K-SQUARE HARMONIC MEAN LABELING OF LADDER RELATED GRAPHS

L. S. Bebisha Lenin¹ and M. Jaslin Melbha²

¹Research Scholar and ²Assistant Professor, Department of Mathematics, Women's Christian College, Nagercoil-629001, Tamil Nadu, India

Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli-627012. ¹bebishalenin8497@gmail.com and ²mjaslinmelbha@gmail.com

ABSTRACT

A Graph G = (V, E) with p vertices and q edges is called a k-square harmonic mean labeling if there exists an injective function $h: V(G) \rightarrow \{k, k+1, k+2, ..., k+q\}$ in such a way that an induced edge function $h^*: E(G) \rightarrow \{k, k+1, k+2, ..., k+q-1\}$ defined by $h^*(e = uv) = \left[\frac{2h(u)^2h(v)^2}{h(u)^2+h(v)^2}\right]$ or $\left[\frac{2h(u)^2h(v)^2}{h(u)^2+h(v)^2}\right]$ is

bijective. A graph which admits a k-square harmonic mean labeling is called a k- square harmonic mean graph. This study aims at defining the concept of k-square harmonic mean labeling of ladder related graphs.

Keywords: Square harmonic mean graph, k- square harmonic mean graph

2020 AMS subject classifications: 05C38, 05C78

1. INTRODUCTION

All graphs considered here are simple, finite, connected and undirected graph. Graph labeling plays an important role in graph theory. A graph labeling is an assignment of integers to the vertices, edges or both of a graph with certain conditions. The concept of square harmonic mean labeling has introduced by L. S. Bebisha Lenin, M. Jaslin Melbha [1]. We cite J. A. Gallian [2] for an extensive examination of graph labeling. S. Somasundaram and R. Ponraj [4] are the ones who proposed the idea of mean labeling. M. Tamilselvi and N. Revathi introduced k-harmonic mean labeling [7]. The aforementioned studies served as our inspiration as we introduced k-square harmonic mean labeling of ladder related graphs. We will provide a brief summary of definitions and other information's which are necessary for our present investigation.

Definition 1.1. Let G = (V, E) be a graph having p vertices and q edges. A function h is called a *square harmonic mean labeling* of a graph G, if $h : V(G) \to \{1, 2, ..., q + 1\}$ is injection and the induced edge function $h^* : E(G) \to \{1, 2, ..., q\}$ defined as $h^*(e = uv) = \left[\frac{2h(u)^2h(v)^2}{h(u)^2 + h(v)^2}\right]$ or $\left[\frac{2h(u)^2h(v)^2}{h(u)^2 + h(v)^2}\right]$ is bijective. A

graph which admits a square harmonic mean labeling is called a square harmonic mean graph.

Definition 1.2. A graph obtained from a ladder with n > 2 by removing the edges $u_i v_i$ for i = 1 and n is called an *open ladder* and is denoted by OL_n .

Definition 1.3. A graph obtained from two paths $u_1, u_2, ..., u_n$ and $v_1, v_2, ..., v_n$ by joining each u_i with v_{i+1} for $1 \le i \le n-1$ is called a *slanting ladder* and is denoted by SL_n .

Definition 1.4. Let P_n be a path on n vertices denoted by (1,1), (1,2), ..., (1,n) and with n-1 edges denoted by $e_1, e_2, ..., e_{n-1}$ where e_i is the edge joining the vertices (1,i) and (1,i+1). On each edge $e_i, 1 \le i \le n-1$, we erect a ladder with n - (i-1) steps including the edge e_i . The graph obtained is called a *step ladder graph* and is denoted by $S(T_n)$.

Definition 1.5. A graph obtained from a ladder by adding the edges $\mathbf{u}_i \mathbf{v}_{i+1}$ for $1 \le i \le n-1$, where \mathbf{u}_i and \mathbf{v}_i are the vertices of ladder such that $\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_n$ and $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n$ are two paths of length n is \mathbf{L}_n is called a *triangular ladder* and is denoted by $T\mathbf{L}_n, n \ge 2$.

Definition 1.6. A graph obtained from an open ladder by joining each u_i with v_{i+1} for $1 \le i \le n-1$ and each u_{i+1} with v_{i+1} for $1 \le i \le n-2$ is called an *open triangular ladder* and is denoted by $O(TL_n)$.

