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ABSTRACT 

This paper focuses on Eulerian and Hamiltonian graphs and extends its exploration to algebraic graphs. Eulerian 

graphs, allowing closed way to traverse each edge once, contribute to the understanding of graph connectivity. 

Hamiltonian graphs, essential in optimisation and network design, feature cycles visiting each vertex once. 
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INTRODUCTION 

Graph theory is a mathematical discipline that explores the study of graphs, which are abstract representations of 
relationships and connections between various entities. These entities, often referred to as vertices or nodes, are 
interconnected by edges or links, forming a network of relationships. Graph theory provides a powerful 
framework for analyzing and modeling diverse real-world phenomena, ranging from social networks and 
communication systems to transportation networks and molecular structures. 

The origins of graph theory can be traced back to the 18th century when the Swiss mathematician Leonhard Euler 
introduced the concept of a graph to solve the famous Seven Bridges of Königsberg problem. Since then, graph 
theory has evolved into a rich and versatile field of study with applications in computer science, 
telecommunications, biology, social sciences, and various other disciplines. 

The fundamental concepts of graph theory include exploring the properties and characteristics of graphs, 
understanding different types of graphs such as directed and undirected graphs, and investigating various 
algorithms and methods for solving problems related to graphs. Graph theory has become an integral part of 
modern mathematics and plays a crucial role in addressing complex problems in fields as diverse as computer 
science, optimization, and network analysis. 

As a powerful tool for modeling relationships and connectivity, graph theory continues to find new applications 
and inspire innovative solutions to challenges in science, engineering, and beyond. Its broad relevance and 
versatility make it an essential area of study for researchers, mathematicians, and professionals seeking to 
understand and harness the intricacies of interconnected systems. 

LITERATURE REVIEW 
Xia Liu et al (2022) the authors consider the problem of characterizing Hamiltonian line graphs with local degree 
conditions, where the degree of a vertex is only dependent on its local neighborhood. They provide a necessary 
condition for a graph to be a Hamiltonian line graph with such degree conditions, and also present a sufficient 
condition for a graph to be a Hamiltonian line graph with a stronger degree condition. The results on Hamiltonian 
line graphs with local degree conditions have important applications in graph theory and computer science. 

Bo Zhang et al., (2021) The study of Anti-Eulerian digraphs is an important area of research in graph theory and 
combinatorics. The authors' findings contribute to a better understanding of the properties and behavior of these 
types of digraphs. "Anti-Eulerian digraphs" is a well-written and informative paper that provides a thorough study 
of Anti-Eulerian digraphs. The paper's contributions and insights make it a valuable addition to the existing 
literature on graph theory and combinatorics. 
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Hamiltonian and Eulerian Graph 

Eulerian graphs, allowing closed walks that traverse each edge once, shed light on graph connectivity. 
Hamiltonian graphs, featuring cycles that visit each vertex once, are pivotal in optimization and network design. 
Complete algebraic graphs take connectivity further, ensuring every pair of vertices is connected by an edge. This 
exploration not only contributes to theoretical advancements but also finds applications in practical scenarios, 
from network design to logistics planning, by revealing the intricate mathematical properties within graphs. 

Definition 3.1 An algebraic graph is defined on a graph G(V,E) with vertex set V and edge set E. It is 

characterized by the existence of bijective functions fi:Vi→Mi for i=1,2,…,n, where Vi and Mi are subsets of V. 
The functions must satisfy the following conditions: 

(i) The degrees of the functions , and the union of  and  covers the entire 

vertex set , i.e., . Additionally, no function is defined on a subset  of  if the order of 

 is greater than the order of . 

(ii) For any edge , there exists a unique function  such that . 

(iii) If there is a path  in , then there exists a function  such that 

. 

The number of elements in a set  is denoted by . An algebraic graph of  is denoted by 

, where  represents the set of bijective functions  satisfying the given conditions. 

Now, let's represent these conditions           (i) 

      (ii) 

      (iii) 

 

Definition: 3.2 Let the algebraic graph G(V,E,F), where F={fi∣i=1,2,…,n}. In this context, V represents the set of 
vertices, E is the set of edges, and F is a collection of functions fi indexed from 1 to n. 

The degree of a function f in F is defined as the number of elements in the domain of f. Mathematically, if fi is a 
function in F, then the degree of fi, denoted as deg(fi), is given by: 

deg(fi)=∣dom(fi)∣ 
Here, dom(fi) represents the domain of the function fi, and ∣⋅∣ denotes the cardinality or the number of elements in 
a set. 

In the context of algebraic graphs, these functions fi may represent various algebraic operations or mappings 
associated with the vertices and edges of the graph. The degree of a function provides insight into the complexity 
or richness of its domain, indicating how many distinct elements it operates on. 

