
ISSN: 2752-3829 Vol. 3 No.2, (December, 2023)

Stochastic Modelling and Computational Sciences

Copyrights @ Roman Science Publications Ins. Stochastic Modelling and Computational Sciences

 750

IMPROVING PIKACHU VOLLEYBALL AGENT TRAINING WITH

DISTRIBUTED COMPUTING

Meghna Konar
Research Scholar, Techno Main Salt Lake

konarmeg@gmail.com

ORCID ID - 0009-0000-6210-7645

ABSTRACT
Pikachu Volleyball stands as an iconic computer game that has captivated our generation. In this game, players

assume control of Pikachu on the right side of the screen, engaging in spirited competition against a formidable

computer agent on the left side. HoIver, a critical challenge arises when training a Pikachu volleyball agent using

deep learning techniques—insufficient experiences for effective model learn- ing. This research project addresses

the problem by showcasing novel approaches to overcome the training process’s limitations. With a focus on

distributed computing, I introduce a framework that optimizes the collection and utilization of experiences to

enhance the agents learn- ing capabilities. By harnessing the POI of distributed computing, I un- lock new

possibilities for the Pikachu volleyball agent’s training. Our framework facilitates the efficient gathering of

experiences from multiple sources, allowing for accelerated learning and improved performance. I investigate

various strategies to distribute and synchronize experiences among computing nodes, enabling parallel processing

and reducing training time. Through extensive experimentation and analysis, I demonstrate the effectiveness of

our distributed computing approach in enhancing the training efficiency of the Pikachu volleyball agent. Our

findings shed light on the benefits and challenges of leveraging distributed computing techniques in deep learning

applications. This research contributes to the field of distributed computing by showcasing its potential to address

training limitations in computer game agents. The proposed framework paves the way for further advancements in

distributed deep learning for gaming ap- plications. By enabling more efficient training processes, our work opens

doors to enhanced gameplay experiences and the development of even more intelligent virtual agents.

1 INTRODUCTION
After Google DeepMind’s AlphaGo successfully dominated the Go world, discussions on game AI have

become increasingly heated. The most classic method is using reinforcement learning to train an agent.

Through interactions between the model and the environment, the agent learns the rewards of different

actions, and try to choose a better policy based on those experiences.

Reinforcement learning can be divided into many categories according to the training method. Each category has

its own suitable use scenarios. Therefore, I analyzed the following for training an AI agent in Pikachu volleyball:

1.1 Model-free & Model-based
Note that, the word” model” in” Model-free & Model-based” refers to the environment model, which is different

from the machine learning model. The difference between the two is whether our model knows the external

environment information or not. If I can model the environment (that is, I know the transition probability from

one state to another in a real environment), I can use Model- based training. The advantage of Model-based is

that the model can understand the environment information better. HoIver, since Pikachu volleyball is a highly

uncertain and complex environment, modeling costs are too high. Therefore, I choose to use Model-free to

update behaviors only based on the rewards given by the environment to achieve universality.

1.2 MC update & TD update
Model-free is divided into two categories: Monte-Carlo (MC) update and Temporal- Difference (TD) update.

The difference between them is that MC updates once per round, while TD update once per step. Take Pikachu

volleyball as an example, if round update policy is in place, the model is only updated after the entire game has

ended (a player reaches 15 points). On the other hand, the single-step update policy enables the model to update

mailto:konarmeg@gmail.com

ISSN: 2752-3829 Vol. 3 No.2, (December, 2023)

Stochastic Modelling and Computational Sciences

Copyrights @ Roman Science Publications Ins. Stochastic Modelling and Computational Sciences

 751

after every decision. Since the length of a game can be exceptionally long, using MC will be very inefficient, so I

choose to use TD update instead.

1.3 Value-Based & Policy-Based
There are two types of TD update: Value-Based and Policy-Based. Value-Based calculates the value

corresponding to each different action through the value function, selects the optimal value as the current action,

and updates the decision method by calculating loss. Differently, Policy-Based directly outputs an action, then

update the decision-making method according to the reward gain by such action. Since Pikachu volleyball’s

action space is discrete (up, down, left, right, etc.) and Policy-Based is usually used to solve problems with

continuous action space, such as how many kilograms of force should be applied, I choose to use Value-Based.

1.4 On-policy & Off-policy
Value-Based is also divided into two categories: On-policy and Off-policy. To reach a global optimal

solution in reinforcement learning, keeping exploratory is necessary in order to obtain more effective actions. Off-

policy divides decision- making methods into evaluation policy and target policy. Evaluation policy interacts with

the environment to store experiences, make decisions during the training process, and take random actions at

regular intervals to maintain exploration. Target policy then learns and optimizes from the experiences

generated by evaluation policy. In other words, the experiences that target policy learns from are not

generated by themselves, thus the name Off-policy. In contrast, On-policy does not distinguish between

evaluation policy and target policy, so only the current experiences can be used to update the decision when

optimizing. This behavior often results in sub-optimal results, that is, results that only reach local maximum.

