Stochastic Modelling and Computational Sciences

THE LATTICE OF CONVEX SUBLATTICES OF $S^{3}\left(B_{n}\right)$

J Aaswin ${ }^{1}$ and A Vethamanickam ${ }^{2}$
${ }^{1}$ Research Scholar, (Reg. No.19211172092013) and ${ }^{2}$ Former Associate Professor, PG and Research Department of Mathematics, Rani Anna Government College for Women, Affliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli-627012
Corresponding Author E-mail: aaswinj1996@gmail.com

Abstract

In this paper, we prove that $\operatorname{CS}\left[S^{3}\left(B_{n}\right)\right]$ is an Eulerian lattice under the set inclusion relation and it is neither simplicial nor dual simplicial, if $n>1$.

Keywords: Convex sublattice; Simplicial Eulerian lattice; Dual simplicial.
2010 Mathematics Subject Classification: 03G05, 05A19, 06D50.

1 Introduction

The lattice of sublattices of a lattice with convex sublattices has been studied in some detail by K. M. Koh [3] in the year 1972. He had investigated the internal structure of a lattice L, in relation to $\operatorname{CS}(L)$, like so many other authors for various algebraic structures such as groups, Boolean algebras, directed graphs and so on. In 1992, V. K. Santhi [12] constructed a new Eulerian lattice $S\left(B_{n}\right)$ from a Boolean algebra B_{n} of rank n. In 2012, R. Subbarayan and A. Vethamanickam [15] have proved in their paper that the lattice of convex sublattices of a Boolean algebra B_{n}, of $\operatorname{rank} n, \operatorname{CS}\left(B_{n}\right)$ with respect to the set inclusion relation is a dual simplicial Eulerian lattice. Neither simplicity nor dual simplicity are characteristics associated with the set inclusion relation.

In this paper, we are going to look at the structure of $C S\left[S^{3}\left(B_{n}\right)\right]$ and prove it to be Eulerian under ' \subseteq^{\prime} relation. $S\left(B_{2}\right)$ is shown in figure 1 . We note that $S\left(B_{2}\right)$ contains three copies of B_{2}, we call them left copy, right copy and middle copy of $S\left(B_{2}\right)$.

Figure 1
Lemma 1.1. [8] A finite graded poset P is Eulerian if and only if all intervals $[x, y]$ of length $l \geq 1$ in P contain an equal number of elements of odd and even rank.

Lemma 1.2. [13] If L_{1} and L_{2} are two Eulerian lattices then $L_{1} \times L_{2}$ is also Eulerian.
There is no way to contain a three element chain as an interval. In the case that an undefined term needs to be referred to, we use [2], [11] and [12].

Stochastic Modelling and Computational Sciences

Figure 2-S ${ }^{3}\left(B_{2}\right)$

2 The Eulerian property of the lattice $\operatorname{CS}\left[S^{\mathbf{3}}\left(B_{n}\right)\right]$

Lemma 2.1. For $n \geq 1$, we have
$1+2+\binom{n}{1}+2+2+2\left[2+\binom{n}{1}+2\right]+2\left[\binom{n}{1}+2\right]+2\binom{n}{1}+\binom{n}{2}+22\left[\binom{n}{1}+2\right]+2\binom{n}{1}+\binom{n}{2}+2\left[2\binom{n}{1}+\binom{n}{2}\right]+2\binom{n}{2}+$ $\binom{n}{3}+22\left[2\binom{n}{1}+\binom{n}{2}\right]+2\binom{n}{2}+\binom{n}{3}+2\left[2\binom{n}{2}+\binom{n}{3}\right]+2\binom{n}{3}+\binom{n}{4}+\cdots+22\left[2\binom{n}{n-3}+\binom{n}{n-2}\right]+2\binom{n}{n-2}+\binom{n}{n-1}+$ $2\left[2\binom{n}{n-2}+\binom{n}{n-1}\right]+2\binom{n}{n-1}+22\left[2\binom{n}{n-2}+\binom{n}{n-1}\right]+2\binom{n}{n-1}+2\left[2\binom{n}{n-1}\right]+22\left[2\binom{n}{n-1}\right]+1=3^{3} .2^{n}-26$.

Theorem 2.2 $\operatorname{CS}\left[S^{3}\left(B_{n}\right)\right]$, the lattice of convex sublattices of $S^{3}\left(B_{n}\right)$ with respect to the set inclusion relation is an Eulerian lattice.

Proof
We first note that, the number of elements of ranks
$0,1,2, \ldots, n+1 \operatorname{inS}\left(B_{n}\right)$ are $, 1,2+\binom{n}{1}, 2\binom{n}{1}+\binom{n}{2}, 2\binom{n}{2}+\binom{n}{3}, \ldots, 2\binom{n}{n-2}+\binom{n}{n-1}, 2\binom{n}{n-1}, 1$ respectively.
The number of elements of ranks $0,1,2, \ldots, n+2$ in $S\left[S\left(B_{n}\right)\right]$ are, $1,2+\binom{n}{1}+2,2\left[\binom{n}{1}+2\right]+2\binom{n}{1}+\binom{n}{2}, 2\left[2\binom{n}{1}+\binom{n}{2}\right]+2\binom{n}{2}+\binom{n}{3}, 2\left[2\binom{n}{2}+\binom{n}{3}\right]+2\binom{n}{3}+\binom{n}{4}, \ldots, 2\left[2\binom{n}{n-2}+\binom{n}{n-1}\right]+$ $2\binom{n}{n-1}, 2\left[2\binom{n-1}{n-1}\right], 1$
respectively.

