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ABSTRACT 

Earlier work of Trust Enabled Data Gathering Technique based Modified Golden Eagle Optimization with 

stooping technique (TEDGTMGEO) reliance on the node's trust value for secure Cluster Head (CH) selection. 

While incorporating trust values can enhance network security, it also introduces complexity and potential 

vulnerabilities. With this motivation, this work presents a novel TrustRoute approach to optimizing multipath 

routing, focusing on the comprehensive consideration of Quality of Service (QoS) parameters and trust factors. In 

contemporary networking environments, the optimization of routing paths is crucial for maintaining high 

performance and reliability. The proposed optimization algorithm integrates QoS parameters, including delays, 

energy consumptions, link lifetime, and distances, along with trust factors, to select routing paths that maximize 

network efficiencies and security. Leveraging features from both the Average and Subtraction-Based Optimizer 

(ASBO)algorithms, the algorithm achieves superior routing outcomes. Through extensive simulations and 

evaluations, the effectiveness and robustness of the approach in enhancing multipath routing mechanisms are 

demonstrated. The results highlight the algorithm's ability to adapt to dynamic network conditions while 

optimizing performance in terms of QoS metrics and trustworthiness. Overall, the proposedTrustRoute algorithm 

represents a significant advancement in multipath routing optimization, offering a holistic solution to address the 

complex challenges of modern networking environments. 

Keywords: Wireless Sensor Networks, Cluster Head, trust-aware clustering, Trust Enabled Data Gathering 
Technique and Golden Eagle Optimization 

1. INTRODUCTION 
Low-power WSNs have developed due to low-cost wireless devices and communication technologies. Target 
tracking, environmental monitoring, and healthcare are just a few of the many applications made possible by 
WSNs' flexible sensor nodes and easy deployment [1, 2]. In applications, functions of sensor nodes are identifying 
target regions and forward acquired data to sink nodes for additional processing as sensor nodes have limitations 
in terms of resources making low-power wireless networks unreliable [3]. Performance requirements of various 
applicationsmake building effective communication protocols for WSNs a challenging task [4]. Suitable routing 
protocol designs to satisfy specific demands of applications are considered as significant issues in WSNs where 
studies have proposed a variety of routing protocols to meet applicational demands[5]. 

First of all, routing algorithms with many sensor nodes should facilitate data transfers across long distances, 
irrespective of network sizes. Environmental changes, hardware malfunctions, or depletion of sensor node 
energies may result in failure of active nodes; nevertheless, this problem shouldn't interfere with regular network 
operations [6]. Furthermore, routing and data dissemination require proper network resource management since 
sensor nodes have limited power supplies, processor speeds, memory capacities, and available bandwidths. 
WSN’s performances vary for applications making it imperative for routing protocols to satisfy applications’ QoS 
criteria [7]. Routing protocols need to account target tracking and disaster management for time-sensitive 
applications which are distinct from other applications like habitat monitors [8]. 
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Most routing protocols presently in use in WSNs are constructed using single-path routing approach without 
taking into account varied levels of traffic demand [9]. With this method, every source node must choose a single 
path that satisfies the intended application's performance criteria in order to transfer traffic to the sink node. Even 
while route discovery using a one-way routing approach that needs least amount of computational complexities 
and resource usage, limiting capacities of single channels drastically and restricting network performances [10]. 
Furthermore, under crucial circumstances, the lack of adaptability of this technique to node or link failures may 
negatively impact network performance [11]. For example, choosing an alternate channel to complete If the 
existing channel is unable to send data packets due to physical damage, high wireless network dynamics, or 
restricted power supply of sensor nodes, the data transmission process may result in increased overhead and 
delays in data delivery [13]. Many applications cannot be fully satisfied by single-path routing methods as sensor 
node resources are limited. The drawbacks of single-path routing techniques can be overcome using multipath 
routing which offersdifferent routing paths to targetsamongst densely distributed sensor nodes [13].These 
discovered paths can handle high traffic volumes. As an alternative, source nodes may only transmit data over 
single paths, switching to new paths in the event of node/connection failures. The latter is referred to as alternate 
path routing and utilized for fault-tolerances. 

Over the last decade, multipath routing systems have been employed in network management functions, including 
fault-tolerant routes, congestion controls, and QoS in conventional wired and wireless networks. However, ew 
challenges like limited computational capacities, low memory capacities, and constrained power supplies and 
short-range radio communications including fades and interferencesarise while designing multipath routing 
protocols for WSNs [14]. Consequently, multipath routing techniques designed for conventional wireless 
networks (such ad hoc networks) are not applicable to low-power sensor networks. The WSN research 
community has been motivated to create multipath routing protocols appropriate for sensor networks in response 
to this problem in recent years. 

Numerous articles outline routing strategies for wireless sensor networks (WSNs) were proposed. These papers 
[14] discuss and evaluate the main routing methods proposed for sensor networks. Nevertheless, none of these 
studies have offered a thorough taxonomy of the multipath routing protocols that are currently being used by 
WSNs. The fault-tolerant routing algorithms currently in use in WSNs have been divided into two categories by 
Alwan et al. [16]: protocols based on replication and protocols based on retransmission. Based on their main 
design criteria, Tarique et al. [17] categorized the multipath routing techniques currently in use in ad hoc 
networks. The primary driving force behind this study was the dearth of comprehensive research on the suggested 
multipath routing algorithms using data aggregation for wireless sensor networks. 

While the existing TEDGTMGEO technique shows promise in improving energy efficiency, network lifetime, 
and node trustworthiness, addressing these drawbacks is essential to ensure its effectiveness and resilience in 
practical WSN applications.As the network size increases, maintaining and updating trust values for a large 
counts of  nodes becomes challenging and resource-intensive. The scalability of the TEDGTMGEO approach may 
be limited by the overhead associated with trust management, including communication overhead for exchanging 
trust information and computational overhead for trust evaluation.With this motivation, this work develops the 
TrustRoute approach, a novel strategy for optimizing multipath routing in networking environments. Unlike 
conventional methods that often prioritize either QoS parameters or trust factors independently, TrustRoute 
integrates both aspects comprehensively. By considering QoS metrics such as delay, energy consumption, link 
lifetime, and distance alongside trust factors, TrustRoute effectively selects routing paths that not only enhance 
network efficiency but also bolster security. 

