
ISSN: 2752-3829  Vol. 3 No.2, (December, 2023)  

 

Stochastic Modelling and Computational Sciences 
 

 

Copyrights @ Roman Science Publications Ins.                                    Stochastic Modelling and Computational Sciences   

  

 

 1125 

 

OBSERVATIONAL CONSTRAINTS OF BIANCHI TYPE-I COSMOLOGICAL MODEL WITH 

COSMOLOGICAL CONSTANT Λ 

Archana Gajanan Ingle
1
, Praveen Kumar Dhankar

2
, Kashika Srivastava

3
, and Shailendra D. Deo

4 

1PGTD Mathematics, Gondwana University, Gadchiroli, Maharashtra, India 
2Department of Mathematics, G H Raisoni College of Engineering Nagpur Maharashtra, India 

3Babu Banarasi Das University Lucknow, Uttar Pradesh, India 
4Mahatma Gandhi College of Science, Gadchandur, Dist. Chandrapur, Maharashtra, India 

1archanaingle939@gmail.com, 2pkumar6743@gmail.com, 3kashikasrivastava10@gmail.com and 
4shailendradeo36@gmail.com 

ABSTRACT 
In this work, we examine Einstein’s field equations where a variable cosmological constant is taken into account 

for a Bianchi type-I universe with a perfect fluid present. We make the assumption that the cosmological term has 

a proportionality to the square of the Hubble parameter. On the basis of quantum field estimation in a curved 

growing backdrop, numerous researchers have recently developed the variation law for vacuum density. Both the 

model and the cosmological term tend asymptotically towards a de-Sitter universe and a true cosmological 

constant, respectively. The current universe is speeding with a significant fraction of cosmological density in the 

form of a cosmological term, according to some recent findings that were acquired here using a somewhat 

different methodology from that of other researchers. The cosmological model’s geometrical and physical 

interpretations were examined. 

1. INTRODUCTION 
The cosmological constant problem is a highly significant observational discovery in recent times that captivates 
academics worldwide. Einstein initially included the cosmic constant Λ in his field equations. Given the dynamic 
nature of the cosmos, it is logical to see this constant as a variable that changes throughout time. The Λ term is a 
concept that emerges naturally in the context of general relativistic quantum field theory. It is understood as the 
energy density of the vacuum [1]-[4]. 

Many researchers [5]-[13] have argued for the dependence of Cosmological constant Λ. Several scholars [14]-
[27] have examined cosmological models featuring variable values of G and Λ, using a homogeneous and 
isotropic FRW line element. Furthermore, investigations have been conducted on Bianchi type-I models by 
employing varying values for the gravitational constant G and the cosmological constant Λ, as documented in 
references[28]-[34]. Schutzhold [35, 36] has recently suggested that the vacuum energy density is directly 
proportional to the Hubble parameter. This implies that the vacuum energy density decreases as a power of Λ ≈ 
m3H, where m ≈ 150MeV represents the energy scale of the chiral phase transmission of QCD. Borges and 
Carnerio [37] have examined a flat space that is both isotropic and homogeneous. This space is filled with matter 
and has a cosmological term that is directly proportional to the Hubble parameter H. The equation of state for this 
space follows that of a vacuum. Tiwari and Divya Singh[38] have examined the anisotropic Bianchi type-I model 
with a variable Λ term. Tiwari and Sonia [39] examined the absence of shear in Bianchi type-III string 
cosmological models by considering the effects of bulk viscosity and a time-dependent Λ. Tiwari and Sonia [40] 
examined the cosmological model of the Bianchi type-I string, taking into account the presence of bulk viscosity 
and a time-dependent Λ term. To examine the potential impact of anisotropy in the early cosmos on current 
findings, several scholars [28]-[48] have analyzed Bianchi type-I models from various perspectives. 