Stochastic Modelling and Computational Sciences

The number of elements of ranks $0,1,2, \ldots, n+3$ in $S^{3}\left(B_{n}\right)$ are,
$1,2+\binom{n}{1}+2+2,2\left[2+\binom{n}{1}+2\right]+2\left[\binom{n}{1}+2\right]+2\binom{n}{1}+\binom{n}{2}, 22\left[\binom{n}{1}+2\right]+2\binom{n}{1}+\binom{n}{2}+2\left[2\binom{n}{1}+\left(\begin{array}{c}n \\ 2\end{array}\right]+2\binom{n}{2}+\right.$
$\binom{n}{3}, 22\left[2\binom{n}{1}+\binom{n}{2}\right]+2\binom{n}{2}+\binom{n}{3}+2\left[2\binom{n}{2}+\binom{n}{3}\right]+2\binom{n}{3}+\binom{n}{4}, \ldots, 22\left[2\binom{n}{n-3}+\binom{n}{n-2}\right]+2\binom{n}{n-2}+\binom{n}{n-1}+$
$2\left[2\binom{n}{n-2}+\binom{n}{n-1}\right]+2\binom{n}{n-1}, 22\left[2\binom{n}{n-2}+\binom{n}{n-1}\right]+2\binom{n}{n-1}+2\left[2\binom{n}{n-1}\right], 22\left[2\binom{n}{n-1}\right], 1$
respectively.
It is clear that the rank of $\operatorname{CS}\left[S^{3}\left(B_{n}\right)\right]$, is $n+4$.
We are going to prove that $\operatorname{CS}\left[S^{3}\left(B_{n}\right)\right]$, is Eulerian.
That is, to prove that this interval $\left[\varphi, S^{3}\left(B_{n}\right)\right]$ has the same number of elements of odd and even rank.
Let A_{i} be the number of elements of rank i in $\operatorname{CS}\left[S^{3}\left(B_{n}\right)\right], i=1,2, \ldots, n+3$.
$A_{1}=$ The number of singleton subsets of $S^{3}\left(B_{n}\right)$
$=$
$1+2+\binom{n}{1}+2+2+2\left[2+\binom{n}{1}+2\right]+2\left[\binom{n}{1}+2\right]+2\binom{n}{1}+\binom{n}{2}+22\left[\binom{n}{1}+2\right]+2\binom{n}{1}+\binom{n}{2}+2\left[2\binom{n}{1}+\binom{n}{2}\right]+2\binom{n}{2}+$
$\binom{n}{3}+22\left[2\binom{n}{1}+\binom{n}{2}\right]+2\binom{n}{2}+\binom{n}{3}+2\left[2\binom{n}{2}+\binom{n}{3}\right]+2\binom{n}{3}+\binom{n}{4}+\cdots+22\left[2\binom{n}{n-3}+\binom{n}{n-2}\right]+2\binom{n}{n-2}+\binom{n}{n-1}+$
$2\left[2\binom{n}{n-2}+\binom{n}{n-1}\right]+2\binom{n}{n-1}+22\left[2\binom{n}{n-2}+\binom{n}{n-1}\right]+2\binom{n}{n-1}+2\left[2\binom{n}{n-1}\right]+22\left[2\binom{n}{n-1}\right]+1$
...................(2.1.1)
$A_{2}=$ The number of rank 2 convex sublattices in $S^{3}\left(B_{n}\right)$
$=$ The number of edges in $S^{3}\left(B_{n}\right)$
$=$ The number of edges containing $0+$ number of edges with an atom at the bottom + The number of edges from the rank 2 elements $+\cdots+$ The number of edges with a coatom of $S^{3}\left(B_{n}\right)$ at the bottom.
Number of edges containing 0 is, $2+\binom{n}{1}+2+2 \ldots$
The number of edges with an extreme atom at the bottom of the edge $=2+\binom{n}{1}+2$. There are 2 extreme atoms, this means that the total number of these edges will be equal to $2\left[2+\binom{n}{1}+2\right]$
Let x be an atom in the middle copy, then
$[x, 1] \cong\left\{\left\{S^{2}\left(B_{n}\right)\right.\right.$ if x be in an extreme copies of $S^{3}\left(B_{n}\right), S^{3}\left(B_{n-1}\right)$ ifx be in the middle copy of $\left.\left.S^{3}\left(B_{n}\right)\right\}\right\}$
If $[x, 1] \cong S^{2}\left(B_{n}\right)$, there are $2+\binom{n}{1}+2$ edges.
There are 2 extreme atoms, this means that the total number of these edges will be equal to $2\left[2+\binom{n}{1}+2\right]$. If $[x, 1] \cong S^{3}\left(B_{n-1}\right)$, there are $2+2+\binom{n-1}{1}+2$ edges. There are $2+\binom{n}{1}$ such atoms, since, the middle copy of $S^{3}\left(B_{n}\right)$ is of the form $S^{2}\left(B_{n}\right)$, whose middle copy is of the form $S\left(B_{n}\right)$, this means that the total number of these edges will be equal to $\left(2+\binom{n}{1}\right)\left[2+2+\binom{n-1}{1}+2\right]$. Hence, the number of edges that have an atom at the bottom of the edge is a total of
$2\left[2+\binom{n}{1}+2\right]+2\left[2+\binom{n}{1}+2\right]+\left(2+\binom{n}{1}\right)\left[2+2+\binom{n-1}{1}+2\right]$.
Now to find, the number of edges with an element of rank 2 at the bottom.
Let x be a rank 2 element in the left copy. Then,
$[x, 1] \cong\left\{\left\{S\left(B_{n}\right)\right.\right.$ if $x \in$ extreme copies of left copy of $S^{3}\left(B_{n}\right), S^{2}\left(B_{n-1}\right)$ if $x \in$ middle copy of left copy $\left.\left.S^{3}\left(B_{n}\right)\right\}\right\}$
If $[x, 1] \cong S\left(B_{n}\right)$, there are $\binom{n}{1}+2$ edges in both extreme copies. Totally, $2\left(\binom{n}{1}+2\right)$ edges are there. If $[x, 1] \cong S^{2}\left(B_{n-1}\right)$, the number of edges from x is $2+\binom{n-1}{1}+2$. There are $2+\binom{n}{1}$ such elements, since, the

Stochastic Modelling and Computational Sciences

middle copy of $S^{3}\left(B_{n}\right)$ is of the form $S^{2}\left(B_{n}\right)$ whose middle copy is of the form $S\left(B_{n}\right)$, therefore, totally $2+\binom{n}{1}\left[2+\binom{n-1}{1}+2\right]$ edges in the middle of the left copy of $S^{3}\left(B_{n}\right)$.The number of edges in the left copy that have an element of rank 2 at the bottom is $=2\left[\binom{n}{1}+2\right]+\left(2+\binom{n}{1}\right)\left[2+\binom{n-1}{1}+2\right]$. Similarly, the number of edges in the right copy that have an element of rank 2 at the bottom is therefore
$\left.=2\left[\begin{array}{l}n \\ 1\end{array}\right)+2\right]+\left(2+\binom{n}{1}\right)\left[2+\binom{n-1}{1}+2\right]$.
Let x be a rank 2 element in the middle copy of $S^{3}\left(B_{n}\right)$.
Then,
$[x, 1] \cong\left\{\left\{S^{2}\left(B_{n-1}\right)\right.\right.$ if $x \in$ extreme copies of middle copy of $S^{3}\left(B_{n}\right), S^{3}\left(B_{n-2}\right)$ if $x \in$
middle copy of middle copy $\left.\left.S^{3}\left(B_{n}\right)\right\}\right\}$

If $[x, 1] \cong S^{2}\left(B_{n-1}\right)$, the number of edges from x is $2+\binom{n-1}{1}+2$. There are $2+\binom{n}{1}$ such elements in both extreme copies. Totally, $\left(2+\binom{n}{1}\right)\left(2+\binom{n-1}{1}+2\right)$ edges. If $[x, 1] \cong S^{3}\left(B_{n-2}\right)$,,the number of edges from x is $2+2+\binom{n-2}{1}+2$. There are $2\binom{n}{1}+\binom{n}{2}$ such elements, therefore, totally $\left(2\binom{n}{1}+\binom{n}{2}\right)\left[2+2+\binom{n-2}{1}+2\right]$ edges in the middle of the middle copy of $S^{3}\left(B_{n}\right)$. The number of edges in the middle copy that have an element of rank 2 at the bottom is therefore $2\left[\left(2+\binom{n}{1}\right)\left(2+\binom{n-1}{1}+2\right)\right]+\left(2\binom{n}{1}+\binom{n}{2}\right)\left[2+2+\binom{n-2}{1}+2\right]$ edges. Hence, the total number of edges from a rank 2 element can be expressed as follows:
$2\left[2\left[\binom{n}{1}+2\right]+\left(2+\binom{n}{1}\right)\left[2+\binom{n-1}{1}+2\right]\right]+2\left[\left(2+\binom{n}{1}\right)\left(2+\binom{n-1}{1}+2\right)\right]+\left(2\binom{n}{1}+\binom{n}{2}\right)\left[2+2+\binom{n-2}{1}+2\right]$...(2.4)
Now to find, the number of edges with an element of rank 3 at the bottom. Let x be a rank 3 element in the extreme copies in the left copy of $S^{3}\left(B_{n}\right)$.
Then, $[x, 1] \cong S\left(B_{n-1}\right)$, if $x \in$ an extreme copies of leftcopy of $S^{3}\left(B_{n}\right)$

$$
\cong S^{2}\left(B_{n-2}\right) \text {, if } x \in \text { middle copy of left copy of } S^{3}\left(B_{n}\right)
$$

If $[x, 1] \cong S\left(B_{n-1}\right)$, the number of edges from x is $2+\binom{n-1}{1}$. There are $2+\binom{n}{1}$ such x^{\prime} s in both extreme copies. Totally, $\left(2+\binom{n}{1}\right)\left(2+\binom{n-1}{1}\right.$ edges from such x 's in the extreme copies of left copy.