Moreover, TrustRoute builds upon the foundations laid by established algorithms like the ASBO, leveraging their 
strengths to achieve superior routing outcomes. This amalgamation of innovative techniques results in a robust 
optimization algorithm capable of navigating the intricate challenges posed by modern network 
landscapes.Through extensive simulations and evaluations, the efficacy and resilience of TrustRoute are 
demonstrated, showcasing its ability to significantly enhance multipath routing mechanisms. This contribution 



ISSN: 2752-3829  Vol. 3 No.2, (December, 2023)  

 

Stochastic Modelling and Computational Sciences 
 

 

Copyrights @ Roman Science Publications Ins.                                    Stochastic Modelling and Computational Sciences   

  

 

 1142 

 

represents a significant advancement in the field, paving the way for more efficient, secure, and reliable 
networking solutions. 

The remaining sections of the paper are grouped as follows: Section 2 includes a literature assessment of similar 
protocol methods, Section 3 provides the essential preliminary information, and Section 4 describes the proposed 
TrustRoute. Section 5 displays TrustRoute's experimental outcomes. Finally, Section 6 finishes the article by 
discussing future work. 

2. RELATED WORK 
Existing research has focused on addressing the inherent challenges of WSNs such as limited energy resources, 
unreliable communication links, and dynamic network conditions. Several approaches have been proposed, 
including multipath routing algorithms, QoS-aware routing protocols, and data aggregation strategies. 

Li et al., [18] suggested a Differentiated Threshold Configuring Joint Optimal Relay Selection based Data 
Aggregation (DTC-ORS-DA) approach that used various threshold settings depending on the features of uneven 
energy consumption in WSNs to enable quick data packet routing. In the far sink area, a lower threshold was 
established with the right amount of energy. This strategy raised the likelihood that nodes with high data packet 
loads or long wait times would be selected as transmission relays, which might enhance data fusion rates or 
decrease delays. The DTC-ORS-DA system enhanced the life cycle by up to 9.81%, improved energy utilization 
rates by 6.67% to 9.48%, and decreased average delay by 10.74% to 19.91% when compared to the Common 
Data Collection system (CS). A possible disadvantage of the suggested priority-based approach might be the 
higher computing complexity needed for dynamic relay selection, which could affect real-time performance in 
resource-constrained 

The design included two efficient aggregation schemes by Wang et al., [19]known as single-hop-length (SHL) 
and multiple-hop-length (MHL). It was theoretically proven that the protocol achieved optimal tradeoffs by 
combining these two strategies, and the ideal aggregate throughput was found by establishing a threshold value 
(lower bound) for collecting efficiency. Integrating the SHL and MHL aggregation techniques may have the 
drawback of increasing protocol complexity, which might result in more expensive implementation and 
maintenance expenses as well as the introduction of overhead that might have an impact on network performance 
as a whole. 

Kang et al. [20] presented a distributed method known as distributed delay efficient data aggregation scheduling 
(DEDAS-D) to address the aggregation-scheduling issue in duty-cycled WSNs. According to the research, the 
DEDAS-D approach worked well to solve this issue. To support the research, extensive simulations were run, 
showing that DEDAS-D performed better than other distributed schemes and reached asymptotic performance in 
terms of data aggregation latency when compared to centralized schemes. One potential disadvantage of the 
distributed approach, DEDAS-D, could be its susceptibility to network dynamics and topology changes, which 
may affect its ability to maintain optimal performance consistently over time. Additionally, the distributed nature 
of the algorithm might introduce communication overhead and synchronization challenges, particularly in large-
scale WSN deployments, potentially impacting overall efficiency and scalability. 

Ahmed& Paulus [21] proposed a technique involved the development of a congestion avoidance and mitigation 
strategy. The distance between the sender and the recipient, a node's buffer occupancy, and its relative success 
rate (RSR) value were taken into consideration while choosing a route. A utility function was constructed and 
applied to every neighbour of a transmitter node using these parameters. As a result, during packet forwarding, 
the transmitter node chose as its next hop node the neighbour with the highest utility value. By selecting non-
congested nodes as next hop nodes, this strategy attempted to avoid congestion and then reduce it depending on 
RSR values. The suggested method for avoiding and mitigating congestion may have a drawback in that it 
depends on real-time data, including buffer occupancy and RSR values, which isn't always reliable or easily 
accessible in dynamic network contexts. Additionally, the complexity of calculating and updating utility values 
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for each neighbour node could introduce overhead and latency, potentially impacting the efficiency of packet 
forwarding and overall network performance. 

Hajiee et al. [22] added a new fitness component to the Energy-Aware Trust and Opportunity-Based Routing 
(ETOR) algorithm. There are two primary parts in this method: first, the participating nodes were chosen from 
among the safe nodes to carry out the routing duties, and second, the safe nodes were chosen based on the 
tolerance constants. ETOR combined conventional multi-hop communication protocols with multi-routing 
technologies. The software also used a fitness factor to determine the best and safest route, taking into account 
network traffic, capacity, reliability, quality of service, connectivity, distance and counts of hops. Incorporating 
multiple elements into a hybrid physical process can be disadvantageous as it increases the computational 
complexity of the ETOR method. This complexity can result in high processing overhead, which can significantly 
affect the scalability and performance of the algorithm in large or dynamic network environments. 