Furthermore, Off-policy’s architecture is easier to implement with parallelism, so I decided to use Off-policy.

Ultimately, I choose a training method that meets the characteristics of Model- free, Temporal-Difference update,

Value-Based, and Off-policy at the same time: Q-learning. Q-learning also follows the Markov decision

process.

The reward under the state s, action a, and decision π is Q
π
(s, a). The decreasing parameter γ, and the reward r

obtained by the current action can be expressed as:

Q
π
(s, a) = rt+1 + γrt+2 + γ2

rt+3 + . . .

= r + γQπ
(s

′
, a

′
) (1)

= r + γ max Q
π
(s

′
, a)

a

The action a
′
 is the optimal solution for the state s

′
. This formula illustrates two things: first, the value of the

current action depends only on future rewards; second, our goal is to fit the value function Q, and its loss

function is:

δ = (r + γ max Q
π
(s

′
, a)) − Q

π
(s, a) (2)

a

HoI ver, because Pikachu volleyball’s environment has way too many states, Q-learning cannot possibly calculate

the Q values of all states. Also, since the states count is so high, information cannot be stored in the memory if it is

not large enough. To solve these problems, a neural network is used to fit the Q- Value function. As long as a state

is inputted, the Q-Value can be obtained after forward propagation in the neural network. After that, I can fit the Q-

Value function by calculating the gradient for backpropagation from the loss function. This way, the problems of

traditional Q-learning can be solved. This training method is called Deep Q-learning Network (DQN).

ISSN: 2752-3829 Vol. 3 No.2, (December, 2023)

Stochastic Modelling and Computational Sciences

Copyrights @ Roman Science Publications Ins. Stochastic Modelling and Computational Sciences

 752

1.5 Experience Replay
Experience Replay is a common optimization technique in DQN. As mentioned in the previous section about Off-

policy, target policy updates parameters ac- cording to the experiences that the evaluation policy generated.

Unfortunately, since experiences from evaluation policy are sequential (the correlation betI en data is high),

the target policy will make a gradient descent in the same direction continuously within a period of time during

training. This phenomenon might cause the end result to not converge. After the introduction of experience

replay, I store the experiences generated by evaluation policy in a buffer, target policy then randomly samples a

batch of experiences from the buffer for training. This change can break the correlation betI en data.

1.6 Prioritized Experience Replay
Prioritized experience replay is based on the concept of experience replay with some slight modifications.

Instead of randomly sampling, prioritized experience replay uses the priority of data when sampling. If the

TD-error of data is higher, the precision of prediction has more potentials to be learned, so the priority

of those data will be higher. The advantage of using prioritized experience re- play is that for small amounts

of data with high learning potential, prioritized experience replay has a higher chance to sample those data.

While everything seems to be perfect, there is a big problem: the Pikachu game generates experience in an

extremely slow manner. If the amount of experience in the buffer is too low, it will lose the purpose of

sampling and will not break the correlation betI en experiences. The main reason for this problem is because

the game is not executed in an environment under our control. The only way to obtain the current

information of the environment is through the most traditional way: screen capture.

Extracting information through screenshots requires a series of complicated tasks: render the game itself,

capture the screen and process the image. During our benchmark, I found out that I can only obtain about 80

experiences per second. Compared to other built-in environments in OpenAI Gym, which can generate hundreds

or even thousands of experiences per second, it is obvious that increasing experience generating speed is a

plausible way to optimize the training process.

2 PROPOSED SOLUTION
To achieve our goal, which is speeding up experience generation, I decided to optimize the training process

through the following three aspects, parallelize image processing, parallelize matrix calculation and modify

the structure of the model.

2.1 Environment
I will first do a brief summary of our custom-made environment. Since the game is not written by us, I must

first build an environment to capture game data in order to extract useful information to the model for training. To

accomplish this, I have to hack the game a bit.

– Due to the use of TD update, whether a game is over or not could be taken out of consideration. The model can

learn and update the parameters after every action. Thus, I used a piece of software called Cheat Engine to

reverse engineer the game, found the instruction that causes the game score to in- crease and changed it to a nop

instruction. This way, the game will be more stable to provide continuous training.

– To locate the position of Pikachus and the ball, I modified the images of Pikachu and the ball by adding

special color dots on them using another piece of program. This dramatically decreases the complexity to

design and implement the environment.

– The score is also removed because they will cause misinterpretation if they block the ball.

