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ABSTRACT 
This article attempts the maximum likelihood and Bayes estimation of stress-strength reliability of a 

multicomponent s out of k system having non-identical component strengths which are subjected to face the 

random common stress. We assume that the component strengths of the system are distributed with two non-

identical categories of gamma distribution and are subjected to face the common independent stress which again 

follow a gamma distribution.  In Bayesian paradigm, tow non-informative types of priors viz. uniform and Jeffreys 

priors are chosen and the Bayes estimators are developed under squared error and linear-exponential loss 

functions. A comparative study of the proposed estimators is carried out based on simulation study employing the 

Markov Chain Monte Carlo approach through Metropolis-Hastings algorithm. The estimators are compared on 

the basis of their mean square errors and absolute biases. 

Keywords: Multicomponent Stress-Strength model; Gamma distribution; S-out of-K: G system; non-identical 

component strengths; uniform prior, Jeffreys prior, Metropolis-Hastings algorithm. 

1. INTRODUCTION 
Researchers are paying close attention to the study of stress-strength reliability in multicomponent s-out of-k 

systems because of its general applicability in real-life scenarios. Significant amount of works has been attempted 

in this direction for different choices of distributions as stress-strength model. The reliability of a system depends 

up on the structural establishment and its inherent strength.  reliability or stress-strength reliability. To study the 

reliability, it is always important to look at the structural establishment of the components and its operational 

sequence.  A system is considered to be reliable, if it is strong enough to sustain imposed external loads e.g. 

environmental load, electrical load, pressure, temperature, etc. Then the reliability (R) of the system is defined as 

the probability that the strength of the system is greater than the applied stress , where random 

variables X and Y are the strength and the random imposed stress on it, respectively. 

The idea of stress-strength reliability was firstly derived by [1] and [2] for single component set-up. The formal 

name “stress strength” was introduced by [3]. Since then, due to applicability of the concept in different fields of 

day today life such as: electrical, electronic, mechanical systems to biological, medical, health service research 

and economic fragility models etc. (see; [4]), the literature is loaded with different assumptions on lifetime 

models and sampling schemes. Researchers are suggested to go through the works of [5-11] and cited references 

therein for deep insight. 

Though the single component stress-strength reliability has wide applicability in real life scenarios, [12] noticed 

that a system/structure is built using combination of more than one component and each component in the 

system/structure has its own inherent strength to face the common stress. Therefore, the reliability and 

performance of a system depends upon the performance of the components. The system is known as s out of k: G 

system, and is assumed to consist k components having independent and identically distributed (i.i.d.) random 

strengths  which are subjected to face the random stress . The system function as long as s out of k 

 components resist the stress. The model is defined mathematically as 

 

             (1.1) 
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where  is the common cdf of  and  is cdf of random stress. An excellent illustration of s 

out of k: G system is a V-8 engine car that can only be driven while four of its eight cylinders are operating. 

Nonetheless, the car is said to have failed if fewer than four cylinders ignite. To gain a deeper comprehension of 

these models, one might look at the example of a hanging bridge, in which a sequence of k vertical cables 

supports the deck. Furthermore, when exposed to a common load, the bridge will only hold if at least s vertical 

cables remain intact (see, [13]). Other real-life examples can be viewed in [14-16]. 

Study of multicomponent system reliability (MSR) using the model given in (1.1) has been carried out by several 

authors for different choices of distributions as stress-strength model. In the above cited works, it was 

traditionally believed that the strengths in multi-component stress-strength models were i.i.d random variables. 

However, when the structures of the system's component parts diverge, this assumption becomes impractical (see 

[6] for additional information). Thus, the present work aims to concentrate on multicomponent stress-strength 

models that have different random strengths. [17] extended the concept of MSR for non-identical component 

strengths for exponential distributions. [18] considered the Weibull distribution for non-identical MSR and 

attempted Bayesian and non-Bayesian methods of estimation. Bayesian and maximum likelihood estimators were 

developed for non-identical MSR for exponential distribution by [19]. 