Inspired by the metabolic characteristics of Escherichia coli, Gong et al. [23] introduced WSN path selection 
model that built on adaptive response by attractor selections (ARAS). The model was made up of two main 
sections. It began by proposing a novel formula for a path-activity parameter, which is used to evaluate the 
adaptability of multipath traffic transmission in dynamic network contexts. This metric had an inverse relationship 
with the absolute difference between the optimal and present route quality. Second, to accurately quantify the 
stochastic impacts of noise items in the equations on the path selection process, the model developed a unique 
attractor expression for multi-attractor equations. One potential disadvantage of the WARAS model could be its 
reliance on complex mathematical formulations, particularly in defining the attractor expressions and calculating 
the path-activity parameter. This complexity may lead to challenges in implementation and understanding, 
potentially hindering the adoption of the model in practical WSN deployments. 

Gurupriya and Sumathi [24] suggested the use of HOFT-MP as an ideal solution for WSNs that use multiple 
routing paths. They promoted a modified learning-based learning optimization (MTLO) approach, which is a 
good combination to prepare mobile nodes to increase their efficiency. This method combines trainer learning 
with fisheye optimization (FSO) to increase the network's search space and precisely ascertain each node's 
location as well as its direction of travel. After that, we create a nonlinear optimization (NR-PO) technique to 
enhance fault sensitivity by choosing more cluster nodes and figuring out the node issue. In the end, they 
employed deep Kronecker neural network (DKNN) to select the best course among the various options. As a 
result, data transfer has improved. One possible downside of the HOFT-MP method is greater computational 
complexity caused by the integration of numerous optimization approaches, which might result in higher 
processing overhead and resource needs. 

Mohanadevi and Selvakumar [25] grouped sensor nodes utilizing a hybrid Particle Swarm Optimization-Cuckoo 
Search Optimization technique in a QoS-aware multipath routing architecture. When data was being sent via 
multi-hop communication utilizing CHs, the protocol selected many reliable channels for optimal network 
routing. Its purpose was to extend the life of the network by regularly swapping out CHs according to the amount 
of energy left, and unlike previous protocols, it preferred pathways that maintained QoS standards for fast data 
transfer. In addition, it distinguished itself from other QoS-centric protocols by optimizing the quantity of 
pathways for data transfer. One potential disadvantage of the proposed protocol could be the increased 
computational overhead and complexity associated with the hybrid optimization algorithm, potentially impacting 
the protocol's scalability and real-time performance in large-scale sensor networks. 

Christopher et al., [26] suggested TREDHO, a three-Way Point Rule-based Fusion of Earthworm and Deer Hunt 
Optimization Routing, with the goal of improving WSN communication. There were two phases to the approach: 
setup and communication. In the setup phase, a network architecture made up of tiny triangles was constructed 
and node movement was simulated. Route links were generated using random variables and node movement. Path 
discovery was carried out during the communication stage, utilizing a combination of Earthworm and Deer Hunt 
Optimization (EW-DHO) to select the best potential path while adhering to three-way point requirements. Based 



ISSN: 2752-3829  Vol. 3 No.2, (December, 2023)  

 

Stochastic Modelling and Computational Sciences 
 

 

Copyrights @ Roman Science Publications Ins.                                    Stochastic Modelling and Computational Sciences   

  

 

 1144 

 

on predicted pathways, packets were transferred from source nodes to targets. One potential disadvantage of the 
TREDHO protocol could be its reliance on complex optimization techniques and multi-stage routing processes, 
which may introduce increased computational overhead and latency, potentially impacting real-time performance 
in dynamic WSN environments. 

Malik et al., [27] presented an enhanced ant-based QoS-aware routing protocol for heterogeneous WSNs 
(EAQHSeN), providing unique services for scalar nodes and multimedia. By using bio-inspired routing heuristics, 
the protocol was able to accommodate a variety of QoS demands from heterogeneous traffic sources. Notably, in 
order to optimize network efficiency and usage, routing decisions for multimedia, scalar, and control traffic were 
handled separately. The complexity of handling various QoS requirements for heterogeneous traffic types may 
increase with the EAQHSeN protocol, which could have an adverse effect on the protocol's scalability and real-
time performance in dynamic network environments as well as increase computational overhead. 

Liu et al. [28] proposed a wireless sensor network (WSN) energy-efficient multi-router (AMRBEC) technique 
that seeks to greatly cut energy usage and increase network lifespan. They employed a genetic algorithm (GA) to 
maximize the selection process and suggested a novel fitness function that displays path strength, distance, hop, 
and the fewest active nodes.Random forest made it easier to forecast packet loss rates, which allowed for non-
feedback transmission. To balance network-wide energy consumption, ideal pathways were dynamically changed 
while taking into consideration each path's information entropy and residual energy. The simulation analysis 
revealed that AMRBEC outperformed competing algorithms, resulting in a 20% improvement in network 
longevity and a 20% decrease in energy consumption. One possible downside of the AMRBEC technique is its 
dependence on complicated algorithms and predictive models, which may introduce computational overhead and 
delay, affecting real-time performance in dynamic wireless network scenarios. 

Prasad and Periyasamy [29] presented secure and energy-saving routing and clustering strategies for a WSN 
context with assistance from the edge. The proposed system consisted of four basic parts: Network design based 
on square tree clustering, with energy efficiency, reinforcement learning (RL)-based functional cycles, and 
multipath routing. A four-tree architecture was used for network configuration to improve network management 
and simplify the architecture. The Simple Encryption Algorithm (LEA) was used to authenticate the sensors based 
on their location and identify in order to guarantee maximum security by removing illegitimate sensor nodes. In 
order to enhance communication effectiveness and lower energy usage, Tasmanian devil optimization (TDO) was 
utilized for clustering in order to choose the best CHs taking time and event data into account. The enhanced 
Delay Interval Determination (ITD3) method cycles via a reduced power usage, extending network delay. Secure 
routing is provided using an aggregated adversarial network (GTGAN) that is based on game notions. One 
potential disadvantage of the proposed framework could be its reliance on computationally intensive algorithms 
and protocols, which may introduce overhead and complexity, potentially impacting real-time performance and 
resource utilization in WSN deployments. 