Definition 1.7. A graph obtained from a ladder by joining each u_i with v_{i+1} for $1 \le i \le n-1$ and u_{i+1} with v_i for $1 \le i \le n-1$ is called *diagonal ladder* and is denoted by DL_n .

Definition 1.8. A graph obtained from a diagonal ladder by removing the edges $\mathbf{u}_i \mathbf{v}_I$ for i = 1 and n joining each \mathbf{u}_i with \mathbf{v}_{i+1} for $1 \le i \le n-1$ and each \mathbf{u}_{i+1} with \mathbf{v}_i for $1 \le i \le n-2$ is called an *open diagonal ladder* and is denoted by $O(DL_n)$.

Definition 1.9. A graph obtained from the ladder by joining the opposite end points of the two copies of P_n is called *mobius ladder* and is denoted by M_n .

2. Main Results

Theorem 2.1. An open ladder $O(L_n)$ admits a k-square harmonic mean graph for all k.

Proof. Let $G = O(L_n)$ be an open ladder. Let $u_1, u_2, ..., u_n$ and $v_1, v_2, ..., v_n$ be the two paths of length n in L_n . Join $u_{\alpha+1}$ with $v_{\alpha+1}, 1 \le \alpha \le n-2$ respectively. Let $V(G) = \{u_\alpha, v_\alpha: 1 \le \alpha \le n\}$ and $E(G) = \{u_\alpha u_{\alpha+1}, v_\alpha v_{\alpha+1}, : 1 \le \alpha \le n-1\} \cup \{u_{\alpha+1}v_{\alpha+1}: 1 \le \alpha \le n-2\}$. Then |V(G)| = 2n and |E(G)| = 3n - 4. A function $h: V(G) \rightarrow \{k, k+1, k+2, ..., k+q\}$ is defined by $h(u_1) = k$, $h(u_\alpha) = k + 3\alpha - 4, 2 \le \alpha \le n$, $h(v_1) = k + 1$, $h(v_\alpha) = k + 3\alpha - 3, 2 \le \alpha \le n - 1$, $h(v_n) = k + 2n$. The corresponding induced edge labels are $h^*(u_\alpha u_{\alpha+1}) = k + 3\alpha - 3, 1 \le \alpha \le n - 1$, $h^*(v_\alpha v_{\alpha+1}) = k + 3\alpha - 2$, $1 \le \alpha \le n - 1, h^*(u_{\alpha+1}v_{\alpha+1}) = k + 3\alpha - 1, 1 \le \alpha \le n - 2$. Thus h^* is bijective. Therefore, $O(L_n)$ admits a k-square harmonic mean graph for all k.

Illustration 2.2. The image below displays a 40-square harmonic mean labeling of $O(L_5)$.

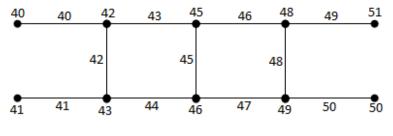
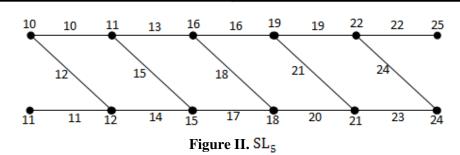


Figure I. O(L₅)

Theorem 2.3. A Slanting ladder SL_n admits a k-square harmonic mean graph for all k.

Proof. Let $G = SL_n$ be a slanting ladder. Let u_1, u_2, \dots, u_n and v_1, v_2, \dots, v_n be the two paths of length n. Join respectively. Let $V(G) = \{u_{\alpha}, v_{\alpha}: 1 \le \alpha \le n\}$ $v_{\alpha+1}, 1 \leq \alpha \leq n-1$ u_{α} with and $E(G) = \{u_{\alpha}u_{\alpha+1}, v_{\alpha}v_{\alpha+1}, u_{\alpha}v_{\alpha+1} : 1 \le \alpha \le n-1\}$. Then |V(G)| = 2n and |E(G)| = 3n - 3. A function $h: V(G) \to \{k, k+1, k+2, ..., k+q\}$ is defined $h(u_1) = k_1$ by $h(u_{\alpha}) = k + 3\alpha - 3, 2 \le \alpha \le n, h(v_1) = k + 1, h(v_{\alpha}) = k + 3\alpha - 4, 2 \le \alpha \le n$. The corresponding edge labels are $h^*(u_{\alpha}u_{\alpha+1}) = k + 3\alpha - 3$, $1 \leq \alpha \leq n-1$, induced $h^*(v_{\alpha}v_{\alpha+1}) = k + 3\alpha - 2, 1 \le \alpha \le n - 1, h^*(u_{\alpha}v_{\alpha+1}) = k + 3\alpha - 1, 1 \le \alpha \le n - 1$ Thus h^* is bijective. Therefore, SL_n admits a k-square harmonic mean graph for all k.