The paper is organized as follows: Section 2 examines the homogeneous anisotropic Bianchi type-I space time 
with variable cosmological constant Λ containing matter in the form of a perfect fluid. In Section 3, We find the 
solution of the Einstein field equations assuming that cosmological term is proportional to Hubble parameter H 
for stiff matter and also we calculate various physical parameters such as scale factors, Hubble parameter, 
expansion scalar, deceleration parameter, and more. Finally, we provide concluding remarks in the last section. 

mailto:archanaingle939@gmail.com
mailto:pkumar6743@gmail.com
mailto:kashikasrivastava10@gmail.com
mailto:shailendradeo36@gmail.com


ISSN: 2752-3829  Vol. 3 No.2, (December, 2023)  

 

Stochastic Modelling and Computational Sciences 
 

 

Copyrights @ Roman Science Publications Ins.                                    Stochastic Modelling and Computational Sciences   

  

 

 1126 

 

2. THE MODEL AND THE FIELD EQUATIONS 

The spatially homogeneous and anisotropic Bianchi type-I space-time is given by 

 

Where, X1(t), X2(t) and X3(t) are the metric functions of cosmic time t only. 

The energy-momentum tensor of a perfect fluid is given by 

 

where ;  is the four-velocity vector; is Ricci tensor; R is Ricci scalar;  and  are energy 
density and thermodynamic pressure respectively. Let us assume that the matter content yield to an equation of 
state, 

 

The Einstein’s field equation with varying cosmological constant are 

 

Spatial volume V as an average scale factor R of the line element can be defined as 

 

The hubble parameter H can be defined as 

 

Where, dot means the ordinary time derivative of the concerned quantity are 

 

where,  ,   , are directional hubble factors in the  and directions respectively. 

So, in the moving coordinate system, we have the metric Eq. (1) and energy moment tensor Eq. (2). The field 
equation Eq. (4) gives us the following result: 
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The vanishing divergence of the Einstein tensor, we obtain 

 

The non-vanishing component of shear tensor σμν can be defined as σμν =  

are obtain by 

 

The shear scalar σ is defined as 

 

The Einstein’s field equations from (8)-(11) in terms of physical quantities Hubble parameter H, shear scalar σ 
and declaration parameter q written as 
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Where, the declaration parameter q is 

 

After integrating Eqns 

 

Where,    are integrating constants. 

We assume energy conservation equation  obeys as 

 

By using Eqns. (5) and (24), we have 

 

Where, c4 is the integration constant. Again, integrating from Eqns. (21), (22) & (23), we have 
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Where, d1, d2 and d3 are constant of integration 

From the Eq. (20), we have 

 

which implying that 

 

Thus, the presence of positive cosmological constant Λ lowers the upper limit of anisotropy and a negative value 
of the cosmological constant Λ gives more room for anisotropy. Eq.(29) can be defined as 

 

Where, = 3H2 and =  = Λ denotes the critical density and vacuum density respectively. 

 

Demonstrating that the rate of volumetric expansion diminishes over time, and the existence of a positive 
cosmological constant Λ decelerates this drop, while a negative cosmological constant Λ would accelerate it. 
From Eqns. (19) and (20), we have 

 

which implies that Λ ≤ 0 for q ≥ 2. 

3. SOLUTIONS OF THE FIELD EQUATIONS 
The system of equations (3) and (8), (9), (10) and (11) have five independent equations in six unknowns 

, ,  and . Therefore, we require one extra condition to solve the system completely. Here, we will 
take the cosmological term proportional to the Hubble parameter, as many authors considered that it as 
cosmological constant  decay. Schutzhold [26] consider variation law for vacuum density, Borges and Carnerio 
[27], R. K. Tiwari and Divya Singh [28], Tiwari and Sonia [29,30] have considered a cosmological term 
proportional to H. Thus we take the decaying vacuum energy density is given by 
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Where,  is the positive constant. 

Let us assume that  is the ratio of the vacuum and matter density. From the Eqns. (19) & (23), we have 

 

Therefore, the value of α is reduced in an anisotropic background as compared to its value in an isotropic 
background. 