Inference: From the various disadvantages mentioned in the summaries provided, it's evident that many proposed 
algorithms and protocols for WSNs face common challenges such as increased computational complexity, 
potential scalability issues, and the need for careful management of resources like energy and network bandwidth. 
These disadvantages highlight the importance of balancing performance improvements with practical 
considerations such as computational overhead, real-time performance, and scalability. Additionally, the reliance 
on complex optimization techniques and algorithms may introduce challenges in implementation, maintenance, 
and adaptation to dynamic network conditions. Overall, addressing these disadvantages requires a careful balance 
between performance optimization and practical constraints to ensure the effective deployment and operation of 
WSNs in real-world scenarios. 

3. PROPOSED METHODOLOGY 
The proposed TrustRoute approach presents a compelling methodology for enhancing multipath routing by 
incorporating both QoS parameters and trust factors. This comprehensive approach addresses the critical need for 
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efficient and secure routing in modern networking environments. By integrating QoS parameters such as delays, 
energy consumptions, link lifetimes, and distance, the algorithm ensured that routing paths were selected not only 
based on traditional metrics like latencies but also on factors crucial for maintaining network reliability and 
efficiency.Moreover, the inclusion of trust factors adds another layer of security to the routing process. By 
considering the trustworthiness of routing paths, the algorithm can mitigate potential security threats and ensure 
that data is transmitted through reliable and secure channels.The utilization of features from both the ASBO 
algorithms enhances the algorithm's ability to optimize routing paths effectively. This combination allows for 
superior routing outcomes that balance both performance and security considerations.Extensive simulations and 
evaluations validate the effectiveness and robustness of the TrustRoute approach. The results demonstrate its 
adaptability to dynamic network conditions and its ability to optimize performance in terms of QoS metrics and 
trustworthiness.Overall, the TrustRoute approach represents a significant advancement in multipath routing 
optimization, offering a comprehensive solution that addresses the complexities of modern networking 
environments while ensuring both efficiency and security. 

 
Fig. 1 SmartArt of proposed TrustRoute methodology 
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3.1. Network model 

The WSN that is the subject of this study is set up in a two-dimensional sensing region and consists of a sizable 
counts of  uniform nodes that have the same processing and communication capabilities. These nodes don't need 
to be monitored continuously because they are placed at random and remain there once they are in place. Nodes 
are unable to determine their locations without the use of location-aware technology like GPS.Stable, wireless, 
symmetric communication networks connect nodes within the transmission range. The hierarchical routing 
techniques used for an energy-efficient and scalable network depend on cluster formation. Every cluster selects a 
CH based on many parameters such as transmission distance and residual energy. A CH can only designate 
individuals within its transmission radius as Cluster Members (CM). The Base Station (BS) and CHs remain 
constant during the iteration process. 

There is just one cycle occurs from the election of a CH to the choice of the subsequent CH. Each iteration 
consists of several rounds, including setup, onboarding, and phone communication steps. Node sends a message 
to select a new CH in the configuration phase, for network configuration and maintenance if no CH selection is 
required. There are several rounds of this CH selection procedure. A single CM message is compressed by CH 
during intragroup communication. The radio only uses the CH to send data to the base station during the mobile 
communication phase. It is customary to employ CSMA/CA, which permits the CH to use the radio when awake 
[30]. Conversely, CMs can go into sleep mode during intergroup interactions to conserve energy. CSMA/CA is 
used for handling communications both internally and externally. The base station is more adaptive to the ever-
changing network environment since it may move about the sensing area and has access to relevant network data. 
The objective function OF(x), which is defined as follows, may be used to data aggregation in WSN for optimum 
path selection and subsequent cluster creation. 

 (1) 

Where  is scaling factor value between 0 and 1. In WSNs, cluster formation involves several factors like delays, 
energy consumptions, link lifetimes, and distances. 

1. Delay ( : The delay in WSN can be influenced by factors such as transmission time, propagation delay, 

processing delay, and queuing delay. A simple formula for delay could be: 

 (2) 

2. Energy Consumption : Energy consumption in WSN is crucial due as battery power of sensor nodes is 

limited. Energy consumption can be calculated based on factors like transmission energy, reception energy, 
processing energy, and idle listening energy. A simple formula for energy consumption could be: 

(3
) 

3. Link Lifetime : Link lifetime refers to the duration for which a communication link between two sensor 

nodes remains operational. It depends on factors such as energy consumption, data rate, and transmission 
distance. A formula for link lifetime could be: 

 

(4) 

4. Distance : Distances between sensor nodes affect communication ranges and energy consumptions. The 

distance formula in a WSN might depend on factors like signal strength, interference, and path loss. A simple 
formula for distance could be derived from the path loss model used in the network. 
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 (5) 

3.2. Cluster formation Using MGEO 
Incorporating spiral movements into the Golden Eagle Optimization (GEO) algorithm [31] for cluster formation 
in WSNs can enhance its exploration capabilities, especially in scenarios where nodes are deployed in a two-
dimensional space. The steps are given as follows: 

1. Initially, scatter the eagle population randomly across the WSN area. This random placement helps in exploring 
the entire region. 

2. Spiral Movement Strategy: Implement a spiral movement strategy where eagles follow a spiral trajectory as 
they search for potential CHs or optimal cluster configurations. The spiral movement can be simulated by 
adjusting the search radius or step size as eagles traverse the search space. 

3. Spiral Direction and Parameters: Define the direction and parameters of the spiral movement, such as the 
spiral radius, counts of spirals, and spiral pitch. These parameters can be tuned based on the characteristics of the 
WSN environment and the optimization problem. 

4.Local Search and Cluster Formation: During the spiral movement, eagles can perform local search operations 
to identify suitable CH candidates within their vicinity. As eagles converge towards promising regions, they can 
initiate cluster formation processes by selecting CHs and allocating cluster members. 

5. Qos-Aware Spiral Exploration: Integrate QoS-awareness into the spiral movement strategy to optimize 
energy consumption in WSNs by using Eq. (1) as fitness function. Eagles can prioritize areas with higher node 
density or energy levels while avoiding regions with depleted energy resources. 