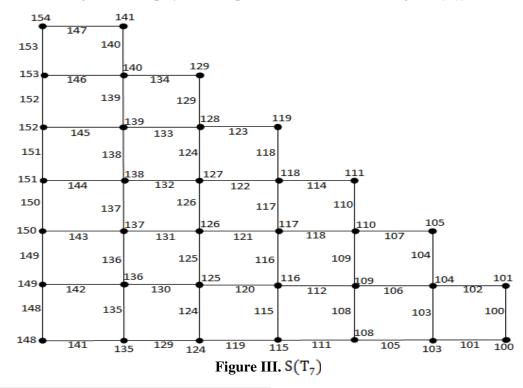
Illustration 2.4. The image below displays a 10-square harmonic mean labeling of SL₅.



Theorem 2.5. The Step ladder $S(T_n)$ admits a k-square harmonic mean graph for all k.

Proof. Let $G = S(T_n)$ be the given step ladder. Let P_n be a path on n vertices denoted by $(1,1), (1,2), \dots, (1,n)$ with n-1 edges denoted by e_1, e_2, \dots, e_{n-1} where e_{α} is the edge joining the vertices $(1, \alpha)$ and $(1, \alpha + 1)$. ladder The has vertices denoted by step $V(G) = \{(1,1), \dots, (1,n), (2,1), \dots, (2,n), (3,1), \dots, (3,-1), \dots, (n,1), (n,2)\}.$ А function $h: V(G) \to \{k, k+1, k+2, ..., k+q\}$ is defined by $h(\alpha, 1) = k + n^2 + \alpha - 2$; $1 \leq \alpha \leq n$ $h(\alpha, \beta) = k + (n - \beta + 1)^2 + \alpha - 2;$ $h(1,\beta) = k + (n - \beta + 1)^2 - 1; 2 \le \beta \le n$ $2 \leq \alpha \leq n, 2 \leq \beta \leq n - \beta + 2.$ The corresponding induced edge labels are $h^*((\alpha, 1), (\alpha + 1, 1)) = k + n^2 + \alpha - 2; 1 \le \alpha \le n - 1.$ $h^*((1,\beta),(1,\beta+1)) = k + (n-\beta)(n-\beta+1) - \alpha - 1; 1 \le \beta \le n-1,$ $h^*((\alpha,\beta), (\alpha,\beta+1)) = k + (n-\beta)(n-\beta+1) + \alpha - 2; 2 \le \alpha \le n, 1 \le \beta \le n-\beta+1,$ $h^*((\alpha,\beta), (\alpha+1,\beta)) = k + (n-\beta+1)^2 + \alpha - 2; 2 \le \beta \le n, 1 \le \alpha \le n-\beta+1.$ Thus h^* is bijective. Therefore, $S(T_n)$ admits a k-square harmonic mean graph.

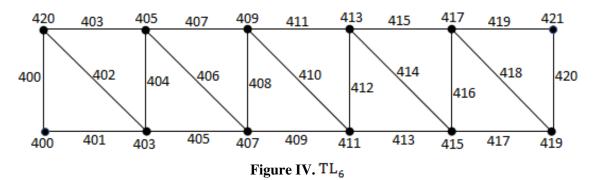
Illustration 2.6. The image below displays a 100-square harmonic mean labeling of $S(T_7)$.



Theorem 2.7. The Triangular ladder TL_n admits a k-square harmonic mean graph for all k and $n \ge 2$.