If $[x, 1] \cong S^{2}\left(B_{n-2}\right)$, then the number of edges from x is $2+\binom{n-2}{1}+2$. There are $2\binom{n}{1}+\binom{n}{2}$ such elements in both extreme copies. Totally, $\left(2\binom{n}{1}+\binom{n}{2}\left(2+\binom{n-2}{1}+2\right)\right.$ edges. If $[x, 1] \cong S^{3}\left(B_{n-2}\right)$, the number of edges from x is $2+2+\binom{n-2}{1}+2$. There are $2\binom{n}{1}+\binom{n}{2}$ such elements, therefore, totally
$\left(2\binom{n}{1}+\binom{n}{2}\right)\left[2+2+\binom{n-2}{1}+2\right]$ edges in the middle of the left copy of $S^{3}\left(B_{n}\right)$. The number of edges in the left copy that have an element of rank 3 at the bottom is therefore $2\left[\left(2+\binom{n}{1}\right)\left(2+\binom{n-1}{1}\right)\right]+\left(2\binom{n}{1}+\binom{n}{2}\right)\left[2+\binom{n-2}{1}+2\right]$ edges. Similarly, the number of edges in the right copy that have an element of rank 3 at the bottom is therefore,
$2\left[\left(2+\binom{n}{1}\right)\left(2+\binom{n-1}{1}\right)\right]+\left(2\binom{n}{1}+\binom{n}{2}\right)\left[2+\binom{n-2}{1}+2\right]$.
Let x be a rank 3 element in the middle copy of $S^{3}\left(B_{n}\right)$.
Then,
$[x, 1] \cong\left\{\left\{S^{2}\left(B_{n-2}\right)\right.\right.$ if $x \in$ extreme copies of middle copy of $S^{3}\left(B_{n}\right), S^{3}\left(B_{n-3}\right)$ if $x \in$ middle copy of middle copy $\left.\left.S^{3}\left(B_{n}\right)\right\}\right\}$

Stochastic Modelling and Computational Sciences

If $[x, 1] \cong S^{2}\left(B_{n-2}\right)$, the number of edges from x is $2+\binom{n-2}{1}+2$. There are $2\binom{n}{1}+\binom{n}{2}$ such elements in both extreme copies. Totally, $\left(2\binom{n}{1}+\binom{n}{2}\right)\left(2+\binom{n-2}{1}+2\right)$ edges.
If $[x, 1] \cong S^{3}\left(B_{n-3}\right)$, the number of edges from x is $2+2+\binom{n-3}{1}+2$. There are $2\binom{n}{2}+\binom{n}{3}$ such elements, therefore, totally $\left(2\binom{n}{2}+\binom{n}{3}\left[2+2+\binom{n-3}{1}+2\right]\right.$ edges in the middle of the middle copy of $S^{3}\left(B_{n}\right)$. The number of edges in the middle copy that have an element of rank 3 at the bottom is therefore $2\left[\left(2\binom{n}{1}+\binom{n}{2}\right)\left(2+\binom{n-2}{1}+2\right)\right]+\left(2\binom{n}{2}+\binom{n}{3}\right)\left[2+2+\binom{n-3}{1}+2\right]$ edges. Hence, the total number of edges from a rank 3 element can be expressed as follows:
$2\left\{2\left[\left(2+\binom{n}{1}\right)\left(2+\binom{n-1}{1}\right)\right]+\left(2\binom{n}{1}+\binom{n}{2}\right)\left[2+\binom{n-2}{1}+2\right]\right\}+2\left[\left(2\binom{n}{1}+\binom{n}{2}\right)\left(2+\binom{n-2}{1}+2\right)\right]+2\left[\left(2\binom{n}{1}+\binom{n}{2}\right)(2+\right.$ $\left.\left.\binom{n-2}{1}+2\right)\right]+\left(2\binom{n}{2}+\binom{n}{3}\right)\left[2+2+\binom{n-3}{1}+2\right] \ldots$

We can proceed in the same way to find the number of edges from the bottom of a coatom of $S^{3}\left(B_{n}\right)=$ the number of coatoms in $S^{3}\left(B_{n}\right)$

$$
\begin{equation*}
=2\left\{2\left[2\binom{n}{n-1}\right\} .\right. \tag{2.6}
\end{equation*}
$$

Hence, from (2.2), (2.3), (2.4), (2.5) and (2.6) we get, the total number of edges in $S^{3}\left(B_{n}\right)$ is,
$A_{2}=2+\binom{n}{1}+2+2+2\left[2+\binom{n}{1}+2\right]+2\left[2+\binom{n}{1}+2\right]+\left(2+\binom{n}{1}\left[2+2+\binom{n-1}{1}+2\right]+2\left[2\left[\binom{n}{1}+2\right]+\left(2+\binom{n}{1}\right)[2+\right.\right.$
$\left.\left.\binom{n-1}{1}+2\right]\right]+2\left[\left(2+\binom{n}{1}\right)\left(2+\binom{n-1}{1}+2\right)\right]+\left(2\binom{n}{1}+\binom{n}{2}\right)\left[2+2+\binom{n-2}{1}+2\right]+2\left\{2\left[\left(2+\binom{n}{1}\right)\left(2+\binom{n-1}{1}\right)\right]+\left(2\binom{n}{1}+\right.\right.$ $\left.\left.\binom{n}{2}\right)\left[2+\binom{n-2}{1}+2\right]\right\}+2\left[\left(2\binom{n}{1}+\binom{n}{2}\right)\left(2+\binom{n-2}{1}+2\right)\right]+2\left[\left(2\binom{n}{1}+\binom{n}{2}\right)\left(2+\binom{n-2}{1}+2\right)\right]+\left(2\binom{n}{2}+\binom{n}{3}\right)[2+2+$ $\left.\binom{n-3}{1}+2\right]+\ldots+2\left\{2\left[2\binom{n}{n-1}\right\}\right.$
.................. (2.1.2)
$A_{3}=$ The number of 4 element convex sublattices in $S^{3}\left(B_{n}\right)$
$=$ The number of $B_{2}{ }^{\prime} \sin S^{3}\left(B_{n}\right)$
$=$ The number of $B_{2}{ }^{\prime} s$ containing $0+$ the number of $B_{2}{ }^{\prime} s$ containing an atom at the bottom $+\ldots .+$ the number of $B_{2}{ }^{\prime} s$ containing a rank $n+1$ element at the bottom in $S^{3}\left(B_{n}\right)$.
The number of 4 element convex sublattices in $S^{3}\left(B_{n}\right)$ containing 0 as the bottom element is,

$$
\begin{equation*}
2\left[2+\binom{n}{1}+2\right]+2\left[\binom{n}{1}+2\right]+2\binom{n}{1}+\binom{n}{2} \tag{2.7}
\end{equation*}
$$

Next, we find the number of 4 element convex sublattices containing an atom as the bottom element.
Fix an atom $x \in S^{3}\left(B_{n}\right)$. If x is the bottom element of the left copy of $S^{3}\left(B_{n}\right)$, then $[x, 1] \cong S^{2}\left(B_{n}\right)$.
Therefore, the number of B_{2} 's containing x at the bottom is $\left.2\left[\begin{array}{c}n \\ 1\end{array}\right)+2\right]+2\binom{n}{1}+\binom{n}{2}$. Similarly, the number of $B_{2}{ }^{\prime} s$ containing the bottom element of the right copy is $2\left[\binom{n}{1}+2\right]+2\binom{n}{1}+\binom{n}{2}$.
If x is in the middle copy of $S^{3}\left(B_{n}\right)$, then,
$[x, 1] \cong\left\{\left\{S^{2}\left(B_{n}\right)\right.\right.$ if $x \in$
extreme copies of middle copy of $S^{3}\left(B_{n}\right), S^{3}\left(B_{n-1}\right)$ ifx middle copy of middle copy $\left.\left.S^{3}\left(B_{n}\right)\right\}\right\}$ If $[x, 1] \cong S^{2}\left(B_{n}\right)$, there are $2\left[\binom{n}{1}+2\right]+2\binom{n}{1}+\binom{n}{2} B_{2}$'s in both extreme copies. Totally, $2\left\{2\left[\binom{n}{1}+2\right]+\right.$ $\left.2\binom{n}{1}+\binom{n}{2}\right\}$ such B_{2} 's. If $[x, 1] \cong S^{3}\left(B_{n-1}\right)$, then the number of B_{2} 's containing x is $2\left[2+\binom{n-1}{1}+2\right]+2\left[\binom{n-1}{1}+2\right]+2\binom{n-1}{1}+\binom{n-1}{2}$. There are $2+\binom{n}{1}$ such elements, therefore, the total number of B_{2} 's containing all the atoms at the bottom in the middle of the middle copy is
$2\left\{2\left[\binom{n}{1}+2\right]+2\binom{n}{1}+\binom{n}{2}\right\}+\left(2+\binom{n}{1}\right)\left\{2\left[2+\binom{n-1}{1}+2\right]+2\left[\binom{n-1}{1}+2\right]+2\binom{n-1}{1}+\binom{n-1}{2}\right\}$.