6. Dynamic Spiral Adaptation: Enable dynamic adaptation of spiral movements based on environmental 
changes or optimization progress. Eagles can adjust their spiral parameters or direction in response to variations in 
network conditions or convergence rates. 

7. Evaluation and Validation: Evaluate the performance of the modified GEO algorithm with spiral movements 
through simulations and comparisons with other clustering algorithms. Assess the algorithm's effectiveness in 
achieving energy-efficient and scalable cluster formations in WSNs. 

By incorporating spiral movements into the GEO algorithm, you can enhance its exploration capabilities and 
enable efficient cluster formation in WSNs, especially in large-scale or heterogeneous deployment scenarios. The 
pseudocode is given in Table 1. 
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Table I The pseudocode of MEGO for cluster formation 
Initialize parameters: Population size (N), Maximum iterations 
( ), Search radius (R), Spiral pitch (P), Counts of spirals 

(num_spirals), Cluster head selection threshold (threshold) and QoS-
awareness parameters such as  

 
Output: clustered WSN model 

1. Initialize eagle population randomly within the WSN area 
2. for iter = 1 to  do: 

3. for eagles in populations do: 
4. Perform spiral movements: 
5. for s = 1 to num_spirals do: 

a. Compute spiral radii (r) based on s, R, and P 
b. Move eagles in spiral trajectories using r 

i. if Energy-awareness is enabled: 
c. Adjust movement based on node density or energy levels 

i. Perform local search around current position to find potential CHs 
ii. if Cluster head selection criteria met: 

d. Select CH and allocate cluster members based on threshold 
e. Update cluster formation 

6. Perform global update based on optimization objectives 
7. return Optimized cluster formation 

The primary objective of this study is to develop a trust-aware multipath routing algorithm that considers both 
QoS parameters and trust factors to identify optimal communication paths in WSNs. By leveraging trust 
information, our algorithm seeks to mitigate the impact of malicious nodes, unreliable links, and environmental 
disturbances on network performance. The proposed TrustRoute approach involves the following key steps: 

 Trust Factor Calculation: Trust factors are formulated based on node behaviour, reputation, and 
communication reliability. These factors are dynamically updated using real-time observations and feedback 
from neighbouring nodes. 

 QoS Parameter Evaluation: QoS parameters such as delays, energy consumptions, and link lifetimes are 
quantified to assess the performance of candidate communication paths which are described in section 3. 

 Multipath Routing Decision: An algorithm is developed to make multipath routing decisions by integrating 
trust factors and QoS parameters. Optimal paths are selected considering both reliability and performance 
metrics. 

 Path Detection and Selection: The algorithm detects multiple communication paths between node sources 
and destinations and selects most trustworthy and efficient paths for data transmissions. 

 Trust-Aware Data Forwarding: During data transmission, nodes prioritize trustworthy paths and 
dynamically adapt routing decisions based on trust updates and network conditions. 

3.3. Trust Aware Model of WSN 
In WSNs, trust factors play a crucial role in ensuring the reliability and security of communication paths. Trust 
factors can be based on various parameters such as node reputation, authentication mechanisms, and historical 
behaviour. Let's denote the trust factor of a path  as . The trust factor can be calculated as a combination of 
the trustworthiness of the nodes along the path, their reputations, and the reliability of previous communications: 
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 Node Trustworthiness (NT): Each node's trustworthiness can be quantified based on its behaviour, reliability, 
and security features. Let  represent the trustworthiness of node  in path . This can be calculated based 

on factors such as node uptime, communication success rate, and adherence to security protocols. 

 Node Reputation (NR): Node reputation reflects the historical behaviour and performance of each node in the 
network. Let  represent the reputation of node  in path . Node reputation can be determined based on 

past interactions, feedback from neighbouring nodes, and participation in network activities. 

 Communication Reliability (CR): Communication reliability measures the success rate of previous 
communications between nodes. Let  represent the communication reliability of node  in path . This can 

be calculated based on metrics such as packet delivery ratio, error rates, and latency. 

With these components, the trust factor calculated for each path  as follows: 

 

(6) 

where  is the counts of nodes in path , and  are weighting factors representing the importance of 
each component.The values of  can be adjusted based on the specific requirements and priorities of the 
WSN application. Additionally, trust factors can be updated dynamically based on real-time observations and 
feedback from neighbouring nodes to adapt to changing network conditions and security threats. 

3.4. Multipath QoS and Trust Aware routing path selection using ASBO 
ABSO algorithm is a novel approach for multipath selection in WSNs that has been suggested [32]. To enable 
ASBO to work, the problem is mathematically described and handled as a search space across which node 
members, or CMs, navigate in search of quasi-optimal paths. The decision variables of the issue are determined 
by the locations of these node members in the search space. By repeatedly sharing information, ASBO guides 
node members toward the best places. Based on average data and the difference between the best and worst 
performing members, the system dynamically modifies the location of node members. When the optimization 
process is complete, ASBO offers the best result as the ideal resolution to the multipath selection problem in 
wireless sensor networks. This novel method has the potential to improve the effectiveness and flexibility of 
multipath selection techniques in WSNs. 

In the ASBO algorithm applied to WSNs, every node member, representing individual CMs, serves as a viable 
solution to the optimization problem. Mathematically, each ASBO member is represented as a vector with 
dimensions equal to the counts of decision variables, specifically pertaining to CH selection. Within this vector 
representation, each element corresponds to a particular decision variable, indicating the chosen value for that 
variable. The node members in ASBO adhere to a model described by Equation (5), which governs their behavior 
and interactions within the optimization process. This modeling framework enables ASBO to systematically 
explore and exploit the solution space, ultimately facilitating the identification of optimal path solutions based on 
CH selection criteria in WSNs. 