When  i.e the stiff fluid, Eqns. (18), (19) and (33) produce a differential equation 

 

After integrating Eqn. (35), we have 

 

Where,  and  are the constant of integration 

 

 

Therefore, the line element Eqn. (1) reduces to 
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The matter density , pressure , cosmological term , shear scalar  and expansion scalar  are given for this 
model as, 

 

The ratio of the vacuum and matter density given as 

 

The deceleration parameter q for this model is given by 

 

The vacuum energy density ρv and the critical density ρc can be defined as 

 

Spatial volume is given as 
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4. GRAPHICAL REPRESENTATION OF PHYSICAL QUANTITIES 

 
Figure 1. The variation matter density ρ is shown against t. We use constants  and 

 

 
Figure 2. The variation matter density ρ is shown against t in 3- Dimensional plot. We use constants  

and . 

 
Figure 3. The variation pressure p is shown against t. We use constants  and 
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Figure 4. The variation matter density  is shown against t in 3- Dimensional plot. We use constants  

and  

 
Figure 5. The variation cosmological constant Λ is shown against t. We use constants  and 

 

 
Figure 6. The variation cosmological constant Λ is shown against t in 3-Dimensional plot. We use constants 

 and  
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Figure 7. The variation expansion scalar  is shown against t. We use constants  and 

 

 
Figure 8. The variation expansion scalar Θ is shown against t in 3-Dimensional plot. We use constants 

 and  

 
Figure 9. The variation of shear scalar σ is shown against t. We use constants C4 = 0.1 and α = 0.05, k1 = 0.1, k2 

= 1. 
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Figure 10. The variation of shear scalar σ is shown against t in 3-Dimensional plot. We use constants C4 = 0.1 

and α = 0.05, k1 = 0.1, k2 = 1. 

 
Figure 11. The ratio of vacuum and mater density Ω is shown against t. We use constants C4 = 0.1 and α = 0.05, 

k1 = 0.1, k2 = 1. Figure 

 
Figure 12. The ratio of vacuum and mater density Ω is shown against t in 3-Dimensional plot. We use constants 

C4 = 0.1 and α = 0.05, k1 = 0.1, k2 = 1. 
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Figure 13. The variation of vacuum energy density is shown against t. We use constants C4 = 0.1 and α = 

0.05, k1 = 0.1, k2 = 1. 

 
Figure 14. The variation of vacuum energy density ρv is shown against t in 3-Dimensional plot. We use constants 

C4 = 0.1 and α = 0.05, k1 = 0.1, k2 = 1. 

 

 
Figure 15. The variation of critical energy density  is shown against t. We use constants  and 
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Figure 16. The variation of critical energy density ρc is shown against t in 3-Dimensional plot. We use constants 

C4 = 0.1 and α = 0.05, k1 = 0.1, k2 = 1. 

 
Figure 17. The variation of Spatial volume V is shown against t. We use constants C4 = 0.1 and α = 0.05, k1 = 

0.1, k2 = 1. 

 
Figure 18. The variation of Spatial volume V is shown against t in 3-Dimensional plot. We use constants C4 = 

0.1 and α = 0.05, k1 = 0.1, k2 = 1. 
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5. RESULTS AND CONCLUSIONS 

The spatial volume  becomes 0 when the time t is equal to the negative ratio of  and , and the expansion 
scalar becomes infinite at the same time.  It demonstrates that the Universe begins its development with a volume 
of zero and experiences an expansion with an infinite rate. The scale factor  is 0 at , indicating 
that the space-time experiences a singularity of point type during the initial age. When t approaches  
both ρ and σ tend towards infinity. As time progresses, the scale factor R and spatial volume V increase, while the 
expansion scalar drops, indicating a deceleration in the pace of expansion. As time approaches infinity, the values 
of R, V, and Λ all tend to infinity, while the values of  and  all tend to zero. Thus, the model predicts that 
the cosmos will become empty as time approaches infinity. This outcome aligns with observations gathered by 
other astronomers [12, 28, 30, 36]. The behaviour of physical quarantines is shown in the figures (1)-(18) in 2D 
and 3D- dimensional space. To summarize, we have examined the Bianchi type-I cosmology model that includes 
a stiff fluid and a cosmological factor represented by . The deceleration parameter q for the model is 
determined to be 2 at α, it is 0 at α = 2, and it declines with increasing α. The cosmological term  initially of 
significant magnitude, subsequently transitions to a bona fide cosmological constant, aligning with recent 
discoveries [34-38]. The model approaches the de-Sitter universe as a limit. 
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