Let's now look at a system that has  components. The  components in this system are of 

type . Assume that the cdf of the strengths for the  type components is . Furthermore, all 

components are assumed to be influenced by a common stress  with cdf . The system is reliable in this 

scenario as long as the strength of  of  components is more than at applied stress. [20] 

improved equation (1.1) to produce the following suitable model: 

           (2.1) 

For the shake of computational complexity, in this article, we have considered a system with two types of 

components, i.e.  and . Assuming a system with k-components, of which  belong to 

one category and that there is a common distribution function  for their strengths. The remaining 

components, , belong to other category and have a shared strength distribution, . The system 

functions properly if at least s of the k components are able to endure the common subjected stress Y with the 

distribution . The reliability in non-identical category of components strength distribution is developed in 

subsequent section. Due to wider applicability in real situations, the idea has attracted the authors’ attention. Some 

of the recent contribution towards this direction for various choices of distributions under various sampling 

schemes can be viewed in the works of [21-25] and references therein. 

On the other hand, the two-parameter gamma distribution is widely used to analyze lifetime data in the field of 

reliability engineering and is also used as an equivalent of Weibull, log-normal and similar distributions to 

analyze positively skewed data sets. One may refer to [26] and [27] for more discussion and application of two-

parameter gamma distribution. Very few attempts on gamma distribution in the context of multicomponent stress-

strength system reliability have been made, which may be because the distribution function, survival function and 

hazard rate, etc are not in a closed form for this distribution. The probability density (PD) and cumulative 

distribution (CD) functions are given as 

   and                (1.3) 

for , where,  and are shape and scale parameters respectively. The term,  is lower 

incomplete gamma function. 
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In this work, we developed the expression for MSR considering out of  component strengths,  

 with  components follow a , while the remaining  

component strengths  follow a . Further, assuming that stress  follow a  

. The respective PDFs and CDFs are given as 

 and               (1.4) 

 and          (1.5) 

         and              (1.6) 

where ,  and  presented in equations (1.4), (1.5) and (1.6) respectively are 

defined in equation (1.3). 

This is how the rest of the paper is organized. Assuming that the component strengths are of two distinct 

categories of strengths   and to face the same stress, the MSR is computed in Section 2. The MSR 

parameter's ML estimator is derived in section 3. The development of the Bayes estimators of MSR with gamma 

and inverted gamma priors are given in Section 4. The findings of MSR and its ML and Bayes estimators are 

presented in Section 5 along with a discussion. Section 6 offers an overview of the article's findings. 

2. Multi-component System Reliability  

The MSR is derived in this section under the assumption that the system is made up of k-components with 

strengths , of which  components  belong to a one category with a shared 

distribution function denoted as . The remaining  components  belong to another 

category distributed as  and are all subject to an independent common random stress  with a distribution 

function of . The triplet  determines the system reliability, which is written as 

 

(2.1) 

where the sum ranges over   such that . The reliability given in 

(2.1) was introduced by [17]. Thus, the MSR having two categories of non-identical component strengths can be 

found by substituting ,  and  from equations (1.4), (1.5) and (1.6) respectively in equation 

(2.1), is given by 

 

                   (2.2) 

Let   and  and . Thus, the above equation can be written after 

simplification as 
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                                    (2.3) 

The expression of MSR given by equation (2.3) has no closed form solution. Numerical approximation approach 

is therefore employed to solve this equation. 

3. ML Estimation of  

This section performs the ML estimation of MSR under the assumptions that  represents the 

random sample of size  from the stress distribution and  and 

 are the random samples of sizes and  from their respective distributions. and 

 are selected such a way that . From the random observations, the likelihood function is then 

obtained as follows: 

 

 

                 (3.1) 

After simplification the expression becomes 

     (3.2) 

where  are averages of strength samples from both the categories and 

 is the average of stress observations. The log-likelihood function is obtained by taking the 

logarithm of both sides in equation (3.2), given by 

 

             (3.3) 

where  and . The ML estimators  of 

 respectively can be obtained by solving following partial derivatives, given by 

                                 (3.4) 

                   (3.5) 

           (3.6) 

                  (3.7) 
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                           (3.8) 

where,  represent the di-gamma function and is defined as . Since the simultaneous solution 

of aforementioned likelihood equations are analytically not possible. Therefore, a numerical approximation 

method, such as the Newton-Raphson algorithm, is used. The ML estimate  of   is obtained by 

substituting  in place of  respectively in  given in (2.3), using invariance 

property. 

4. Bayes Estimation of  

In this part of the paper, the MSR is estimated using the Bayesian method of estimation assuming the non-

informative type of priors (uniform and Jeffreys priors) under the impression that the model parameters are 

unknown and are random variables. For a more thorough examination of the Bayesian estimators, two distinct 

loss functions are taken into consideration, referred to as the squared error loss (SEL) and LINEX loss (LL) 

functions. 