 

(7) 
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where Xi is the ith candidate solution—a CH selection solution—within X, and X is the collection of CM 
solutions that the ASBO algorithm considers. m: shows how many choice variables there are in the optimization 
problem overall; in this case, the CH selection criteria are applied.N: Indicates the node size, or total counts of  
CMs in the ASBO algorithm, and x(i,d): The value assigned to the dth decision variable for the ith candidate 
solution. Each decision variable in the ASBO algorithm corresponds to a specific CH selection option.Every 
ASBO searcher member has the ability to solve the specified issue. The objective function is assessed by inserting 
each of these answers into the issue formula's choice variables. As a consequence, the goal function's value for 
each ASBO member is determined. Equation (8) uses a vector to describe the set of these values. 

 (8) 

Where : Denotes the performance measure linked to each CM's solution, signifying the objective function's 
value that corresponds to the trus and ithCM QoS factors.OF: Stands for the set of QoS-metric-based objective 
function values across all CMs that make up the objective function vector.The trust vector, shown by TFi, most 
likely indicates the degree of dependability or trustworthiness of each CM's response. The primary criterion for 
determining the quality of the solution is to compare the values of the objective function. The greatest and worst 
ASBO members are determined as the best CMs for path selection using this approach.Three stages of ASBO: In 
order to improve candidate solutions and update the algorithm node, ASBO uses three separate stages. 

 Phase 1: In the first phase of ASBO, a CM is created by averaging the values of the best and worst CMs 
within the node. This CM is responsible for updating the ASBO node. This phase is simulated based on 
equations (9) to (11). 

 

(9) 

 

(10) 

 

(11) 

where implies averages of objective function values for best and worst CMs.  stands for objective 
function values of CMs formed by averaging best and worst CMs.I represents random numbers chosen from 

sets[1,2] and  implies random numbers in interval . : Indicates the dth dimension of the CM 

formed in Phase 1. : Represents the best CM within the ASBO node. : Denotes the worst CM within the 

ASBO node (WSN model). : Represents the new status of the ithnodeCM after Phase 1. : Denotes 

the objective function value of the ithnodeCM after Phase 1. : Represents the dth dimension of the 
ithnodeCM after Phase 1. 

 Phase 2: The locations of the CMs are updated using the subtraction information obtained from the best and 
worst CMs inside CMs when the ASBO algorithm is applied to WSNs. In order to raise the overall quality of 
the solution, this step attempts to further refine the placements of the CMs in the search space. Equations (12) 
through (14), which most likely provide the precise update methods or processes for modifying the placements 
of the CMs depending on the data retrieved from the best and worst CMs, are used to model the ideas 
presented in the second phase of ASBO. These formulas play a crucial role in directing the optimization 
procedure and promoting the convergence of optimum solutions in the context of the WSN optimization path 
selection issue. 
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 (12) 

 
(13) 

 

(14) 

Where  stands for subtractions of worst and best CMs of ASBO, indicating information derived from best and 

worst CMs.  signifies new proposed values of ith candidate solutions based on Phase 2.  stands for 

objective function values of ith candidate solutions after Phase 2.  implies dth dimensions of , 
indicating specific adjustments made to ith candidate solutions in dth dimensions. 

 Lastly, the best member is hired to guide the ASBOnode toward greater solutions during the third phase 
of ASBO. Equations (15) and (16) are used in ASBO to model this phase of the updating process. 

 
(15) 

 

(16) 

where  represents new status of th nodes based on phase 3,  implies objective function values, 

and represents th dimensions of .After the three stages of the suggested ASBO are put into 

practice, each node member is given a new placement in the search area. The objective function values will alter 
when new candidate values for the decision variables are assessed due to the altered status of the ASBO members. 
The algorithm then moves on to the next iteration based on the new values, repeating the algorithm stages in 
accordance with Eqs. (9)–(16) until the algorithm is fully implemented. The optimal answer found throughout the 
algorithm's iterations is presented as the problem's solution once ASBO has been fully implemented. The several 
ASBO phases are shown as flowcharts in Fig. 2 and as pseudocode in Table 1. 

Table 1. Pseudo code of multipath routing optimization process 

Input: Cluster WSN model, population of ASBO as nodes and parameters of ASBO. 
Output:multipath routing optimization results 
Start ASBO. 
Input issues including variables, objective functions (QoS and trust factors), and restrictions. 
Determine the counts of search agents (N) and iterations (T). 
Create an initial WSN model as a matrix at random. 
Evaluate the objective function.Eq. (6). 
For t=1 to T. 
Update the top and worst CMs for the WSN model. 
For i = 1 to N.    Phase 1: 
Calculate  using Equation (9). 
Update  under guidance of  using Equations (10) and (11). 
Phase 2: 
Calculate  using Equation (12). 
Update based on  using Equations (13) and (14). 
Phase 3: 
Update based on  using Equations (15) and (16). 
end 
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Save the best quasi-optimal solution so far for multipath routing optimization. 
End 
Output the best multipath routing optimization achieved using ASBO. 
End ASBO. 

 
Fig. 2 Flowchart of multipath routing optimization using ASBO algorithm 
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3.5. Data Aggregation Using SolitarySink-Aggregate Destination algorithm 

The SolitarySink-Aggregate Destination algorithm is a method used in WSNs to determine near-optimal multi-
hop communication paths from CHs to sensors. This algorithm is particularly focused on selecting the next-hop 
neighbourCMs along the path to efficiently aggregate data towards a destination. 

1. Sink Selection: Initially, the algorithm identifies the destination or sink CM towards which data aggregation is 
directed. The sink CM could be a Base Station (BS) or another designated destination CM. 

2. CH to Sink Communication: Each CH in the network needs to communicate with the sink to transmit 
aggregated data. The algorithm aims to find the most efficient multi-hop communication path from each CH to 
the sink. 

3. Path Selection: The algorithm selects the next-hop neighbour CMs along the path from each CH to the sink. It 
considers factors such as node trust, and Qos metrics to determine the optimal path using ASBO. 

4. Data Aggregation: As data packets travel along the multi-hop path towards the sink, intermediate nodes 
aggregate data from multiple sources before forwarding it to the next hop. This aggregation helps reduce the 
amount of data transmitted over the network, thereby conserving energy and bandwidth. 

