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ABSTRACT 
Pikachu Volleyball stands as an iconic computer game that has captivated our generation. In this game, players 

assume control of Pikachu on the right side of the screen, engaging in spirited competition against a formidable 

computer agent on the left side. HoIver, a critical challenge arises when training a Pikachu volleyball agent using 

deep learning techniques—insufficient experiences for effective model learn- ing. This research project addresses 

the problem by showcasing novel approaches to overcome the training process’s limitations. With a focus on 

distributed computing, I introduce a framework that optimizes the collection and utilization of experiences to 

enhance the agents learn- ing capabilities. By harnessing the POI of distributed computing, I un- lock new 

possibilities for the Pikachu volleyball agent’s training. Our framework facilitates the efficient gathering of 

experiences from multiple sources, allowing for accelerated learning and improved performance. I investigate 

various strategies to distribute and synchronize experiences among computing nodes, enabling parallel processing 

and reducing training time. Through extensive experimentation and analysis, I demonstrate the effectiveness of 

our distributed computing approach in enhancing the training efficiency of the Pikachu volleyball agent. Our 

findings shed light on the benefits and challenges of leveraging distributed computing techniques in deep learning 

applications. This research contributes to the field of distributed computing by showcasing its potential to address 

training limitations in computer game agents. The proposed framework paves the way for further advancements in 

distributed deep learning for gaming ap- plications. By enabling more efficient training processes, our work opens 

doors to enhanced gameplay experiences and the development of even more intelligent virtual agents. 

1 INTRODUCTION 
After Google DeepMind’s AlphaGo successfully dominated the Go world, discussions on game AI have 

become increasingly heated. The most classic method is using reinforcement learning to train an agent. 

Through interactions between the model and the environment, the agent learns the rewards of different 

actions, and try to choose a better policy based on those experiences. 

Reinforcement learning can be divided into many categories according to the training method. Each category has 

its own suitable use scenarios. Therefore, I analyzed the following for training an AI agent in Pikachu volleyball: 

1.1 Model-free & Model-based 
Note that, the word” model” in” Model-free & Model-based” refers to the environment model, which is different 

from the machine learning model. The difference between the two is whether our model knows the external 

environment information or not. If I can model the environment (that is, I know the transition probability from 

one state to another in a real environment), I can use Model- based training. The advantage of Model-based is 

that the model can understand the environment information better. HoIver, since Pikachu volleyball is a highly 

uncertain and complex environment, modeling costs are too high. Therefore, I choose to use Model-free to 

update behaviors only based on the rewards given by the environment to achieve universality. 

1.2 MC update & TD update 
Model-free is divided into two categories: Monte-Carlo (MC) update and Temporal- Difference (TD) update. 

The difference between them is that MC updates once per round, while TD update once per step. Take Pikachu 

volleyball as an example, if round update policy is in place, the model is only updated after the entire game has 

ended (a player reaches 15 points). On the other hand, the single-step update policy enables the model to update 
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after every decision. Since the length of a game can be exceptionally long, using MC will be very inefficient, so I 

choose to use TD update instead. 

1.3 Value-Based & Policy-Based 
There are two types of TD update: Value-Based and Policy-Based. Value-Based calculates the value 

corresponding to each different action through the value function, selects the optimal value as the current action, 

and updates the decision method by calculating loss. Differently, Policy-Based directly outputs an action, then 

update the decision-making method according to the reward gain by such action. Since Pikachu volleyball’s 

action space is discrete (up, down, left, right, etc.) and Policy-Based is usually used to solve problems with 

continuous action space, such as how many kilograms of force should be applied, I choose to use Value-Based. 

1.4 On-policy & Off-policy 
Value-Based is also divided into two categories: On-policy and Off-policy. To reach a global optimal 

solution in reinforcement learning, keeping exploratory is necessary in order to obtain more effective actions. Off-

policy divides decision- making methods into evaluation policy and target policy. Evaluation policy interacts with 

the environment to store experiences, make decisions during the training process, and take random actions at 

regular intervals to maintain exploration. Target policy then learns and optimizes from the experiences 

generated by evaluation policy. In other words, the experiences that target policy learns from are not 

generated by themselves, thus the name Off-policy. In contrast, On-policy does not distinguish between 

evaluation policy and target policy, so only the current experiences can be used to update the decision when 

optimizing. This behavior often results in sub-optimal results, that is, results that only reach local maximum. 