4.1 Uniform Prior 

We consider the model parameters  are independent random variables having prior distribution 

as uniform prior with their respective density function as 

                     (4.1) 

                    (4.2) 

                    (4.3) 

                     (4.4) 

                    (4.5) 

The joint prior density function of  can be defined as the product of their respective marginal 

priors, given as 

                (4.6) 

The joint posterior density of  is obtained by combining the joint prior density 

 and the likelihood function  from equation (4.6) and (3.2) 

respectively. Some of the constant terms free from  are cancelled out from both the numerator and 

denominator parts. The joint posterior density under uniform prior is given by 

 
                                     (4.7) 

where  is the normalizing constant are respectively defined by 
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           (4.8) 

4.1.1 Bayes Estimator  under SEL Function 

Thus, under SEL function, the Bayes estimator for uniform prior  of  is defined as its posterior 

expectation, given as follow 

 

             (4.9) 

Substituting the value of  from (4.7) in equation (4.9), we have 

 
                                     (4.10) 

where  is the multicomponent system reliability given in (2.3) and  is the denominator part of joint 

posterior given in (4.8). 

4.1.2 Bayes Estimator  under LL Function 

Under LL function, the Bayes estimator  of  is defined as follows 

 

    (4.11) 

where  is the multicomponent system reliability given in (2.3). Substituting the value of 

 from (4.7) in equation (4.11), we have 

 
                     (4.12) 

The expressions of Bayes estimators for uniform prior under SEL function and LL function given in equations 

(4.10) and (4.12) respectively cannot be solved analytically. Thus, numerical approximation technique via M-H 

algorithm is used to obtain the Bayes estimator of . 

4.2 Jeffreys Prior 
In this subsection, a non-informative type of prior, proposed by [28], is assumed for independent random 

variables . The Jeffreys prior is defined as 

               (4.13) 

where,  is Fisher information matrix, defined as 
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          (4.14) 

Thus, determinant of Fisher information matrix i.e.,  is obtained as 

         (4.15) 

Substituting the value of  from (4.15) in equation (4.13), the Jeffreys prior of 

 is given as 

           (4.16) 

The joint posterior distribution of random variables  under Jeffreys prior is obtained by 

combining the joint Jeffreys prior  and the likelihood function  from 

equation (4.16) and (3.2) respectively via Bayes rule. Some of the constant terms free from  are 

cancelled out from both the numerator and denominator parts. The joint posterior density is given by 

 

               (4.17) 

where  is the normalizing constant defined by 

 

           (4.18) 
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4.2.1 Bayes Estimator  under SEL function 

The Bayes estimator under SELF  of  is defined by its posterior expectation, given by 

 

          (4.19) 

Substituting the value of  from (4.17) in equation (4.19), we get 

 

            (4.20) 

where  is the multicomponent system reliability given in (2.3) and  is the denominator part of joint 

posterior given in (4.18). 

4.2.2 Bayes Estimator  under LL function 

Under LL function, the Bayes estimator   of MSR  is defined by 

 

         (4.21) 

where  is the multicomponent system reliability given in (2.3). Substituting the value of 

 from (4.17) in equation (4.21), we get the required Bayes estimator of  under 

LL function as 

 

                        

         (4.22) 

It is to be noticed that the expressions of Bayes estimators for uniform prior under SEL and LL function given in 

(4.10) and (4.12) respectively as well as for the Jefrreys priors under both the loss functions given in (4.20) and 

(4.22) consist multiple integrals. Thus, the analytic solutions of Bayes estimators are not possible and therefore, 

the MCMC technique via M-H algorithm is employed to solve the integrals in order to find out the Bayes 

estimates of MSR. 

5. SIMULATION STUDY 
A simulation-based analysis of suggested ML and Bayesian estimators of proposed MSR is carried out in this 

section. The effectiveness of estimators of MSR under Bayesian paradigm for both the priors are compared with 

that of ML estimator for different numerical choices of model parameters. To compare the various estimators, 

their MSEs and ABs for various combinations of model parameters and sample sizes are considered. A thousand 

replications are used to analyze the ABs and MSEs. 