Stochastic Modelling and Computational Sciences

Therefore, the number of B_{2} 's containing all the atoms of $S^{3}\left(B_{n}\right)$ is, $2\left[2\left[\binom{n}{1}+2\right]+\right.$
$\left.2\binom{n}{1}+\binom{n}{2}\right]+2\left\{2\left[\binom{n}{1}+2\right]+2\binom{n}{1}+\binom{n}{2}\right\}+\left(2+\binom{n}{1}\right)\left\{2\left[2+\binom{n-1}{1}+2\right]+2\left[\binom{n-1}{1}+2\right]+2\binom{n-1}{1}+\binom{n-1}{2}\right\}$.
Next, fix an element x of rank 2 in $S^{3}\left(B_{n}\right)$
If x is in the left copy of $S^{3}\left(B_{n}\right)$.
Then, $[x, 1] \cong S\left(B_{n}\right)$, if $x \in$ an extreme copies of leftcopy of $S^{3}\left(B_{n}\right)$
$\cong S^{2}\left(B_{n-1}\right)$, ifx \in middle copy of left copy of $S^{3}\left(B_{n}\right)$
If $[x, 1] \cong S\left(B_{n}\right)$, the number of B_{2} 's from x is $2\binom{n}{1}+\binom{n}{2}$. There are 2 such extreme copies. Totally, $2\left(2\binom{n}{1}+\binom{n}{2}\right)$ such B_{2} 's in the extreme copies of left copy.
If $[x, 1] \cong S^{2}\left(B_{n-1}\right)$, then the number of B_{2} 's from x is $\left.2\binom{n-1}{1}+2\right)+2\binom{n-1}{1}+\binom{n-1}{2}$. There are $2+\binom{n}{1}$ such elements x of rank 2in the middle of the left copy. Therefore, the total number of B_{2} 's containing a rank 2 element at the bottom in the left copy is , $2\left(2\binom{n}{1}+\binom{n}{2}\right)\left(2+\binom{n}{1}\right)\left[2\left(\binom{n-1}{1}+2\right)+2\binom{n-1}{1}+\binom{n-1}{2}\right]$. Similarly, we have the same number in the right copy. Therefore, the total number of B_{2} 's containing a rank 2 element at the bottom in the extreme copies $=2\left(2\binom{n}{1}+\binom{n}{2}\right)\left(2+\binom{n}{1}\left[2\left(\binom{n-1}{1}+2\right)+2\binom{n-1}{1}+\binom{n-1}{2}\right]\right.$.
If x is in the middle copy of $S^{3}\left(B_{n}\right)$, then
$[x, 1] \cong S^{2}\left(B_{n-1}\right)$, if $x \in$ an extreme copies of middle copy of $S^{3}\left(B_{n}\right)$
$\cong S^{3}\left(B_{n-2}\right)$, if $x \in$ middle copy of middle copy of $S^{3}\left(B_{n}\right)$
If $[x, 1] \cong S^{2}\left(B_{n-1}\right)$, there are $2\left(\binom{n-1}{1}+2\right)+2\binom{n-1}{1}+\binom{n-1}{2} B_{2}$'s with x at the bottom. There are $2+\binom{n}{1}$ such x^{\prime} '. Totally, $2+\binom{n}{1}\left\{2\left(\binom{n-1}{1}+2\right)+2\binom{n-1}{1}+\binom{n-1}{2}\right\} B_{2}$'s in the extreme copies of the middle copy.
If $[x, 1] \cong S^{3}\left(B_{n-2}\right)$, then the number of B_{2} 's containing x is
$2\left[2+\binom{n-2}{1}+2\right]+2\left[\binom{n-2}{1}+2\right]+2\binom{n-2}{1}+\binom{n-2}{2}$. There are $2\binom{n}{1}+\binom{n}{2}$ such elements x of rank 2 in the middle of the middle copy. Therefore, the total number of B_{2} 's containing a rank 2 element at the bottom in the middle of the middle copy is $\left(2\binom{n}{1}+\binom{n}{2}\right)\left[2\left[2+\binom{n-2}{1}+2\right]+2\left[\binom{n-2}{1}+2\right]+2\binom{n-2}{1}+\binom{n-2}{2}\right]$. Therefore, the number of B_{2} 's in the middle copy containing all the elements of rank 2 in the middle copy is, $2\left\{\left(2+\binom{n}{1}\right)\right.$ $\left.\left\{2\left(\binom{n-1}{1}+2\right)+2\binom{n-1}{1}+\binom{n-1}{2}\right\}\right\}+\left(2\binom{n}{1}+\binom{n}{2}\right)\left[2\left[2+\binom{n-2}{1}+2\right]+2\left[\binom{n-2}{1}+2\right]+2\binom{n-2}{1}+\binom{n-2}{2}\right]$. Therefore, the total number of $B_{2}{ }^{\text {'s }} \mathrm{s}$ containing all the rank 2 elements in $S^{3}\left(B_{n}\right)$ is,
$\left.2\left\{2\left\{2\binom{n}{1}+\binom{n}{2}\right\}+\left(2+\binom{n}{1}\right)\left[2\left(\binom{n-1}{1}+2\right)+2\binom{n-1}{1}+\binom{n-1}{2}\right]\right\}+2\left\{\left(2+\binom{n}{1}\right)\left[2\left[\begin{array}{c}n-1 \\ 1\end{array}\right)+2\right]+2\binom{n-1}{1}+\binom{n-1}{2}\right]\right\}+$
$\left(2\binom{n}{1}+\binom{n}{2}\left[2\left[2+\binom{n-1}{1}+2\right]+2\left[\binom{n-2}{1}+2\right]+2\binom{n-2}{1}+\binom{n-2}{2}\right]\right.$
In the same manner, the total number of B_{2} 's containing all the rank 3 elements in $S^{3}\left(B_{n}\right)$ is,
$\left.2\left\{2\left\{\left(2+\binom{n}{1}\right)\left[2\binom{n-1}{1}+\binom{n-1}{2}\right]\right\}+\left(2\binom{n}{1}+\binom{n}{2}\right)\left[2\binom{n-2}{1}+2\right)+2\binom{n-2}{1}+\binom{n-2}{2}\right]\right\}+2\left\{\left(2\binom{n}{1}+\binom{n}{2}\right)\left[2\left[2+\binom{n-2}{1}\right]+\right.\right.$
$\left.\left.2\binom{n-2}{1}+\binom{n-2}{2}\right]\right\}+\left(2\binom{n}{2}+\binom{n}{3}\left[2\left[2+\binom{n-3}{1}+2\right]+2\left[\binom{n-3}{1}+2\right]+2\binom{n-3}{1}+\binom{n-3}{2}\right]\right.$
Proceeding like this, we find the number of B_{2} 's containing all the rank $n+1$ element at the bottom in $S^{3}\left(B_{n}\right)=$ the number of rank $n+1$ elements in $S^{3}\left(B_{n}\right)=2\left\{2\left[2\binom{n}{n-2}+\binom{n-1}{n-1}\right]+2\binom{n-1}{n-1}\right\}+2\left[2\binom{n}{n-1}\right]$
.......(2.11)
Hence, using (2.7),(2.8),(2.9), (2.10) and (2.11) we get the total number of 4 element convex sublattices in $S^{3}\left(B_{n}\right)$ is