Furthermore, Off-policy’s architecture is easier to implement with parallelism, so I decided to use Off-policy. 

Ultimately, I choose a training method that meets the characteristics of Model- free, Temporal-Difference update, 

Value-Based, and Off-policy at the same time: Q-learning. Q-learning also follows the Markov decision 

process. 

The reward under the state s, action a, and decision π is Q
π
(s, a). The decreasing parameter γ, and the reward r 

obtained by the current action can be expressed as: 

Q
π
(s, a) = rt+1 + γrt+2 + γ2

rt+3 + . . . 

= r + γQπ
(s

′
, a

′
)    (1) 

= r + γ max Q
π
(s

′
, a) 

a 

The action a
′
 is the optimal solution for the state s

′
. This formula illustrates two things: first, the value of the 

current action depends only on future rewards; second, our goal is to fit the value function Q, and its loss 

function is: 

δ = (r + γ max Q
π
(s

′
, a)) − Q

π
(s, a)   (2) 

a 

HoI ver, because Pikachu volleyball’s environment has way too many states, Q-learning cannot possibly calculate 

the Q values of all states. Also, since the states count is so high, information cannot be stored in the memory if it is 

not large enough. To solve these problems, a neural network is used to fit the Q- Value function. As long as a state 

is inputted, the Q-Value can be obtained after forward propagation in the neural network. After that, I can fit the Q-

Value function by calculating the gradient for backpropagation from the loss function. This way, the problems of 

traditional Q-learning can be solved. This training method is called Deep Q-learning Network (DQN). 
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1.5 Experience Replay 
Experience Replay is a common optimization technique in DQN. As mentioned in the previous section about Off-

policy, target policy updates parameters ac- cording to the experiences that the evaluation policy generated. 

Unfortunately, since experiences from evaluation policy are sequential (the correlation betI en data is high), 

the target policy will make a gradient descent in the same direction continuously within a period of time during 

training. This phenomenon might cause the end result to not converge. After the introduction of experience 

replay, I store the experiences generated by evaluation policy in a buffer, target policy then randomly samples a 

batch of experiences from the buffer for training. This change can break the correlation betI en data. 

1.6 Prioritized Experience Replay 
Prioritized experience replay is based on the concept of experience replay with some slight modifications. 

Instead of randomly sampling, prioritized experience replay uses the priority of data when sampling. If the 

TD-error of data is higher, the precision of prediction has more potentials to be learned, so the priority 

of those data will be higher. The advantage of using prioritized experience re- play is that for small amounts 

of data with high learning potential, prioritized experience replay has a higher chance to sample those data.  

While everything seems to be perfect, there is a big problem: the Pikachu game generates experience in an 

extremely slow manner. If the amount of experience in the buffer is too low, it will lose the purpose of 

sampling and will not break the correlation betI en experiences. The main reason for this problem is because 

the game is not executed in an environment under our control. The only way to obtain the current 

information of the environment is through the most traditional way: screen capture. 

Extracting information through screenshots requires a series of complicated tasks: render the game itself, 

capture the screen and process the image. During our benchmark, I found out that I can only obtain about 80 

experiences per second. Compared to other built-in environments in OpenAI Gym, which can generate hundreds 

or even thousands of experiences per second, it is obvious that increasing experience generating speed is a 

plausible way to optimize the training process. 

2 PROPOSED SOLUTION 
To achieve our goal, which is speeding up experience generation, I decided to optimize the training process 

through the following three aspects, parallelize image processing, parallelize matrix calculation and modify 

the structure of the model. 

2.1 Environment 
I will first do a brief summary of our custom-made environment. Since the game is not written by us, I must 

first build an environment to capture game data in order to extract useful information to the model for training. To 

accomplish this, I have to hack the game a bit. 