Since the Bayes estimators for the uniform and Jeffreys priors under both the SEL and LL functions are not in 

closed form and consist many integrals, therefore, the Metropolis-Hastings algorithm of MCMC approach, is used 

to generate samples from the joint posterior densities.  Below is a discussion of the basic M-H method's [see; 29] 

step-by-step algorithm for drawing N random samples from any given posterior distribution: 
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While using Metropolis-Hastings algorithm, we consider proposal distribution is asymptotically normal 

distributed with initial values as the ML estimates of parameters i.e. 

 and  with their asymptotic covariance matrix. The basic 

Metropolis-Hastings algorithm involves following steps to generate random sample from a posterior distribution 

. 

1. Set the start value of parameter . 

2. For  repeating the following steps 

i. Set  

ii. Generate a ‘candidate’ value from a proposal density, say . 

iii. Draw ‘U’ from   . 

iv. Calculate  

v. If , accept the candidate point , otherwise set  

3. Repeat step 2 for  

Here  is the probability of transitions from state   of the Markov chain. The M-H algorithm was 

performed with eleven thousand of intermediate iterations for evaluating the Bayes estimate of MSR. First one 

thousand iterations are dropped as burn-in period of the Markov chain. Later, we further discarded every second 

simulation to reduce the autocorrelation within the chain. 

The Bayes estimates of  under SEL and LL functions are approximated respectively by M-H algorithm as 

follows 

                   (5.1) 

           (5.2) 

and similarly, for Jeffreys prior also.  are independently generated random 

samples from their respective marginal posteriors through M-H algorithm and  being the burn-in period of 

Markov chain. 

Based on their MSEs and ABs, the proposed ML and Bayes estimators of multicomponent stress-strength 

reliability are compared for various combinations of stress-strength parameters   as well as for 

various sample size selections   with various combinations of  and  such that  

 and . 

The average estimates, MSEs, and ABs for ML and Bayes estimators for both the priors under SEL and LL 

function are shown in Tables 1 and 2. We consider two sets of variations for model parameters  

with selected values of  and  by keeping hyper-parameters constant as 

 

. 

. 
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(i) In Table 1, three non-identical combinations  with , 

 with   and  with 

 are considered for fixed set of values of model parameters as 

 for uniform and Jeffreys priors. The following are 

observed from the table. 

Findings: The Table shows that for increasing sets of  and , the MSR values steadily decrease. 

Furthermore, for all three sets of  and , it is shown that the Bayes estimators outperform the ML 

estimator with reduced MSEs and ABs for both priors (uniform and Jeffreys priors). In general, the uniform prior 

under both the loss functions (SEL and LL) is observed to provide more precise estimates of MSR with lower 

ABs and MSEs than the ML estimators and the Jeffreys prior. 

(ii) Similarly, in Table 2, the effects of three different choices of non-identical sequences are considered as 

 as ,   and 

 for another fixed sets of values of 

. The followings were observed from the table. 

Findings: here also, the table shows that the Bayes estimates for both uniform and Jeffreys priors have less MSEs 

and ABs as compared with ML estimates of MSR. In comparison to its other equivalents, the uniform prior 

predominates with least MSEs and ABs. Additionally, it is seen that when the sets of  and  

increase, the multicomponent values drop. 

6. CONCLUSION 

The MSR in this article is derived under the assumption that, out of the k-component strengths,  strengths 

belong to one distribution type and follow a two-parameter gamma distribution with parameters , and 

  strengths belong to a different distribution type and distributed as . Additionally, all 

the components experience independent stress with a gamma distribution with  as parameters.  If  out of 

 and  out of  components can bear the common stress such that  and , then the 

system is said to be operating. This assumption is made in light of the possibility that the components of a system 

have distinct structures in many real-world scenarios, making the assumption of equivalent strength distributions 

implausible. 

Simulation-based samples are used to perform and compare the ML and Bayes estimators of MSR based on their 

MSEs and ABs. uniform and Jeffreys priors under non-informative forms of priors are taken into account in the 

Bayesian paradigm, and the Bayes estimators are computed for each prior under both SEL and LL functions. 

The findings displayed in the following tables demonstrate that, when compared to the ML estimator of MSR, the 

Bayes estimators for both types of priors perform better with fewer MSEs and ABs. Specifically, for non-

informative prior set-up, the uniform prior choice is more appropriate than the Jeffreys prior. It is also observed 

that the performance of the two loss functions is nearly equal. The MSR values are also shown to be steadily 

declining for increasing sets of  and . 
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Table 1: Average estimates, MSE and ABs of the estimators of MSR  under SEL and LL functions for 

uniform and Jeffreys priors with varying combinations of ,  and  when 

 and . 