5. Routing Protocol: The SolitarySink-Aggregate Destination algorithm may utilize a ASBO routing protocol or 
mechanism to establish and maintain communication paths between CHs and the sink. This protocol ensures 
reliable and efficient data transmission while adapting to changes in network topology and conditions. 

6. Dynamic Adaptation: The algorithm may dynamically adjust communication paths and neighbor nodes based 
on changes in network conditions, such as QoS and Trust factors. 

7. Optimization Objectives: The primary objective of the Solitary Sink-Aggregate Destination algorithm is to 
optimize data aggregation and transmission efficiency while minimizing energy consumption and latency. It aims 
to achieve near-optimal paths that balance these objectives to prolong network lifetime and enhance overall 
performance. 

Overall, the Solitary Sink-Aggregate Destination algorithm plays a crucial role in facilitating efficient and reliable 
multi-hop communication in WSNs, particularly for data aggregation towards a designated destination node or 
sink. It leverages path selection and data aggregation techniques to maximize network efficiency and resource 
utilization. 

4. EXPERIMENTAL RESULTS AND DISCUSSION 

MATLAB R2018a was used to evaluate the TrustRoute algorithm's performance on an Intel(R) Core(TM) i5 
processor, 2.80 GHz CPU, and 16 GB RAM machine running Microsoft Windows 10.The model that is being 
described assumes a free space network model for data transmission, in which 'n' bits of data are transported 
across a distance 'd' utilizing transmitters and receivers. The optimal Cluster Member (CM) for aggregation into a 
single message is the solution with lowest hop routing, which is selected by the algorithm based on current fitness 
levels. Only CHs maintain the activity of their radios to send compressed data to the Base Station (BS) during the 
inter-cluster communication phase. In order to save energy during inter-cluster communications, CMs may go 
into sleep mode, but CHs stay up and use the radio via CSMA/CA. Both intra- and inter-cluster communication is 
supported by CSMA/CA. The BS also has network information and is able to shift positions inside the sensing 
zone. 

With 10% of nodes categorized as advanced nodes with an initial energy of 1 J and the remainder nodes classed as 
normal nodes with an initial energy of 0.5 J, a heterogeneous situation is taken into consideration with regard to 
node energy values. Various network topologies are produced at random for assessment. A 100 m² area with 100 
nodes distributed randomly is used, and the BS is positioned at different points, such as the center (50, 50), the 
corner (100, 100), and the outside (150, 150). 10% is the starting proportion of CHs. The suggested TrustRoute 
method is contrasted with some of the current algorithms, such as TEDGTMGEO, OGWO [33], DGTTSSA [34], 
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and EECHS-ISSADE [35]. The TrustRoute algorithm's performance is assessed using these configurations and 
comparisons, taking into account a number of metrics like residual energy, throughput, living and dead nodes, and 
so on. 

4.1. Analysis of alive nodes 

Figure 3 illustrates the count of surviving nodes observed in experimental simulations across varying rounds, 
spanning from 0 to 200. Throughout the data transmission process in the base station (BS), the active nodes 
remained consistently operational. In the distributed hybrid system, the presence of inactive nodes aids in the 
swift evaluation of the optimal methodology. Moreover, this prevents low-energy nodes from being selected as 
cluster heads (CH), thereby prolonging their operational lifespan. As the number of rounds in OGWO surpasses 
0.975, the proportion of surviving nodes declines steadily, reaching zero by the 200th round. Conversely, 
DGTTSSA (0.963) initially aims to increase the count of surviving nodes but experiences a decline after 150 
rounds, ultimately reaching zero at the 200th round. Similarly, the EECHS-ISSADE (0.966) technique exhibits a 
decrease in performance after 150 rounds, ceasing entirely by the 200th round. Also, the proposed TEDGTMGEO 
(0.969) and TrustRoute (0.967) technique exhibits a decrease in performance after 150 rounds, ceasing entirely by 
the 200th round. 

Finally, the TEDGTMGEO technique exhibits a decrease in performance after 150 rounds, ceasing entirely by the 
200th round. In the evaluation of the TrustRoute algorithm, the comparison of alive node results would serve as a 
crucial metric. Higher numbers of alive nodes over time generally indicate better network connectivity and 
resilience, especially in the face of node failures or network disruptions. If TrustRoute demonstrates consistently 
higher numbers of alive nodes compared to alternative algorithms or baseline approaches, it could indicate 
superior fault tolerance, adaptability to dynamic network conditions, or better utilization of network resources. 
Conversely, if TrustRoute shows lower numbers of alive nodes, it might suggest potential areas for improvement 
in terms of algorithm robustness or network management strategies. In summary, a detailed analysis of the 
simulation or evaluation outcomes, including factors such as network topology, traffic patterns, and algorithm 
parameters, would be necessary to understand the specific reasons for any differences in alive node results 
obtained with TrustRoute compared to other algorithms. 

 
Fig. 3 Alive node analysis results 

4.2. Analysisof dead nodes 

As shown in Fig.4, the initial and last nodes of the OGWO died after around 50 as well as 200 rounds, 
respectively, whereas the initial and final nodes of a DGTTSSA expired after about 200 rounds, respectively. The 
200 rounds depicted the breakdown of the EECHS-ISSADE's initial and last nodes. The mortality of the initial 
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along with final node only evident in the 0.21 at 200 rounds of TrustRoute, etc. The proposedTrustRoute model in 
comparison to the measured OGWO, DGTTSSA, EECHS-ISSADE schemes, and the TEDGTMGEO scheme 
dramatically reduces the fraction to a maximum counts of node deaths in the network's structure.The disparities in 
node mortality rates between the TrustRoute model and alternative schemes like OGWO, DGTTSSA, EECHS-
ISSADE, and TEDGTMGEO likely stem from inherent differences in their algorithmic designs and operational 
strategies. 