– Due to the use of TD update, whether a game is over or not could be taken out of consideration. The model can 

learn and update the parameters after every action. Thus, I used a piece of software called Cheat Engine to 

reverse engineer the game, found the instruction that causes the game score to in- crease and changed it to a nop 

instruction. This way, the game will be more stable to provide continuous training. 

– To locate the position of Pikachus and the ball, I modified the images of Pikachu and the ball by adding 

special color dots on them using another piece of program. This dramatically decreases the complexity to 

design and implement the environment. 

– The score is also removed because they will cause misinterpretation if they block the ball.  

After the modification of the game is done, I build a custom environment with the help of OpenAI Gym. The 

behavior of the game is defined as follow: 

– Observation space (8) 
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• The current position of the ball (x, y) 

• The previous position of the ball (x, y) 

• The position of the left Pikachu (x, y) 

• The position of the right Pikachu (x, y) 

– Action space (11) 

• Up/Left/Right 

• Up + Left/Right (Jump left or Jump right) 

• Enter + None/Left/Right/Up/Down (Spiking) 

• No action 

– Win condition (Both condition shall be meet) 

• The current Y position of the ball > 0.8 × height 

• The current X position of the ball < Width ÷ 2 

The overall environment architecture can be illustrated as follow 

Fig. 1: Environment Architecture 

 

Optimization# 1 - Image Processing 

One of the most crucial and time-consuming part of this architecture is the image processing component 

as it has to analyze and pinpoint the position of players and ball. I decided that it shall be a great idea to 

process the image in parallel where another word receives part of the image and search for the target. HoI ver, 

this comes with another problem, CPython’s global interpreter lock (GIL). GIL prevents multiple threads from 

executing Python bytecodes at once, the lock is there mainly due to CPython’s unsafe memory management. To 

circumvent this restriction, Python’s C-extension API comes in handy because the API enables us to call any C 

function in python. In other word, I can call a multi-thread C function thus ignore the restriction from GIL. 

The last issue is the implementation of such C function, and the solution turns out to be quite simple. Since the 

goal of the function is to find a special color in an image, which is essentially finding a value in a 

2D array, I can write simple for loops and parallelize them using OpenMP constructs. 
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2.2 Model 

Optimization# 2 - Matrix Calculation 
As in any neural network model, matrix calculation is heavily is used, which is also an obvious 

bottleneck that can be optimized. I end up using CUDA to parallelize matrix multiplication, this way the 

neural network should be able to gain a massive performance boost when doing forward and backward 

propagation. For the implementation, I copy tensors to specified device (CPU or GPU) through the tensor 

to(device) API provided by Pytorch [3]. 

2.3  Architecture 
Our architecture is heavily inspiring by Google DeepMind team’s paper: Dis- tributed prioritized experience 

replay [1] 

In a traditional DQN Agent, both the learner and the actor will be in the same process where the actor 

interacts with the environment to provide experiences to the learner and the learner will update its neural 

network parameters. After that, the actor starts the next action, and the learner updates parameters again and 

so forth to fit the Q-Value function. 

The architecture proposed in Paper separates the actor and the learner into different processes. Two neural 

networks live in the learner: an evaluation net- work and a target network. There is also another neural network in 

the actor, which will regularly copy the learner’s evaluation network and interacts with the environment to create 

experiences. The learner will simultaneously pull data from the actor’s buffer to learn and update the model and 

the priority of expe- riences. 

 
Fig. 2: Proposed Overall Architecture 

Optimization# 3 - Multiple Actors 
One clear advantage of this architecture is that it enables us to run multiple actors at the same time and 

interact with different environments to increase the speed of experiences generation. 

However, since I extract information through screen capture, three major problems immediately arise. 