 

 

 

Measure 

 

MLE 

Bayes 

uniform prior Jeffreys prior 

SEL LL SEL LL 

 

 

(20,20,10) 
AVG. 

MSE 

AB 
 

0.538297 

0.039848 

0.020105 
 

0.452610 

0.018356 

0.013354 
 

0.451846 

0.018484 

0.014542 
 

0.458618 

0.016354 

0.013032 
 

0.456767 

0.017869 

0.013456 
 

 

(20,40,10) 
AVG. 

MSE 

AB 
 

0.514634 

0.025869 

0.018728 
 

0.464523 

0.017754 

0.017356 
 

0.461375 

0.018357 

0.017584 
 

0.476852 

0.015244 

0.013551 
 

0.473295 

0.015609 

0.014197 
 

 

(40,20,10) 
AVG. 

MSE 

AB 
 

0.518357 

0.020653 

0.017831 
 

0.473427 

0.010354 

0.009567 
 

0.475027 

0.009775 

0.010453 
 

0.476475 

0.009024 

0.003154 
 

0.478745 

0.009125 

0.003457 
 

 

(50,50,10) 
AVG. 

MSE 

AB 
 

0.493571 

0.009352 

0.010542 
 

0.486574 

0.008751 

0.005147 
 

0.488451 

0.008618 

0.005134 
 

0.483157 

0.006452 

0.004570 
 

0.484125 

0.006464 

0.004575 
 

 

 

(20,20,10) 
AVG. 

MSE 

AB 
 

0.453574 

0.033584 

0.016864 
 

0.455345 

0.023546 

0.013461 
 

0.455347 

0.022543 

0.012654 
 

0.440245 

0.018654 

0.010321 
 

0.442216 

0.018765 

0.011256 
 

 

(20,40,10) 
AVG. 

MSE 

AB 
 

0.443858 

0.023461 

0.013212 
 

0.443567 

0.016523 

0.013546 
 

0.447548 

0.016457 

0.013254 
 

0.441347 

0.010354 

0.009654 
 

0.441657 

0.010452 

0.009754 
 

 

(40,20,10) 
AVG. 

MSE 

AB 
 

0.439658 

0.006585 

0.010685 
 

0.438951 

0.000986 

0.007548 
 

0.439564 

0.000994 

0.008145 
 

0.433575 

0.000318 

0.004136 
 

0.438675 

0.000394 

0.001253 
 

 

(50,50,10) 
AVG. 

MSE 

AB 
 

0.436584 

0.000903 

0.008341 
 

0.434154 

0.000065 

0.000142 
 

0.435014 

0.000071 

0.000153 
 

0.434591 

0.000037 

0.000121 
 

0.434645 

0.000041 

0.000135 
 

 
 

(20,20,10) 
AVG. 

MSE 

AB 
 

0.425374 

0.026257 

0.012355 
 

0.385416 

0.009756 

0.009025 
 

0.386458 

0.009835 

0.009611 
 

0.393253 

0.004751 

0.002145 
 

0.396351 

0.004865 

0.002357 
 

 

(20,40,10) 
AVG. 

MSE 

AB 
 

0.402852 

0.010231 

0.015751 
 

0.392864 

0.000231 

0.004128 
 

0.393754 

0.000230 

0.004538 
 

0.397385 

0.000135 

0.003155 
 

0.398545 

0.000151 

0.003275 
 

 

(40,20,10) 
AVG. 0.395176 0.396027 0.395963 0.396523 0.395972 
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MSE 

AB 
 

0.000221 

0.005138 
 

0.000143 

0.002175 
 

0.000140 

0.002463 
 

0.000105 

0.002045 
 

0.000107 

0.002075 
 

 

(50,50,10) 
AVG. 

MSE 

AB 
 

0.396587 

0.000131 

0.001291 
 

0.396503 

0.000051 

0.001035 
 

0.396396 

0.000065 

0.001075 
 

0.396569 

0.000043 

0.000985 
 

0.396565 

0.000075 

0.000994 
 

Table 2: Average estimates, MSE and ABs of the estimators of MSR  under SEL and LL functions for 

uniform and Jeffreys priors with varying combinations of ,  and  when 

 and . 

