IT-related books, and autobiography-related books.

REFERENCES

[1] Kang, N. (2023a). K-Pop in BBC News: A Big Data Analysis. Advances in Social Sciences Research Journal 10(2), 156-169.
[2] Kang, N. (2023b). K-Dramas in Google: A NetMiner Analysis. Transaction on Engineering and Computing Sciences 11(1), 193-216.
[3] Kang, N. (2023c). A Comparative Analysis of Tolerate and Put up with in the COCA. Semiconductor and optoelectronics 42(1): 1468-1476.
[4] Kang, N. (2023d). Sure of and Sure about in Corpora and ChatGPT. Journal of Harbin Engineering University 44(7): 1347-1351.
[5] Kang, N. (2023e). Turn out adj and Turn out to be adj in the Now Corpus and ChatGPT. Journal of Harbin Engineering University 44(8): 825-831.
[6] Kang, N. (2023f). Care for and Like in Corpora and ChatGPT. Semiconductor and optoelectronics 42(2): 188-198.