After the modification of the game is done, I build a custom environment with the help of OpenAI Gym. The

behavior of the game is defined as follow:

– Observation space (8)

ISSN: 2752-3829 Vol. 3 No.2, (December, 2023)

Stochastic Modelling and Computational Sciences

Copyrights @ Roman Science Publications Ins. Stochastic Modelling and Computational Sciences

 753

• The current position of the ball (x, y)

• The previous position of the ball (x, y)

• The position of the left Pikachu (x, y)

• The position of the right Pikachu (x, y)

– Action space (11)

• Up/Left/Right

• Up + Left/Right (Jump left or Jump right)

• Enter + None/Left/Right/Up/Down (Spiking)

• No action

– Win condition (Both condition shall be meet)

• The current Y position of the ball > 0.8 × height

• The current X position of the ball < Width ÷ 2

The overall environment architecture can be illustrated as follow

Fig. 1: Environment Architecture

Optimization# 1 - Image Processing

One of the most crucial and time-consuming part of this architecture is the image processing component

as it has to analyze and pinpoint the position of players and ball. I decided that it shall be a great idea to

process the image in parallel where another word receives part of the image and search for the target. HoI ver,

this comes with another problem, CPython’s global interpreter lock (GIL). GIL prevents multiple threads from

executing Python bytecodes at once, the lock is there mainly due to CPython’s unsafe memory management. To

circumvent this restriction, Python’s C-extension API comes in handy because the API enables us to call any C

function in python. In other word, I can call a multi-thread C function thus ignore the restriction from GIL.

The last issue is the implementation of such C function, and the solution turns out to be quite simple. Since the

goal of the function is to find a special color in an image, which is essentially finding a value in a

2D array, I can write simple for loops and parallelize them using OpenMP constructs.

ISSN: 2752-3829 Vol. 3 No.2, (December, 2023)

Stochastic Modelling and Computational Sciences

Copyrights @ Roman Science Publications Ins. Stochastic Modelling and Computational Sciences

 754

2.2 Model

Optimization# 2 - Matrix Calculation
As in any neural network model, matrix calculation is heavily is used, which is also an obvious

bottleneck that can be optimized. I end up using CUDA to parallelize matrix multiplication, this way the

neural network should be able to gain a massive performance boost when doing forward and backward

propagation. For the implementation, I copy tensors to specified device (CPU or GPU) through the tensor

to(device) API provided by Pytorch [3].

2.3 Architecture
Our architecture is heavily inspiring by Google DeepMind team’s paper: Dis- tributed prioritized experience

replay [1]

In a traditional DQN Agent, both the learner and the actor will be in the same process where the actor

interacts with the environment to provide experiences to the learner and the learner will update its neural

network parameters. After that, the actor starts the next action, and the learner updates parameters again and

so forth to fit the Q-Value function.

The architecture proposed in Paper separates the actor and the learner into different processes. Two neural

networks live in the learner: an evaluation net- work and a target network. There is also another neural network in

the actor, which will regularly copy the learner’s evaluation network and interacts with the environment to create

experiences. The learner will simultaneously pull data from the actor’s buffer to learn and update the model and

the priority of expe- riences.

Fig. 2: Proposed Overall Architecture

Optimization# 3 - Multiple Actors
One clear advantage of this architecture is that it enables us to run multiple actors at the same time and

interact with different environments to increase the speed of experiences generation.

However, since I extract information through screen capture, three major problems immediately arise.

Firstly, the screen is not big enough to fit multiple actors. Secondly, additional adjustments are needed

because different actors will be located in various positions of the screen. Lastly, the computer cannot be

operated due to screen capture.

ISSN: 2752-3829 Vol. 3 No.2, (December, 2023)

Stochastic Modelling and Computational Sciences

Copyrights @ Roman Science Publications Ins. Stochastic Modelling and Computational Sciences

 755

I introduced X Virtual Frame Buffer (XVFB) to solve this problem. Each XVFB is essentially a virtual

monitor where users can launch different processes. I create separate actors in different XVFB so that they

will not interfere with each other. HoIver, due to process separation, I use Python’s Pipe to help communicate betI

en the actor and the environment. The final architecture of the environment is illustrated as the following

3 EXPERIMENTAL METHODOLOGY
To test whether our purposed solution generates more experiences, I place a counter in the actor’s buffer. I

then launch the game, start the agent, count how many experiences are generated within 5 seconds in

different actors, and sum them up. I do the same procedure 10 times in every benchmark to eliminate

outliers.

Fig. 3: Environment with XVFB in place

4 EXPERIMENTAL RESULTS
All tests and benchmarks are run under a laptop with the following specification

– CPU: Intel Core i7 7700HQ (4C8T)

– GPU: NVIDIA GeForce GTX 1050

– RAM: 16 GB DDR4

– OS: Arch Linux

– Kernel: 5.4.6

4.1 Image Process Optimization (Result table)

 Exp / 5s Efficiency

1 Thread 443 1

2 Threads 465 1.05

4 Threads 506 1.14

As seen in the above figure, processing the image with multiple threads yields no noticeable performance

boost. I suspect the main reason is the size of the image; as I am playing an old-fashioned game, the size of

the image is only about 480 by 360. The overhead of creating threads and splitting the image outshined the

performance gain by parallelism.