 

 

 

Measure 

 

MLE 

Bayes 

Uniform prior Jeffreys prior 

SEL LL SEL LL 

 

 

(20, 20,20) 
AVG. 

MSE 

AB 
 

0.765232 

0.004435 

0.052115 
 

0.743567 

0.002142 

0.021568 
 

0.746452 

0.002455 

0.022548 
 

0.741253 

0.002041 

0.020574 
 

0.741375 

0.002086 

0.021164 
 

 

(20,40,20) 
AVG. AVG. 

MSE MSE 

AB Abs.bias 
 

0.746609 

0.003565 

0.021850 
 

0.747245 

0.003120 

0.014563 
 

0.748258 

0.003220 

0.016201 
 

0.739675 

0.000964 

0.008643 
 

0.739864 

0.000973 

0.008964 
 

 

(40,20,20) 
AVG. AVG. 

MSE MSE 

AB Abs.bias 
 

0.737816 

0.000352 

0.004185 
 

0.736458 

0.000317 

0.002136 
 

0.736754 

0.000319 

0.002235 
 

0.731763 

0.000115 

0.001935 
 

0.731985 

0.000117 

0.002038 
 

 

(50,50,20) 
AVG. AVG. 

MSE MSE 

AB Abs.bias 
 

0.733652 

0.000189 

0.002385 
 

0.734461 

0.000476 

0.001525 
 

0.736558 

0.000480 

0.001604 
 

0.731371 

0.000150 

0.001385 
 

0.731754 

0.000180 

0.001435 
 

 
 

(20,20,20) 
AVG. AVG. 

MSE MSE 

AB Abs.bias 
 

0.681584 

0.031420 

0.018654 
 

0.647675 

0.025643 

0.013861 
 

0.648564 

0.028354 

0.014652 
 

0.651563 

0.009382 

0.014264 
 

0.651415 

0.009631 

0.015672 
 

 

(20,40,20) 
AVG. AVG. 

MSE MSE 

AB Abs.bias 
 

0.676528 

0.016535 

0.010325 
 

0.650185 

0.005645 

0.013452 
 

0.650058 

0.006754 

0.014030 
 

0.659141 

0.004028 

0.009735 
 

0.658318 

0.004256 

0.009865 
 

 

(40,20,20) 
AVG. AVG. 

MSE MSE 

AB Abs.bias 
 

0.662417 

0.000466 

0.003634 
 

0.667496 

0.000037 

0.001624 
 

0.663150 

0.000087 

0.001768 
 

0.667521 

0.000019 

0.001235 
 

0.667539 

0.000021 

0.001504 
 

 

(50,50,20) 
AVG. AVG. 

MSE MSE 

AB Abs.bias 
 

0.667429 

0.000063 

0.000933 
 

0.667598 

0.000033 

0.000348 
 

0.667610 

0.000035 

0.000385 
 

0.667505 

0.000021 

0.000124 
 

0.667501 

0.000022 

0.000127 
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(20,20,20) 
AVG. AVG. 

MSE MSE 

AB Abs.bias 
 

0.616581 

0.021475 

0.018354 
 

0.580167 

0.009856 

0.010672 
 

0.583587 

0.009868 

0.010864 
 

0.588648 

0.007685 

0.009856 
 

0.586385 

0.008693 

0.009968 
 

 

(20,40,20) 
AVG. AVG. 

MSE MSE 

AB Abs.bias 
 

0.600345 

0.012654 

0.010658 
 

0.589646 

0.000633 

0.004107 
 

0.586374 

0.000657 

0.004463 
 

0.593129 

0.000124 

0.003025 
 

0.590054 

0.000135 

0.003586 
 

 

(40,20,20) 
AVG. AVG. 

MSE MSE 

AB Abs.bias 
 

0.592130 

0.000064 

0.000210 
 

0.592568 

0.000056 

0.000195 
 

0.595785 

0.000058 

0.000198 
 

0.593754 

0.000021 

0.000161 
 

0.593568 

0.000050 

0.000172 
 

 

(50,50,20) 
AVG. AVG. 

MSE MSE 

AB Abs.bias 
 

0.593157 

0.000005 

0.000103 
 

0.593689 

0.000006 

0.000075 
 

0.593896 

0.000007 

0.000078 
 

0.593482 

0.000003 

0.000056 
 

0.593491 

0.000003 

0.000057 
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