Proof. Let $G = TL_n$ be a triangular ladder. Let $u_1, u_2, ..., u_n$ and $v_1, v_2, ..., v_n$ be the two paths of length n in L_n . Join u_α with $v_{\alpha+1}, 1 \le \alpha \le n-1$ respectively. Let $V(G) = \{u_\alpha, v_\alpha; 1 \le \alpha \le n\}$ and $E(G) = \{u_\alpha u_{\alpha+1}, v_\alpha v_{\alpha+1}; 1 \le \alpha \le n-1\} \cup \{u_\alpha v_\alpha; 1 \le \alpha \le n\}$. Then |V(G)| = 2n and |E(G)| = 4n - 3. A function $h: V(G) \to \{k, k+1, k+2, ..., k+q\}$ is defined by $h(u_1) = k$, $h(u_\alpha) = k + 4\alpha - 5$, $2 \le \alpha \le n$, $h(v_\alpha) = k + 4\alpha - 3$, $1 \le \alpha \le n$. The corresponding induced edge labels are $h^*(u_\alpha u_{\alpha+1}) = k + 4\alpha - 3$, $1 \le \alpha \le n - 1$, $h^*(u_\alpha v_{\alpha+1}) = k + 4\alpha - 4$, $1 \le \alpha \le n - 1$, $h^*(u_\alpha v_{\alpha+1}) = k + 4\alpha - 2$, $1 \le \alpha \le n - 1$, $h^*(u_\alpha v_\alpha) = k + 4\alpha - 4$, $1 \le \alpha \le n$. Thus h^* is bijective. Therefore, TL_n admits a k-square harmonic mean graph for all k and $n \ge 2$.

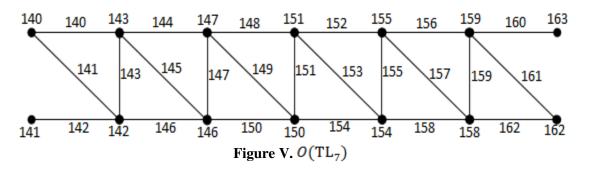
Illustration 2.8. The image below displays a 400-square harmonic mean labeling of TL_6 .



Theorem 2.9. An open triangular ladder $O(TL_n)$ admits a k-square harmonic mean graph for all k

Proof. Let $G = O(TL_n)$ be an open triangular ladder. Let $u_1, u_2, ..., u_n$ and $v_1, v_2, ..., v_n$ be the two paths of length n. Join u_α with $v_{\alpha+1}, 1 \le \alpha \le n-1$ and $u_{\alpha+1}$ with $v_{\alpha+1}, 1 \le \alpha \le n-2$ respectively. Let $V(G) = \{u_\alpha, v_\alpha; 1 \le \alpha \le n\}$ and $E(G) = \{u_\alpha u_{\alpha+1}, v_\alpha v_{\alpha+1}, u_\alpha v_{\alpha+1}; 1 \le \alpha \le n-1\} \cup \{u_{\alpha+1}v_{\alpha+1}; 1 \le \alpha \le n-2\}$. Then |V(G)| = 2n and |E(G)| = 4n-5. A function $h: V(G) \rightarrow \{k, k+1, k+2, ..., k+q\}$ is defined by $h(u_1) = k$, $h(u_\alpha) = k + 4\alpha - 5, 2 \le \alpha \le n, h(v_1) = k+1$, $h(v_\alpha) = k + 4\alpha - 6, 2 \le \alpha \le n$. The corresponding induced edge labels are $h^*(u_\alpha u_{\alpha+1}) = k + 4\alpha - 4, 1 \le \alpha \le n-1, h^*(u_\alpha v_{\alpha+1}) = k + 4\alpha - 1, 1 \le \alpha \le n-1, h^*(u_\alpha v_{\alpha+1}) = k + 4\alpha - 1, 1 \le \alpha \le n-2$. Thus h^* is bijective. Therefore, $O(TL_n)$ admits a k-square harmonic mean graph for all k.

Illustration 2.10. The image below displays a 140-square harmonic mean labeling of $O(TL_7)$.

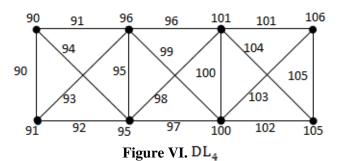


Stochastic Modelling and Computational Sciences

Theorem 2.11. The diagonal ladder DL_n admits a k-square harmonic mean graph for all k.