Firstly, the screen is not big enough to fit multiple actors. Secondly, additional adjustments are needed 

because different actors will be located in various positions of the screen. Lastly, the computer cannot be 

operated due to screen capture. 
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I introduced X Virtual Frame Buffer (XVFB) to solve this problem. Each XVFB is essentially a virtual 

monitor where users can launch different processes. I create separate actors in different XVFB so that they 

will not interfere with each other. HoIver, due to process separation, I use Python’s Pipe to help communicate betI 

en the actor and the environment. The final architecture of the environment is illustrated as the following 

3 EXPERIMENTAL METHODOLOGY 
To test whether our purposed solution generates more experiences, I place a counter in the actor’s buffer. I 

then launch the game, start the agent, count how many experiences are generated within 5 seconds in 

different actors, and sum them up. I do the same procedure 10 times in every benchmark to eliminate 

outliers. 

 
Fig. 3: Environment with XVFB in place 

4 EXPERIMENTAL RESULTS 
All tests and benchmarks are run under a laptop with the following specification 

– CPU: Intel Core i7 7700HQ (4C8T) 

– GPU: NVIDIA GeForce GTX 1050 

– RAM: 16 GB DDR4 

– OS: Arch Linux 

– Kernel: 5.4.6 

4.1 Image Process Optimization (Result table) 

 Exp / 5s Efficiency 

1 Thread 443 1 

2 Threads 465 1.05 

4 Threads 506 1.14 

As seen in the above figure, processing the image with multiple threads yields no noticeable performance 

boost. I suspect the main reason is the size of the image; as I am playing an old-fashioned game, the size of 

the image is only about 480 by 360. The overhead of creating threads and splitting the image outshined the 

performance gain by parallelism. 
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4.2 Matrix Calculation Optimization (CUDA) 

Result Table: 

 
Fig. 4:  Image process optimization result 

 Exp / 5s Efficiency 

Without CUDA 443 1 

With CUDA 691 1.56 

The result of incorporating CUDA is as expected; I can reach approximately 2x performance compared with those 

without CUDA. 

4.3 Multiple Actors 

Result table: 

 Exp / 5s Efficiency 

1 Actor 443 1 

2 Actors 627 1.41 

3 Actors 673 1.51 

The result of using 2 actors also meets our initial expectations, hoI ver to our surprise, using 3 actors does not 

boost performance as much. After analyzing our resource usage, I have determined the cause is that our CPU cannot 

handle 3 actors (3 games and 3 models) and 1 learner (2 models) concurrently, as the CPU usage constantly 

hovers around 100%. 
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4.4 Combining all Optimization (Result table) 

 
Fig. 5: Matrix calculation optimization result 

 Exp / 5s Efficiency 

Base case 443 1 

With Image Process Optimization 506 1.14 

With CUDA 627 1.56 

With 3 Actors 673 1.51 

With Everything 1320 2.98 

This is our result when combining all the aforementioned techniques. As shown in the table, I can reach 3 

times the performance with every technique in place. This number is exciting since it is larger than the multiple of 

all three techniques’ efficiency numbers. After some inspection, I concluded that offloading all the matrix 

calculation work to the GPU coincidentally solves the high CPU usage issue mentioned in the previous section, 

thus enabling multiple actors to increase efficiency dramatically. 

5 RELATED WORK 
– Google DeepMind’s architecture [1] is very similar to the one I use in our project, hoI ver, their environment 

is controlled and can provide fast and constant data streams. In our project, I solved some issues when the 

environment is not sophisticated enough. 

– A Korean with the handle of Lyusungwon also implements an AI on this Pikachu volleyball game. [2] 

The most significant difference is that while I send only interesting data (player and ball locations) to the 

model, he sends a raw image, thus resulting in poorer performance than us. 



ISSN: 2752-3829  Vol. 3 No.2, (December, 2023)  

 

Stochastic Modelling and Computational Sciences 
 

 

Copyrights @ Roman Science Publications Ins.                                    Stochastic Modelling and Computational Sciences   

  

 

 758 

 

 
Fig. 6: Multiple Actors result 

 
Fig. 7: Multiple Actors result 

6 CONCLUSIONS 
In this project, I demonstrate multiple ways to improve experience generation speed when training an AI agent, and 

the result is promising. I also show that the Python GIL can be circumvented. Furthermore, it is possible to run 

multiple actors even if the environment is based on screen capture solutions. For future research, I think it is 

possible to pack the whole architecture into a package to provide easier migration to other games. 
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