Stochastic Modelling and Computational Sciences

$$
\begin{align*}
& A_{3}=2\left[2+\binom{n}{1}+2\right]+2\left[\binom{n}{1}+2\right]+2\binom{n}{1}+\binom{n}{2}+2\left[2\left[\binom{n}{1}+2\right]+\right. \\
& \left.\left.2\binom{n}{1}+\binom{n}{2}\right]+2\left\{2\left[\begin{array}{c}
n \\
1
\end{array}\right)+2\right]+2\binom{n}{1}+\binom{n}{2}\right\}+\left(2+\binom{n}{1}\right)\left\{2\left[2+\binom{n-1}{1}+2\right]+2\left[\binom{n-1}{1}+2\right]+2\binom{n-1}{1}+\binom{n-1}{2}\right\}+ \\
& \left.2\left\{2\left\{2\binom{n}{1}+\binom{n}{2}\right\}+\left(2+\binom{n}{1}\right)\left[2\binom{n-1}{1}+2\right)+2\binom{n-1}{1}+\binom{n-1}{2}\right]\right\}+2\left\{\left(2+\binom{n}{1}\left[2\left[\binom{n-1}{1}+2\right]+2\binom{n-1}{1}+\binom{n-1}{2}\right]\right\}+\right. \\
& \left(2\binom{n}{1}+\binom{n}{2}\right)\left[2\left[2+\binom{n-1}{1}+2\right]+2\left[\binom{n-2}{1}+2\right]+2\binom{n-2}{1}+\binom{n-2}{2}\right]+2\left\{2\left\{\left(2+\binom{n}{1}\right)\left[2\binom{n-1}{1}+\binom{n-1}{2}\right]\right\}+\left(2\binom{n}{1}+\right.\right. \\
& \left.\binom{n}{2}\left[2\left(\binom{n-2}{1}+2\right)+2\binom{n-2}{1}+\binom{n-2}{2}\right]\right\}+2\left\{\left(2\binom{n}{1}+\binom{n}{2}\right)\left[2\left[2+\binom{n-2}{1}\right]+2\binom{n-2}{1}+\binom{n-2}{2}\right]\right\}+\left(2\binom{n}{2}+\binom{n}{3}\right)\left[2 \left[2+\binom{n-3}{1}+\right.\right. \\
& \text { 2] } \left.\left.+2\left[\begin{array}{c}
n-3 \\
1
\end{array}\right)+2\right]+2\binom{n-3}{1}+\binom{n-3}{2}\right]+\ldots+2\left\{2\left[2\binom{n}{n-2}+\binom{n}{n-1}\right]+2\binom{n}{n-1}\right\}+2\left[2\binom{n}{n-1}\right] \tag{2.1.3}
\end{align*}
$$

Proceeding like this, we find that $A_{4}, A_{5}, \ldots A_{n+3}$

$$
\begin{aligned}
& \left.A_{4}=2\left[2\binom{n}{1}+2\right)+2\binom{n}{1}+\binom{n}{2}\right]+2\left[2\binom{n}{1}+\binom{n}{2}\right]+2\binom{n}{2}+\binom{n}{3}+2\left\{2\left[2\binom{n}{1}+\binom{n}{2}\right]+2\binom{n}{2}+\binom{n}{3}\right\}+2\left\{2\left[2\binom{n}{1}+\binom{n}{2}\right]+\right. \\
& \left.\left.2\binom{n}{2}+\binom{n}{3}\right\}+\left(2+\binom{n}{1}\right)\left[2\left[2\binom{n-1}{1}+2\right)+2\binom{n-1}{1}+\binom{n-1}{2}\right]+2\left[2\binom{n-1}{1}+\binom{n-1}{2}\right]+2\binom{n-1}{2}+\binom{n-1}{3}\right]+2\left\{2\left\{2\binom{n}{2}+\binom{n}{3}\right\}+\right. \\
& \left(2+\binom{n}{1}\left[2\left(2\binom{n-1}{1}+\binom{n-1}{2}\right)+2\binom{n-1}{2}+\binom{n-1}{3}\right]+2\left\{\left(2+\binom{n}{1}\left\{2\left[2\left[\begin{array}{c}
n-1 \\
1
\end{array}\right)+\binom{n-1}{2}\right]+2\binom{n-1}{2}+\binom{n-1}{3}\right\}\right\}+\left(2\binom{n}{1}+\right.\right.\right.
\end{aligned}
$$

$$
\begin{align*}
& \left.\binom{n}{n-1}\right\}+2\left[2\binom{n}{n-2}+\binom{n}{n-1}\right]+2\binom{n}{n-1} \tag{2.1.4}
\end{align*}
$$

In the same manner, $A_{n+1}=$ The number of convex sublattices of rank n in $S^{3}\left(B_{n}\right)$

$$
\begin{align*}
& 2\left\{2\left(2\binom{n}{n-3}+\binom{n}{n-2}\right)+2\binom{n}{n-2}+\binom{n}{n-1}\right\}+2\left[2\binom{n}{n-2}+\binom{n}{n-1}\right]+2\binom{n}{n-1}+2\left\{2\left(2\binom{n}{n-2}+\binom{n}{n-1}\right)+2\binom{n}{n-1}\right\}+2\left\{2 \left[2\binom{n}{n-2}+\right.\right. \\
& \left.\left.\binom{n}{n-1}\right]+2\binom{n}{n-1}\right\}+\left(2+\binom{n}{1}\right)\left\{2\left[2\left(2\binom{n-1}{n-2}\right)+2\binom{n-1}{n-2}+2\binom{n-1}{n-2}\right]+2\left[2\binom{n-1}{n-2}\right]\right\}+2\left\{2\left\{2\binom{n}{n-1}\right\}+\left(2+\binom{n}{1}\left\{2\left(2\binom{n-1}{n-2}\right)\right\}\right\}+\right. \\
& =2\left\{\left(2+\binom{n}{1}\left\{2\left[2\binom{n-1}{n-2}\right]\right\}+\left(2\binom{n}{1}+\binom{n}{2}\right)\left\{2\left[2\left[2\binom{n-2}{n-3}\right]\right\}\right\}+2\left\{2\left[\binom{n}{1}+2\right]+2\binom{n}{1}+\binom{n}{2}\right\}+2\left[2\binom{n}{1}+\binom{n}{2}\right]+2\binom{n}{2}+\binom{n}{3}\right.\right. \tag{2.1.5}
\end{align*}
$$