ISSN: 2752-3829 Vol. 3 No.2, (December, 2023)

Stochastic Modelling and Computational Sciences

Copyrights @ Roman Science Publications Ins. Stochastic Modelling and Computational Sciences

 756

4.2 Matrix Calculation Optimization (CUDA)

Result Table:

Fig. 4: Image process optimization result

 Exp / 5s Efficiency

Without CUDA 443 1

With CUDA 691 1.56

The result of incorporating CUDA is as expected; I can reach approximately 2x performance compared with those

without CUDA.

4.3 Multiple Actors

Result table:

 Exp / 5s Efficiency

1 Actor 443 1

2 Actors 627 1.41

3 Actors 673 1.51

The result of using 2 actors also meets our initial expectations, hoI ver to our surprise, using 3 actors does not

boost performance as much. After analyzing our resource usage, I have determined the cause is that our CPU cannot

handle 3 actors (3 games and 3 models) and 1 learner (2 models) concurrently, as the CPU usage constantly

hovers around 100%.

ISSN: 2752-3829 Vol. 3 No.2, (December, 2023)

Stochastic Modelling and Computational Sciences

Copyrights @ Roman Science Publications Ins. Stochastic Modelling and Computational Sciences

 757

4.4 Combining all Optimization (Result table)

Fig. 5: Matrix calculation optimization result

 Exp / 5s Efficiency

Base case 443 1

With Image Process Optimization 506 1.14

With CUDA 627 1.56

With 3 Actors 673 1.51

With Everything 1320 2.98

This is our result when combining all the aforementioned techniques. As shown in the table, I can reach 3

times the performance with every technique in place. This number is exciting since it is larger than the multiple of

all three techniques’ efficiency numbers. After some inspection, I concluded that offloading all the matrix

calculation work to the GPU coincidentally solves the high CPU usage issue mentioned in the previous section,

thus enabling multiple actors to increase efficiency dramatically.

5 RELATED WORK
– Google DeepMind’s architecture [1] is very similar to the one I use in our project, hoI ver, their environment

is controlled and can provide fast and constant data streams. In our project, I solved some issues when the

environment is not sophisticated enough.

– A Korean with the handle of Lyusungwon also implements an AI on this Pikachu volleyball game. [2]

The most significant difference is that while I send only interesting data (player and ball locations) to the

model, he sends a raw image, thus resulting in poorer performance than us.

ISSN: 2752-3829 Vol. 3 No.2, (December, 2023)

Stochastic Modelling and Computational Sciences

Copyrights @ Roman Science Publications Ins. Stochastic Modelling and Computational Sciences

 758

Fig. 6: Multiple Actors result

Fig. 7: Multiple Actors result

6 CONCLUSIONS
In this project, I demonstrate multiple ways to improve experience generation speed when training an AI agent, and

the result is promising. I also show that the Python GIL can be circumvented. Furthermore, it is possible to run

multiple actors even if the environment is based on screen capture solutions. For future research, I think it is

possible to pack the whole architecture into a package to provide easier migration to other games.

REFERENCES
1. Horgan, D., Quan, J., Budden, D., Barth-Maron, G., Hessel, M., Van Hasselt, H., Sil- ver, D.: Distributed

prioritized experience replay. arXiv preprint arXiv:1803.00933 (2018)

2. Lyusungwon: Alphachu: Ape-x dqn implementation of pikachu volleyball. https://github.com/github/open-

source-survey (2018)

ISSN: 2752-3829 Vol. 3 No.2, (December, 2023)

Stochastic Modelling and Computational Sciences

Copyrights @ Roman Science Publications Ins. Stochastic Modelling and Computational Sciences

 759

3. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z.,

Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani,

A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-

performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d'Alch´e-Buc,

F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035.

Curran As- sociates, Inc. (2019), http://papers.neurips.cc/paper/9015-pytorch-an-imperative- style-high-

performance-deep-learning-library.pdf

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-%20style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-%20style-high-performance-deep-learning-library.pdf

	1 Introduction
	1.1 Model-free & Model-based
	1.2 MC update & TD update
	1.3 Value-Based & Policy-Based
	1.4 On-policy & Off-policy
	1.5 Experience Replay
	1.6 Prioritized Experience Replay

	2 Proposed Solution
	2.1 Environment
	2.2 Model
	2.3 Architecture

	3 Experimental Methodology
	4 Experimental Results
	4.1 Image process optimization (Result table)
	4.2 Matrix Calculation Optimization (CUDA)
	4.3 Multiple Actors
	4.4 Combining all optimization (Result table)

	5 Related work
	6 Conclusions