Algebraic graphs are valuable in representing mathematical structures, and the incorporation of functions in F 
adds a layer of abstraction, allowing for a more nuanced understanding of the relationships within the graph. 

Definition: 3.3 An algebraic graph, denoted as G (V,E,F), consists of a set of vertices V, a set of edges E, and a 
set of functions F={fi∣i=1,2,…,n} associated with the edges. Here, n represents the number of edges in the graph. 
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The size of an algebraic graph is defined as the cardinality of the edge set E, denoted as ∣E∣. In mathematical 
terms: 

Size of G=∣E∣=n 

This means that the size of the algebraic graph is equal to the number of edges it contains. 

The order of an algebraic graph is defined as the cardinality of the vertex set V, denoted as ∣V∣. In mathematical 
terms: 

Order of G=∣V∣ 
This implies that the order of the algebraic graph is equal to the number of vertices it comprises. 

Definition 3.4: algebraic graph G(V,E,F) where F={fi∣i=1,2,…,n} and d(f1)>d(f2)>…>d(fn), where d(fi) is the 
degree of fi. 

In an algebraic graph, vertices are associated with polynomials, and the edges are defined by the common roots of 
these polynomials. The degree of a polynomial is related to the number of its distinct roots. 

The diameter of a graph is defined as the maximum distance between any two vertices in the graph. In the context 
of an algebraic graph, the distance can be measured by the number of edges in the shortest path between two 
vertices. 

Now, let's consider F= {fi∣i=1,2 ,…,n}, where fi is associated with vertex Vi. The degrees of these polynomials are 
given by d(f1)>d(f2)>…>d(fn). 

In an algebraic graph, the degree of a polynomial is related to the number of roots it has. Therefore, d(fi) 
represents the number of roots of fi and indirectly the number of edges connected to the corresponding vertex Vi. 

To find the diameter of the algebraic graph, we need to consider the vertices with the highest degrees. Since d(f1

)>d(f2)>…>d(fn), the vertex V1 has the highest degree. 

The diameter of the algebraic graph G is determined by the distance between V1 and the vertex Vj (where j≠1) 
such that d(fj) is the second-highest degree. 

In mathematical terms, the diameter δ can be expressed as: 

δ(G)=max j≠1dist(V1,Vj) 

where dist(V1,Vj) is the shortest path distance between V1 and Vj. 

RESULT 

THEOREM 3.1: A graph G is considered a line graph L (H) if and only if its lines can be partitioned into 
complete subgraphs in such a way that no point lies in more than two of the subgraphs. 

From the definition of a line graph and Theorem 3.1, it is evident that if a graph G=L(H), then: 

(i) Every point P in H gives rise to a complete subgraph CP in L(H), determined by the set of all lines of H 
incident with point P. Furthermore, CP  has even order if P has even degree. Mathematically, this can be 
expressed as: 

CP={L∈ L(H)∣P is incident with L} 

and ∣CP∣≡0(mod 2) if deg(P)≡0(mod 2) 
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(ii) Every line L in G corresponds to the adjacency of two lines L1 and L2 in H. Alternatively, every line L1, L2 in 
G corresponds uniquely to the point in common between the two lines L1 and L2 in H. Mathematically, this can be 
represented as: 

L⟷{L1,L2} in H 

LEMMA 
If a graph G is Eulerian, meaning it has a closed walk traversing every edge exactly once, then its line graph L(G) 
is Hamiltonian, possessing a cycle that visits each edge once. Recognizing G as the line graph of an Eulerian 
graph implies that G is Hamiltonian, highlighting a direct relationship between Eulerian and Hamiltonian 
properties in graph theory. This insight enables efficient identification of Hamiltonian cycles by examining the 
Eulerian nature of the original graph and its line graph. 

THEOREM 3.2 A connected graph G is the line graph of an Eulerian graph if and only if its lines can be 
partitioned into even complete subgraphs such that each point lies in exactly two of these subgraphs. 

To elaborate, an Eulerian graph is a graph where every vertex has an even degree, meaning that the number of 
edges incident to each vertex is an even number. The given statement asserts that a connected graph G is the line 
graph of such an Eulerian graph if certain conditions on its line partitions are met. 

The proof of this statement can be derived from observations (i) and (ii) made earlier: 

COROLLARY 3.2a if a graph G has a subgraph partition, as specified in Theorem 3.2, then G is Hamiltonian. In 
Theorem 3.2, a subgraph partition refers to a partitioning of the graph into connected subgraphs G1, G2,…,Gk such 
that each subgraph Gi has a dominating vertex, and certain conditions are met regarding the connections between 
the dominating vertices. The conclusion drawn from this theorem is that the original graph G is Hamiltonian, 
implying the existence of a Hamiltonian cycle. 