$A_{n+2}=2\left\{2\left(2\binom{n}{n-2}+\binom{n}{n-1}\right)+2\binom{n}{n-1}\right\}+2\left[2\binom{n}{n-1}\right]+2\left\{2\left[2\binom{n}{n-1}\right]\right\}+2\left\{2\left[2\binom{n}{n-1}\right]\right\}+\left(2+\binom{n}{1}\right)\left[2\left\{2\left[2\binom{n-1}{n-2}\right]\right\}\right]+2[2+$ $\left.\left.\binom{n}{1}\right]+2\right]+2\left[\binom{n}{1}+2\binom{n}{1}+\binom{n}{2} \ldots\right.$
.......(2.1.6)
$A_{n+3}=2\left\{2\left[2\binom{n}{n-1}\right]\right\}+2+\binom{n}{1}+2+2$.
Case(i): Suppose that n is odd. Therefore, $n+4$ is odd.

```
\(A_{1}-A_{2}+A_{3}-\ldots-A_{n+1}+A_{n+2}-A_{n+3}=1+2+\binom{n}{1}+2+2+2\left[2+\binom{n}{1}+2\right]+2\left[\binom{n}{1}+2\right]+2\binom{n}{1}+\binom{n}{2}+\)
\(22\left[\binom{n}{1}+2\right]+2\binom{n}{1}+\binom{n}{2}+2\left[2\binom{n}{1}+\binom{n}{2}\right]+2\binom{n}{2}+\binom{n}{3}+22\left[2\binom{n}{1}+\binom{n}{2}\right]+2\binom{n}{2}+\binom{n}{3}+2\left[2\binom{n}{2}+\binom{n}{3}\right]+2\binom{n}{3}+\binom{n}{4}+\)
\(\cdots+22\left[2\binom{n}{n-3}+\binom{n}{n-2}\right]+2\binom{n}{n-2}+\binom{n}{n-1}+2\left[2\binom{n}{n-2}+\binom{n}{n-1}\right]+2\binom{n}{n-1}+22\left[2\binom{n}{n-2}+\binom{n}{n-1}\right]+2\binom{n}{n-1}+2\left[2\binom{n}{n-1}\right]+\)
\(22\left[2\binom{n}{n-1}\right]+1-2+\binom{n}{1}+2+2+2\left[2+\binom{n}{1}+2\right]+2\left[2+\binom{n}{1}+2\right]+\left(2+\binom{n}{1}\right)\left[2+2+\binom{n-1}{1}+2\right]+2\left[2\left[\begin{array}{c}n \\ 1\end{array}\right)+2\right]+\)
\(\left.\left(2+\binom{n}{1}\right)\left[2+\binom{n-1}{1}+2\right]\right]+2\left[\left(2+\binom{n}{1}\right)\left(2+\binom{n-1}{1}+2\right)\right]+\left(2\binom{n}{1}+\binom{n}{2}\right)\left[2+2+\binom{n-2}{1}+2\right]+2\left\{2\left[\left(2+\binom{n}{1}\right)(2+\right.\right.\)
\(\left.\left.\left.\binom{n-1}{1}\right)\right]+\left(2\binom{n}{1}+\binom{n}{2}\right)\left[2+\binom{n-2}{1}+2\right]\right\}+2\left[\left(2\binom{n}{1}+\binom{n}{2}\right)\left(2+\binom{n-2}{1}+2\right)\right]+2\left[\left(2\binom{n}{1}+\binom{n}{2}\right)\left(2+\binom{n-2}{1}+2\right)\right]+\left(2\binom{n}{2}+\right.\)
\(\binom{n}{3}\left[2+2+\binom{n-3}{1}+2\right]+\ldots+2\left\{2\left[2\binom{n}{n-1}\right\}+2\left[2+\binom{n}{1}+2\right]+2\left[\binom{n}{1}+2\right]+\right.\)
\(2\binom{n}{1}+\binom{n}{2}+2\left[2\left[\binom{n}{1}+2\right]+\right.\)
\(\left.\left.2\binom{n}{1}+\binom{n}{2}\right]+2\left\{2\left[\begin{array}{c}n \\ 1\end{array}\right)+2\right]+2\binom{n}{1}+\binom{n}{2}\right\}+\left(2+\binom{n}{1}\right)\left\{2\left[2+\binom{n-1}{1}+2\right]+2\left[\binom{n-1}{1}+2\right]+2\binom{n-1}{1}+\binom{n-1}{2}\right\}+\)
\(\left.2\left\{2\left\{2\binom{n}{1}+\binom{n}{2}\right\}+\left(2+\binom{n}{1}\right)\left[2\binom{n-1}{1}+2\right)+2\binom{n-1}{1}+\binom{n-1}{2}\right]\right\}+2\left\{\left(2+\binom{n}{1}\right)\left[2\left[\binom{n-1}{1}+2\right]+2\binom{n-1}{1}+\binom{n-1}{2}\right]\right\}+\)
\(\left(2\binom{n}{1}+\binom{n}{2}\right)\left[2\left[2+\binom{n-1}{1}+2\right]+2\left[\binom{n-2}{1}+2\right]+2\binom{n-2}{1}+\binom{n-2}{2}\right]+2\left\{2\left\{\left(2+\binom{n}{1}\right)\left[2\binom{n-1}{1}+\binom{n-1}{2}\right]\right\}+\left(2\binom{n}{1}+\right.\right.\)
\(\left.\left.\left.\binom{n}{2}\right)\left[2\binom{n-2}{1}+2\right)+2\binom{n-2}{1}+\binom{n-2}{2}\right]\right\}+2\left\{\left(2\binom{n}{1}+\binom{n}{2}\right)\left[2\left[2+\binom{n-2}{1}\right]+2\binom{n-2}{1}+\binom{n-2}{2}\right]\right\}+\left(2\binom{n}{2}+\binom{n}{3}\right)\left[2\left[2+\binom{n-3}{1}+\right.\right.\)
\(\left.2]+2\left[\left(\begin{array}{c}n-3\end{array}\right)+2\right]+2\binom{n-3}{1}+\binom{n-3}{2}\right]+\ldots+2\left\{2\left[2\binom{n}{n-2}+\binom{n}{n-1}\right]+2\binom{n}{n-1}\right\}+2\left[2\binom{n}{n-1}\right]\)
```


Stochastic Modelling and Computational Sciences

$2\left[2\left(\binom{n}{1}+2\right)+2\binom{n}{1}+\binom{n}{2}\right]+2\left[2\binom{n}{1}+\binom{n}{2}\right]+2\binom{n}{2}+\binom{n}{3}+2\left\{2\left[2\binom{n}{1}+\binom{n}{2}\right]+2\binom{n}{2}+\binom{n}{3}\right\}+2\left\{2\left[2\binom{n}{1}+\binom{n}{2}\right]+2\binom{n}{2}+\right.$ $\left.\left.\binom{n}{3}\right\}+\left(2+\binom{n}{1}\right)\left[2\left[2\binom{n-1}{1}+2\right)+2\binom{n-1}{1}+\binom{n-1}{2}\right]+2\left[2\binom{n-1}{1}+\binom{n-1}{2}\right]+2\binom{n-1}{2}+\binom{n-1}{3}\right]+2\left\{2\left\{2\binom{n}{2}+\binom{n}{3}\right\}+(2+\right.$ $\left.\left.\binom{n}{1}\right)\left[2\left(2\binom{n-1}{1}+\binom{n-1}{2}\right)+2\binom{n-1}{2}+\binom{n-1}{3}\right]\right\}+2\left\{\left(2+\binom{n}{1}\right)\left\{2\left[2\binom{n-1}{1}+\binom{n-1}{2}\right]+2\binom{n-1}{2}+\binom{n-1}{3}\right\}\right\}+\left(2\binom{n}{1}+\right.$
$\left.\binom{n}{2}\right)\left[2\left[2\left[\binom{n-2}{2}+2\right]+2\binom{n-2}{1}+\binom{n-2}{2}\right]+2\left[2\binom{n-2}{1}+\binom{n-2}{2}\right]+2\binom{n-2}{2}+\binom{n-2}{3}\right]+\ldots+2\left\{2\left[2\binom{n}{n-3}+\binom{n}{n-2}\right]+2\binom{n}{n-2}+\right.$ $\left.\binom{n}{n-1}\right\}+2\left[2\binom{n}{n-2}+\binom{n}{n-1}\right]+2\binom{n}{n-1}$
+...-
$2\left\{2\left(2\binom{n}{n-3}+\binom{n}{n-2}\right)+2\binom{n}{n-2}+\binom{n}{n-1}\right\}+2\left[2\binom{n}{n-2}+\binom{n}{n-1}\right]+2\binom{n}{n-1}+2\left\{2\left(2\binom{n}{n-2}+\binom{n}{n-1}\right)+2\binom{n}{n-1}\right\}+2\left\{2\left[2\binom{n}{n-2}+\right.\right.$ $\left.\left.\binom{n}{n-1}\right]+2\binom{n}{n-1}\right\}+\left(2+\binom{n}{1}\right)\left\{2\left[2\left(2\binom{n-1}{n-2}\right)+2\binom{n-1}{n-2}+2\binom{n-1}{n-2}\right]+2\left[2\binom{n-1}{n-2}\right]\right\}+2\left\{2\left\{2\binom{n}{n-1}\right\}+\left(2+\binom{n}{1}\left\{2\left(2\binom{n-1}{n-2}\right)\right\}\right\}+\right.$ $2\left\{\left(2+\binom{n}{1}\right)\left\{2\left[2\binom{n-1}{n-2}\right]\right\}+\left(2\binom{n}{1}+\binom{n}{2}\right)\left\{2\left[2\left[2\binom{n-2}{n-3}\right]\right]\right\}+2\left\{2\left[\binom{n}{1}+2\right]+2\binom{n}{1}+\binom{n}{2}\right\}+2\left[2\binom{n}{1}+\binom{n}{2}\right]+2\binom{n}{2}+\binom{n}{3}+\right.$ $2\left\{2\left(2\binom{n}{n-2}+\binom{n}{n-1}\right)+2\binom{n}{n-1}\right\}+2\left[2\binom{n}{n-1}\right]+2\left\{2\left[2\binom{n}{n-1}\right]\right\}+2\left\{2\left[2\binom{n}{n-1}\right]\right\}+\left(2+\binom{n}{1}\right)\left[2\left\{2\left[2\binom{n-1}{n-2}\right]\right\}\right]+2\left[2+\binom{n}{1}\right]+$ 2] $+2\left[\binom{n}{1}+2\binom{n}{1}+\binom{n}{2}\right.$