Proof. Let $G = DL_n$ be a diagonal ladder. Let u_1, u_2, \dots, u_n and v_1, v_2, \dots, v_n be the two paths of length n. Join u_{α} with $v_{\alpha+1}, 1 \le \alpha \le n-1$ and $u_{\alpha+1}$ with $v_{\alpha}, 1 \le \alpha \le n-1$ respectively. Let $E(G) = \{ u_{\alpha}v_{\alpha} : 1 \le \alpha \le n \} \cup$ $V(G) = \{u_{\alpha}, v_{\alpha} : 1 \le \alpha \le n\}$ and $\{u_{\alpha}u_{\alpha+1}, v_{\alpha}v_{\alpha+1}, u_{\alpha}v_{\alpha+1}, u_{\alpha+1}v_{\alpha}: 1 \leq \alpha \leq n-1\}$. Then |V(G)| = 2n and |E(G)| = 5n - 4function $h: V(G) \to \{k, k+1, k+2, ..., k+q\}$ defined by $h(u_1) = k$. is Α $h(u_{\alpha}) = k + 5\alpha - 4, 2 \le \alpha \le n, h(v_1) = k + 1, h(v_{\alpha}) = k + 5\alpha - 5, 2 \le \alpha \le n$. The corresponding induced edge labels are $h^*(u_{\alpha}u_{\alpha+1}) = k + 5\alpha - 4$, $1 \le \alpha \le n - 1$, $h^*(v_{\alpha}v_{\alpha+1}) = k + 5\alpha - 4$, $1 \le \alpha \le n - 1$, $h^*(u_{\alpha}v_{\alpha}) = k + 5\alpha - 5, 1 \le \alpha \le n, h^*(u_{\alpha+1}v_{\alpha}) = k + 5\alpha - 2, 1 \le \alpha \le n - 1$. Thus h^* is bijective. Therefore, DL_n admits a k-square harmonic mean graph for all k.

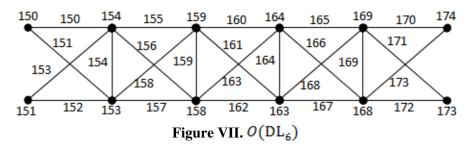
Illustration 2.12. The image below displays a 90-square harmonic mean labeling of DL₄.



Theorem 2.13. An open diagonal ladder $O(DL_n)$ admits a k-square harmonic mean graph for all k.

Proof. Let $G = O(DL_n)$ be an open diagonal ladder. Let u_1, u_2, \dots, u_n and v_1, v_2, \dots, v_n be the two paths of length n. Join u_{α} with $v_{\alpha+1}$, $1 \le \alpha \le n-1$, $u_{\alpha+1}$ with v_{α} , $1 \le \alpha \le n-1$ and $u_{\alpha+1}$ with Let $V(G) = \{u_{\alpha}, v_{\alpha} : 1 \le \alpha \le n\}$ $v_{\alpha+1}, 1 \leq \alpha \leq n-2$ respectively. and $E(G) = \{u_{\alpha}u_{\alpha+1}, v_{\alpha}v_{\alpha+1}, u_{\alpha}v_{\alpha+1}, u_{\alpha+1}v_{\alpha}: 1 \le \alpha \le n-1\} \cup \{u_{\alpha+1}v_{\alpha+1}: 1 \le \alpha \le n-2\}.$ Then |V(G)| = 2n and |E(G)| = 5n - 6. A function $h: V(G) \rightarrow \{k, k+1, k+2, \dots, k+q\}$ is defined by $h(u_{\alpha}) = k + 5\alpha - 6, 2 \le \alpha \le n,$ $h(u_1) = k$ $h(v_1) = k + 1$ $h(v_{\alpha}) = k + 5\alpha - 7, 2 \le \alpha \le n.$ The corresponding induced labels edge are $\begin{aligned} h^*(v_{\alpha}v_{\alpha+1}) &= k + 5\alpha - 3, 1 \le \alpha \le n - 1, \\ h^*(u_{\alpha+1}v_{\alpha+1}) &= k + 5\alpha - 1, 1 \le \alpha \le n - 2, \end{aligned}$ $h^*(u_{\alpha}u_{\alpha+1}) = k + 5\alpha - 5, 1 \le \alpha \le n - 1,$ $h^*(u_{\alpha}v_{\alpha+1}) = k + 5\alpha - 4, 1 \le \alpha \le n - 1,$ $h^*(u_{\alpha+1}v_{\alpha}) = k + 5\alpha - 2, 1 \le \alpha \le n - 1$. Thus h^* is bijective. Therefore, $O(DL_n)$ admits a k-square harmonic mean graph for all k.