COROLLARY 3.2b a graph G is Hamiltonian if and only if it possesses a spanning subgraph H that is the line 
graph of an Eulerian graph. This means that the Hamiltonian property, where the graph contains a Hamiltonian 
cycle visiting each vertex exactly once, is intimately connected to the existence of a particular type of subgraph in 
G. Specifically, this subgraph H is constructed as the line graph of an Eulerian graph, where every vertex has an 
even degree. The "if and only if" nature of the statement signifies a bidirectional relationship: if G is Hamiltonian, 
then there exists such a spanning subgraph H; conversely, the presence of this specific subgraph H implies the 
Hamiltonian nature of G. This provides a powerful criterion for recognizing Hamiltonian graphs based on the 
structural properties of their spanning subgraphs. 

LEMMA 
In a line graph G, any group containing four or more vertices must correspond to one of the complete subgraphs 
identified in Theorem 3.1. Theorem 3.1 characterizes line graphs by associating each point in the original graph 
with a complete subgraph in the line graph. Therefore, the presence of larger groups in the line graph is inherently 
linked to the structural properties outlined in Theorem 3.1, offering a clear relationship between the order of 
groups and the underlying characteristics of line graphs. 

Proof: The theorem considers a set of complete subgraphs in a graph G, denoted as C1, C2, ..., Ck. It introduces 
conditions for a group C in G with at least four points, distinct from other groups. The theorem highlights a 
specific complete subgraph Cn, sharing an edge with C, and introduces a point of C not present in C1. The theorem 
explores relationships and distinctions between cliques and complete subgraphs, contributing to the understanding 
of structural properties in graph theory. 

THEOREM 3.3 A graph G, representing the lines of a Hamiltonian graph. It asserts that G can be partitioned into 
complete subgraphs in such a way that every point in G belongs to exactly two subgraphs. Furthermore, G 
contains a cycle incorporating one line from each subgraph. In simpler terms, if you imagine cities connected by 
roads (Hamiltonian graph), G's lines are these roads. The statement suggests organizing these roads into 
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subnetworks so that each city connects to exactly two roads, and collectively, there's a cycle passing through 
every city, using one road from each subnetwork. This arrangement has implications for structured network 
organization and optimization. 

Proof: Assume G is the line graph of a Hamiltonian graph H. Let's denote a Hamiltonian cycle in H as u1u2 ... 
umu1 and correspondingly, the complete subgraphs in G as C1, C2, ...,Cm. These complete subgraphs partition the 
lines in G, as each line in G is uniquely associated with a point vj in H, and thus, with the complete subgraph CUj. 

Now, for each point vi in G, there is a unique correspondence to a line α in H, incident to two points, say u1 and 
u2, in H. These two points, in turn, correspond uniquely to complete subgraphs G1 and G2 of G. Since α is incident 
to both u1 and up in H, it implies that the corresponding point vi in G belongs to both G1, and G2. Therefore, every 
point in G is precisely in two of the complete subgraphs (Gi), demonstrating a clear partitioning of the graph G 
based on its Hamiltonian cycle and associated complete subgraphs. 

Assume that: 
(1)  The lines of G can be partitioned into complete subgraphs {Gi}, i = l,..., m, in such a way that 

(2)  Every point of G lies in exactly two of these complete subgraphs, and 

(3)  G contains a cycle having exactly one line in each of these complete subgraphs. Then (1) and (2) and 
Theorem 3.1 imply that G is the line graph of some graph H. 

We have seen that the points of H correspond l-l with the complete subgraphs {Gi}, i = l,...,m of G. Furthermore, 
we know that two points in H are adjacent if and only if the corresponding subgraphs in G have a point in 
common. A single edge in one of these Gi then corresponds to two incident edges through the corresponding point 
in H. Therefore, the cycle in G having exactly one line in each (Gi} corresponds to a cycle in H which passes into 
and out of each point in H exactly once. Hence, H is Hamiltonian. 

The cycle described in Theorem 3.3 and its corollary is a Hamiltonian cycle itself only if G is a cycle. It is usually 
much shorter than a Hamiltonian cycle. 

CONCLUSION 

This research has unveiled the intricate relationships within graphs, particularly emphasising the significance of 
Eulerian and Hamiltonian properties. The introduction of algebraic graphs with bijective functions adds a layer of 
abstraction, allowing for a more nuanced understanding of graph structures. The study not only contributes to 
theoretical advancements in graph theory but also showcases practical applications in network design and 
logistics planning. The resulting theorems and corollaries give us a lot of useful information by connecting 
Eulerian and Hamiltonian properties and giving us a way to tell Hamiltonian graphs apart based on their structural 
properties. This research, therefore, establishes a foundation for further exploration in the diverse and dynamic 
field of graph theory. 
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