$$
-2\left\{2\left[2\binom{n}{n-1}\right]\right\}+2+\binom{n}{1}+2+2
$$

$$
=0
$$

Case(ii): Suppose that n is even. Therefore, $n+4$ is even.
$A_{1}-A_{2}+A_{3}-\cdots+A_{n+1}-A_{n+2}+A_{n+3}=1+2+\binom{n}{1}+2+2+2\left[2+\binom{n}{1}+2\right]+2\left[\binom{n}{1}+2\right]+2\binom{n}{1}+\binom{n}{2}+$ $22\left[\binom{n}{1}+2\right]+2\binom{n}{1}+\binom{n}{2}+2\left[2\binom{n}{1}+\binom{n}{2}\right]+2\binom{n}{2}+\binom{n}{3}+22\left[2\binom{n}{1}+\binom{n}{2}\right]+2\binom{n}{2}+\binom{n}{3}+2\left[2\binom{n}{2}+\binom{n}{3}\right]+2\binom{n}{3}+\binom{n}{4}+$ $\cdots+22\left[2\binom{n}{n-3}+\binom{n}{n-2}\right]+2\binom{n}{n-2}+\binom{n}{n-1}+2\left[2\binom{n}{n-2}+\binom{n}{n-1}\right]+2\binom{n}{n-1}+22\left[2\binom{n}{n-2}+\binom{n}{n-1}\right]+2\binom{n}{n-1}+2\left[2\binom{n}{n-1}\right]+$ $22\left[2\binom{n}{n-1}\right]+1-2+\binom{n}{1}+2+2+2\left[2+\binom{n}{1}+2\right]+2\left[2+\binom{n}{1}+2\right]+\left(2+\binom{n}{1}\right)\left[2+2+\binom{n-1}{1}+2\right]+2\left[2\left[\binom{n}{1}+2\right]+\right.$ $\left.\left(2+\binom{n}{1}\right)\left[2+\binom{n-1}{1}+2\right]\right]+2\left[\left(2+\binom{n}{1}\right)\left(2+\binom{n-1}{1}+2\right)\right]+\left(2\binom{n}{1}+\binom{n}{2}\right)\left[2+2+\binom{n-2}{1}+2\right]+2\left\{2\left[\left(2+\binom{n}{1}\right)(2+\right.\right.$ $\left.\left.\left.\binom{n-1}{1}\right)\right]+\left(2\binom{n}{1}+\binom{n}{2}\right)\left[2+\binom{n-2}{1}+2\right]\right\}+2\left[\left(2\binom{n}{1}+\binom{n}{2}\right)\left(2+\binom{n-2}{1}+2\right)\right]+2\left[\left(2\binom{n}{1}+\binom{n}{2}\right)\left(2+\binom{n-2}{1}+2\right)\right]+\left(2\binom{n}{2}+\right.$ $\left.\binom{n}{3}\right)\left[2+2+\binom{n-3}{1}+2\right]+\cdots+2\left\{2\left[2\binom{n}{n-1}\right\}+2\left[2+\binom{n}{1}+2\right]+2\left[\binom{n}{1}+2\right]+\right.$
$2\binom{n}{1}+\binom{n}{2}+2\left[2\left[\binom{n}{1}+2\right]+\right.$
$\left.2\binom{n}{1}+\binom{n}{2}\right]+2\left\{2\left[\binom{n}{1}+2\right]+2\binom{n}{1}+\binom{n}{2}\right\}+\left(2+\binom{n}{1}\right)\left\{2\left[2+\binom{n-1}{1}+2\right]+2\left[\binom{n-1}{1}+2\right]+2\binom{n-1}{1}+\binom{n-1}{2}\right\}+$ $\left.2\left\{2\left\{2\binom{n}{1}+\binom{n}{2}\right\}+\left(2+\binom{n}{1}\right)\left[2\left(\binom{n-1}{1}+2\right)+2\binom{n-1}{1}+\binom{n-1}{2}\right]\right\}+2\left\{\left(2+\binom{n}{1}\right)\left[2\left[\begin{array}{c}n-1 \\ 1\end{array}\right)+2\right]+2\binom{n-1}{1}+\binom{n-1}{2}\right]\right\}+$ $\left(2\binom{n}{1}+\binom{n}{2}\right)\left[2\left[2+\binom{n-1}{1}+2\right]+2\left[\binom{n-2}{1}+2\right]+2\binom{n-2}{1}+\binom{n-2}{2}\right]+2\left\{2\left\{\left(2+\binom{n}{1}\right)\left[2\binom{n-1}{1}+\binom{n-1}{2}\right]\right\}+\left(2\binom{n}{1}+\right.\right.$ $\left.\left.\binom{n}{2}\right)\left[2\left(\binom{n-2}{1}+2\right)+2\binom{n-2}{1}+\binom{n-2}{2}\right]\right\}+2\left\{\left(2\binom{n}{1}+\binom{n}{2}\right)\left[2\left[2+\binom{n-2}{1}\right]+2\binom{n-2}{1}+\binom{n-2}{2}\right]\right\}+\left(2\binom{n}{2}+\binom{n}{3}\right)\left[2\left[2+\binom{n-3}{1}+\right.\right.$ $\left.2]+2\left[\binom{n-3}{1}+2\right]+2\binom{n-3}{1}+\binom{n-3}{2}\right]+\ldots+2\left\{2\left[2\binom{n}{n-2}+\binom{n}{n-1}\right]+2\binom{n}{n-1}\right\}+2\left[2\binom{n}{n-1}\right]$
$2\left[2\left(\binom{n}{1}+2\right)+2\binom{n}{1}+\binom{n}{2}\right]+2\left[2\binom{n}{1}+\binom{n}{2}\right]+2\binom{n}{2}+\binom{n}{3}+2\left\{2\left[2\binom{n}{1}+\binom{n}{2}\right]+2\binom{n}{2}+\binom{n}{3}\right\}+2\left\{2\left[2\binom{n}{1}+\binom{n}{2}\right]+2\binom{n}{2}+\right.$ $\left.\binom{n}{3}\right\}+\left(2+\binom{n}{1}\right)\left[2\left[2\left(\binom{n-1}{1}+2\right)+2\binom{n-1}{1}+\binom{n-1}{2}\right]+2\left[2\binom{n-1}{1}+\binom{n-1}{2}\right]+2\binom{n-1}{2}+\binom{n-1}{3}\right]+2\left\{2\left\{2\binom{n}{2}+\binom{n}{3}\right\}+(2+\right.$ $\left.\left.\binom{n}{1}\right)\left[2\left(2\binom{n-1}{1}+\binom{n-1}{2}\right)+2\binom{n-1}{2}+\binom{n-1}{3}\right]\right\}+2\left\{\left(2+\binom{n}{1}\right)\left\{2\left[2\binom{n-1}{1}+\binom{n-1}{2}\right]+2\binom{n-1}{2}+\binom{n-1}{3}\right\}\right\}+\left(2\binom{n}{1}+\right.$
$\left.\binom{n}{2}\right)\left[2\left[2\left[\binom{n-2}{2}+2\right]+2\binom{n-2}{1}+\binom{n-2}{2}\right]+2\left[2\binom{n-2}{1}+\binom{n-2}{2}\right]+2\binom{n-2}{2}+\binom{n-2}{3}\right]+\ldots+2\left\{2\left[2\binom{n}{n-3}+\binom{n}{n-2}\right]+2\binom{n}{n-2}+\right.$ $\left.\binom{n}{n-1}\right\}+2\left[2\binom{n}{n-2}+\binom{n}{n-1}\right]+2\binom{n}{n-1}$
$+\ldots+$
$2\left\{2\left(2\binom{n}{n-3}+\binom{n}{n-2}\right)+2\binom{n}{n-2}+\binom{n}{n-1}\right\}+2\left[2\binom{n}{n-2}+\binom{n}{n-1}\right]+2\binom{n}{n-1}+2\left\{2\left(2\binom{n}{n-2}+\binom{n}{n-1}\right)+2\binom{n}{n-1}\right\}+2\left\{2\left[2\binom{n}{n-2}+\right.\right.$ $\left.\left.\binom{n}{n-1}\right]+2\binom{n}{n-1}\right\}+\left(2+\binom{n}{1}\right)\left\{2\left[2\left(2\binom{n-1}{n-2}\right)+2\binom{n-1}{n-2}+2\binom{n-1}{n-2}\right]+2\left[2\binom{n-1}{n-2}\right]\right\}+2\left\{2\left\{2\binom{n}{n-1}\right\}+\left(2+\binom{n}{1}\left\{2\left(2\binom{n-1}{n-2}\right)\right\}\right\}+\right.$ $2\left\{\left(2+\binom{n}{1}\right)\left\{2\left[2\binom{n-1}{n-2}\right]\right\}+\left(2\binom{n}{1}+\binom{n}{2}\right)\left\{2\left[2\left[2\binom{n-2}{n-3}\right]\right]\right\}+2\left\{2\left[\binom{n}{1}+2\right]+2\binom{n}{1}+\binom{n}{2}\right\}+2\left[2\binom{n}{1}+\binom{n}{2}\right]+2\binom{n}{2}+\binom{n}{3}+\right.$ $2\left\{2\left(2\binom{n}{n-2}+\binom{n}{n-1}\right)+2\binom{n}{n-1}\right\}+2\left[2\binom{n}{n-1}\right]+2\left\{2\left[2\binom{n}{n-1}\right]\right\}+2\left\{2\left[2\binom{n}{n-1}\right]\right\}+\left(2+\binom{n}{1}\right)\left[2\left\{2\left[2\binom{n-1}{n-2}\right]\right\}\right]-2\left[2+\binom{n}{1}\right]+$ $2]+2\left[\binom{n}{1}+2\binom{n}{1}+\binom{n}{2}+\right.$
$2\left\{2\left[2\binom{n}{n-1}\right]\right\}+2+\binom{n}{1}+2+2$