Illustration 2.14. The image below displays a 150-square harmonic mean labeling of $O(DL_6)$.



Copyrights @ Roman Science Publications Ins.

Stochastic Modelling and Computational Sciences

Theorem 2.15. A mobius ladder M_n admits a k-square harmonic mean graph for all k.

Proof. Let $G = M_n$ be a mobius ladder obtained from the ladder $P_n \times P_2$ by joining the opposite end points of the two copies of P_n . Let u_1, u_2, \dots, u_n and v_1, v_2, \dots, v_n be the two copies of path P_n . Join u_α with $v_\alpha, 1 \le \alpha \le n$. $V(G) = \{u_{\alpha}, v_{\alpha} : 1 \le \alpha \le n\}$ Let and $E(G) = \{u_{\alpha}u_{\alpha+1}, v_{\alpha}v_{\alpha+1}, u_{\alpha}v_{\alpha}, u_{n}v_{n} : 1 \le \alpha \le n-1\} \cup \{u_{n}v_{1}, v_{n}u_{1}\}.$ Then |V(G)| = 2nand |E(G)| = 3n. A function $h: V(G) \rightarrow \{k, k+1, k+2, \dots, k+q\}$ is defined by $h(u_1) = k_1$ $h(u_{\alpha}) = k + 3\alpha, 2 \le \alpha \le n, \quad h(v_1) = k + 1, \quad h(v_{\alpha}) = k + 3\alpha - 2, 2 \le \alpha \le n.$ The corresponding $h^*(u_{\alpha}u_{\alpha+1}) = k + 3\alpha - 1, 1 \le \alpha \le n - 1,$ are induced edge labels $h^*(u_{\alpha}v_{\alpha}) = k + 3\alpha - 3, 1 \le \alpha \le n,$ $h^*(v_{\alpha}v_{\alpha+1}) = k + 3\alpha - 2, 1 \le \alpha \le n - 1,$ $h^*(v_n u_1) = k + 3n - 2$, $h^*(u_n v_1) = k + 3n - 1$. Thus h^* is bijective. Therefore, M_n admits a k-square harmonic mean graph for all k.

Illustration 2.16. The image below displays a 500-square harmonic mean labeling of M₈.

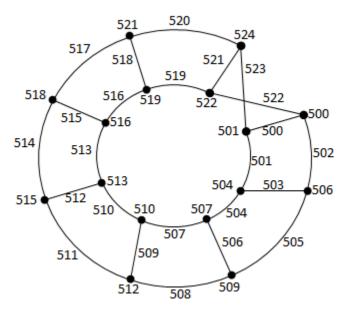


Figure VIII. M₈

REFERENCES

[1]	L. S. Bebisha Lenin and M. Jaslin Melbha, "Square Harmonic Mean Labeling of European Chemical Bulletin, Volume 12 (S3), (2023), 5472-5479.	Simple	Graphs",
[2]	J.A. Gallian, "A Dynamic Survey of Graph Labeling", The Electronic Journal of DS6, 2014.	Combinatorics	5,17#
[3]	F. Harary, "Graph Theory", Narosa Publishing House, New Delhi, 1988.		
[4]	S. Somasundaram, R. Ponraj, "Mean Labeling of Graphs", National Academy of 26, (2003), 210-213.	Science Letter	r, Volume
[5]	S. S. Sandhya, S. Somasundaram and R. Ponraj, "Some Results on Harmonic International Journal of Contemporary Mathematical Sciences, Volume 7 (4),	Mean (2012), 197-208	Graphs",

- [6] S. S. Sandhya, S. Somasundaram and R. Ponraj, "Some More Results on Harmonic Mean Graphs", Journal of Mathematics Research, Volume 4 (1), (2012), 21-29.
- [7] M. Tamilselvi and N. Revathi, "k- harmonic mean labeling of some graphs", Mathematics Trends and Technology, Volume 5 (14), (2017), 216-222.
- [8] M. Tamilselvi and N. Revathi, "k- harmonic mean labeling of some special graphs", International Journal of Scientific Research, Volume 7 (14), (2018), 458-465.