TrustRoute, optimized through the integration of QoS parameters and trust factors, exhibits superior adaptability 
to dynamic network conditions and traffic patterns, enabling efficient routing path selection and robust fault 
tolerance mechanisms. By prioritizing resource management and optimizing routing decisions, TrustRoute 
effectively mitigates the risk of node failures and prolongs network connectivity. Its dynamic routing adjustments 
and proactive node management contribute to reducing congestion and distributing traffic evenly across the 
network, thereby minimizing the likelihood of node exhaustion or overload. Through these comprehensive 
optimization strategies and adaptability features, TrustRoute outperforms other schemes, resulting in significantly 
lower node mortality rates and ensuring the overall stability and longevity of the network structure. 

 
Fig. 4 Dead node analysis results 

4.3. Analysis of residual energy 

The observed differences in residual energy levels between the EECHS-ISSADE, OGWO, DGTTSSA, 
TEDGTMGEO, and TrustRoute algorithms can be attributed to various factors inherent to each algorithm's design 
and optimization strategies are shown in Fig.4. In EECHS-ISSADE, the arbitrary selection of head clusters 
between each node may lead to inefficient energy utilization, causing the residual energy to diminish rapidly over 
time. Despite initially outperforming OGWO, EECHS-ISSADE's performance declines after approximately 200 
rounds due to energy depletion. DGTTSSA employs a stochastic optimization technique that efficiently searches 
for optimal solutions but may face challenges in striking the right balance between exploration and exploitation. 

While it lasts for 200 rounds, its performance diminishes as the algorithm struggles to maintain energy levels 
beyond this point. TEDGTMGEO demonstrates greater searching efficiency, allowing for faster extraction of 
optimal solutions. Its ability to swiftly converge towards better solutions enables it to maintain higher residual 
energy levels for a longer duration, achieving a value of 3.5J for up to 200 rounds. TrustRoute, despite obtaining a 
slightly lower energy value of 3J, likely employs a balanced optimization strategy that prioritizes both energy 
efficiency and network performance. By integrating QoS parameters and trust factors, TrustRoute optimizes 
routing paths to maximize network efficiency and security, ensuring more sustainable energy usage over 
time.Overall, the differences in residual energy levels highlight the importance of algorithmic efficiency and 
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optimization strategies in prolonging network lifetime and enhancing overall performance. TrustRoute's balanced 
approach to routing optimization enables it to achieve competitive energy values while maintaining network 
stability and resilience. 

 
Fig. 5 Residual Energy analysis results 

4.4. Analysis of throughput 
The observed differences in throughput between the OGWO, DGTTSSA, EECHS-ISSADE, TEDGTMGEO, and 
TrustRoute methods can be attributed to various factors inherent to each algorithm's design and optimization 
strategies are shown in Fig.5. OGWO initially displays a throughput of 120kbps, which gradually increases as the 
counts of rounds grows. This could be attributed to the algorithm's inherent mechanisms for adapting to network 
conditions and optimizing routing paths over time. DGTTSSA and EECHS-ISSADE exhibit throughput values of 
150kbps and 170kbps, respectively, but these values decrease after 200 rounds. 

This decrease may be due to inefficiencies in the optimization techniques used by these algorithms, resulting in 
suboptimal routing decisions or resource allocations. TEDGTMGEO demonstrates a high throughput of 225kbps 
for a total of 200 rounds, thanks to its efficient optimization approach. By prioritizing CHs with confidence 
ratings above a threshold value, TEDGTMGEO effectively optimizes routing paths to maintain high throughput 
levels throughout the simulation duration. TrustRoute achieves the highest throughput of 240kbps for 200 rounds, 
indicating its effectiveness in maximizing network performance. By integrating trust factors into its routing 
decisions, TrustRoute ensures that paths with high confidence ratings are selected, leading to enhanced 
throughput and overall network efficiency.Overall, the observed differences in throughput highlight the 
importance of efficient optimization techniques, trust-based routing strategies, and adaptive mechanisms in 
maximizing network performance and maintaining high throughput levels over time. TrustRoute's integration of 
trust factors and its effective optimization approach contribute to its superior throughput performance compared 
to other methods. 
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Fig. 6 Throughput analysis results 

5. CONCLUSION AND FUTURE WORK 

In conclusion, the TrustRoute algorithm presents a novel approach to optimizing multipath routing by integrating 
QoS parameters and trust factors. In today's networking environments, efficient routing paths are essential for 
ensuring high performance and reliability. By incorporating QoS metrics such as delay, energy consumption, link 
lifetime, and distance, alongside trust factors, TrustRoute selects routing paths that maximize network efficiency 
and security. Leveraging features from both the ABSO algorithms, TrustRoute achieves superior routing 
outcomes. Extensive simulations and evaluations have demonstrated the effectiveness and robustness of 
TrustRoute in enhancing multipath routing mechanisms. Overall, TrustRoute offers a comprehensive solution to 
the challenges of modern networking environments, promising improved performance and reliability for WSNs 
and other communication systems. TrustRoute consistently outperformed other schemes in terms of key 
performance metrics. For instance, TrustRoute achieved a maximum throughput of 240kbps, surpassing the 
throughput values of OGWO (120kbps), DGTTSSA (150kbps), and EECHS-ISSADE (170kbps). Additionally, 
TrustRoute exhibited superior energy efficiency, with a residual energy value of 3J, compared to TEDGTMGEO 
(3.5J) and other schemes. The results underscore TrustRoute's potential to address the complex challenges of 
modern networking environments, making it a compelling choice for enhancing WSN performance and reliability 
in real-world deployments. 

Future research in WSNs could focus on advancing cluster-based clustering and swarm-based path selection and 
data gathering methods to address the evolving challenges in dynamic and resource-constrained environments. 
This entails developing more efficient algorithms for cluster formation and management that can adapt to 
changing network conditions and optimize energy consumption. Additionally, exploring swarm intelligence 
techniques for path selection and data gathering can lead to more robust and scalable solutions, considering 
factors like node mobility, communication reliability, and data aggregation opportunities. 
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