$$
=2
$$

Stochastic Modelling and Computational Sciences

Hence the interval $\left[\emptyset, S^{3}\left(B_{n}\right)\right]$ has the same number of elements of odd and even rank.
Though in the above theorem we have proved that $\operatorname{CS}\left[S^{3}\left(B_{n}\right)\right]$ is Eulerian, it is neither Simplicial nor dual simplicial.
$\operatorname{CS}\left[S^{3}\left(B_{n}\right)\right]$ is not dual simplicial since, the upper interval $\left[\{1\}, S^{3}\left(B_{n}\right)\right]$ in $\operatorname{CS}\left[S^{3}\left(B_{n}\right)\right]$ contains $8\binom{n}{n-1}$ number of atoms which is greater than $n+3$, the rank of $\left[\{1\}, S^{3}\left(B_{n}\right)\right]$,implying that $\left[\{1\}, S^{3}\left(B_{n}\right)\right]$ is not Boolean.
$\operatorname{CS}\left[S^{3}\left(B_{n}\right)\right]$ is not simplicial since, the lower interval $\left[\emptyset, S^{3}\left(B_{n}\right)\right]$ where l_{1} is the left extreme atom of $S^{3}\left(B_{n}\right)$ contains $3^{3} .2^{n}-26$ number of atoms by Lemma 2.1, which cannot be equal to $n+3$, the rank of $\left[\emptyset,\left[l_{1}, 1\right]\right]$, implying that $\left[\varnothing,\left[l_{1}, 1\right]\right]$ is not Boolean.

Conclusions

In this paper, we have proved that $\operatorname{CS}\left[S^{3}\left(B_{n}\right)\right]$ is an Eulerian lattice under the set inclusion relation which is neither simplicial nor dual simplicial, if $n>1$. We strongly believe that the result proved in this paper, can be extended to more general Eulerian lattices and any other general lattices.

Acknowledgements

It is our pleasure to thank the referee for his helpful comments and suggestions that helped us revise this paper.

REFERENCES

[1] Chen C. K., Koh K. M., On the lattice of convex sublattices of a finite lattice, Nanta Math., 5 (1972), 92-95.
[2] Gratzer G., General Lattice Theory, Birkhauser Verlag, Basel, 1978.
[3] Koh K. M., On the lattice of convex sublattices of a finite lattice, Nanta Math., 5 (1972), 18-37.
[4] Lavanya S., Parameshwara Bhatta S., A new approach to the lattice of convex sublattices of a lattice, Algebra Univ., 35 (1996), 63-71.
[5] Paffenholz A., Constructions for Posets, Lattices and Polytopes, Doctoral Dissertation, School of Mathematics and Natural Sciences, Technical University of Berlin,(2005).
[6] Ramana Murty P. V., On the lattice of convex sublattices of a lattice ,Southeast Asian Bulletin of Mathematics, 26 (2002), 51-55.
[7] Rota G. C., On the foundations of Combinatorial theory I, Theory of Mobius functions, Z. Wahrschainlichkeitstheorie, 2 (1964), 340-368.
[8] Sheeba Merlin and Vethamanickam. A., On the Lattice of Convex Sublattices of $S\left(B _n\right)$ and $S\left(C _n\right)$, European journal of pure and applied Mathematics., Vol. 10, No. 4, 2017, 916-928.
[9] Stanley R.P., Some aspects of groups acting on finite posets, J. Combinatoria theory, A. 32 (1982), 131-161.
[10] Stanley R.P., A survey of Eulerian posets, Polytops: abstract, convex and computational, Kluwer Acad. Publi., Dordrecht, (1994), 301-333.
[11] Stanley R.P., Enumerative Combinatorics, Woodsworth and Brooks, Cole, Vol 1, 1986.
[12] Santhi V. K., Topics in Commutative Algebra, Ph. D thesis, Madurai Kamaraj University, 1992.

Stochastic Modelling and Computational Sciences

[13] Vethamanickam A., Topics in Universal Algebra, Ph. D thesis, Madurai Kamaraj University, 1994.
[14] Vethamanickam A., Subbarayan R., Some simple extensions of Eulerian lattices, Acta Math. Univ., Comenianae, 79(1) (2010), 47-54.
[15] Vethamanickam A., Subbarayan R., On the lattice of convex sublattices, Elixir Dis.Math., Comenianae, 50 (2012), 10471-10474.

