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ABSTRACT 

The transverse motion   of a rectangular membrane with fixed edges under the influence of a 
transverse driving force  attached at a position  is governed by the differential equation (DE) 

, where ,  determine membrane material qualities,  and  are force 

constants,  is the impulse function, the space coordinates are , and time variable is . This paper 
identifies the architecture and weights of artificial neural network (ANN) for the series solution representation of 
DE model of the rectangular vibrating membrane. Seventy-seven different ANN models in terms of architecture, 
and data-set samples have been investigated. Root mean squared error (RMSE) has been used for the selection of 
the best ANN model. The RMSE value of the best ANN model is 0.0009, which is ten times better than the error of 
state-of-the-art. For solution prediction, ANN models perform 26 times more quickly than series solution method. 

Keywords: Vibrating Membrane, Artificial Neural Network, Training Time, Weight and Bias. 

1 INTRODUCTION 
A membrane [16] is a thin film structure similar to drum heads [32], flags, trampolines [12], soap films [3], 
biological and nitrocellulose membranes [1]. It is a very important component in architectural and civil structures; 
switch and transducer diaphragms; biomedical prostheses (like artificial kidneys, arteries, blood oxygenators, and 
organs); and other uses in space (such as optical reflectors and radio antennas) [19]. Membrane technology [1] is 
the basis of industrial processes like electrodialysis, reverse osmosis, ultrafiltration, microfiltration, gas 
separation, and pervaporation. The pharmaceutical industry uses it to increase the effectiveness and safety of drug 
delivery [1]. 

Transport and vibration are two significant membrane phenomena. Under suitable assumptions, vibration is 
governed by the wave equation [14], while transport is described by Fick's law and irreversible thermodynamics 
[1]. 

The equation of membrane [16] is governed by 

                   (1) 

where ,  are constant,  are space variable,  is time variable,  is external frequency,   is the mass per unit 
area of the membrane, and 

 , 

 

under the initial condition 

                                        (2) 

and the Dirichlet boundary condition 
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                                                     (3) 

Series solution of (1) using separation of variables method and superposition principle (when ) 
[8, 32] is 

           (4) 

where natural frequency  is defined as 

                                                         (5) 

Due to a computational constraint, the solution u is roughly represented as  by following 
equation 

           (6)  

We use a variety of applications of the wave phenomenon [20, 29, 32] in our daily lives, including 
information communication, electricity generated by solar panels, household appliances that employ 
microwaves, X-rays used to view the organs of the body, and γ rays used to find flaws in metalworking. 

Ultrasonic waves are used by sonar to find and detect items underwater, the inside of the human body can be 
visualized by medical professionals using sonograms, and infrared sound is used to control the flow. Both 
tsunami waves  and infrasonic waves, which resemble pond ripples or the sound of a guitar string, are 
employed to track earthquakes. Seismic waves are measured by synthetic aperture radar [29]. 

Artificial Neural Network (ANN) is a modern statistical model for solving regression and classification-
related problems [9]. The success of ANN has attracted researchers for solving the differential equation 
(DE) using ANN [4]. Lee et al. (1990) [22] pioneered the use of ANN to investigate the solution of first-
order ordinary differential equations (ODEs). Henseler and Braspenning (1992) [17] presented a model of a 
cellular neural network (CNN) based on a vibrating membrane. Szology et al. (1993) [33] studied the CNN 
paradigm in mechanical vibrating systems. Afterward, many researchers worked on ANN            for the study 
of the DE, and some important works are given as follows: Mall and Chakraverty (2013) [24] have worked 
on the solution of an ordinary differential equation (ODE) using ANN. Jafarian and Baleanu (2017) [18] 
have solved wave and heat equations using a combination of ANN and power series methods. Weinan et al. 
(2017) [11] have used deep learning-based numerical algorithms to solve high dimensions parabolic PDEs 
and backward stochastic differential equations (SDEs). Raissi et al. (2019) [23] solved non-linear partial 
differential equations (PDEs), including Burger’s equation, the Schrödinger equation, and the Allen-Cahn 
equation, using PINN. Dwivedi and Srinivasan (2020) [10] discussed Physics informed extreme learning 
machines (PIELM).      Cai et al. (2020) [7] discussed a phase shift in the deep ANN to solve the wave 
equation. Samaniego et al. (2020) [31] discussed the solution of mechanics-related PDEs using the ANN 
paradigm. The approximation space has been constructed using ANN to solve a number of computational 
mechanics applications. Moseley and Markham (2020) [2] created physics-informed neural networks 
(PINNs), an expanded form of ANN, and used PINNs to solve the wave equation. Ren et al. (2020) [26] 
proposed the seismic waveform inversion method using ANN. Xio and Frank (2021) [34] solved the 
Boltzmann equation using ANN. Zaho et al. (2021) [36] used biological ANN to discuss particle               
dispersion on a vibrating screen surface. Blechschmidt and Oliver (2021) [4] described three methods for 
solving PDEs with ANN, including PINNs, the  Feynmann-Kac formula, and the solution of backward 
SDEs. Brink et al. (2021) [6] solved PDE using the ANN collocation method. Yeung et al. (2022) [35] 
developed a deep-learning system to analyze highly oscillatory wave patterns and extract ray directions at 
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specific spots. Pandey et al. [27] have provided a ANN model of a wave equation. The model’s 
effectiveness and accuracy have been evaluated. 

In this paper, ANN has been used to model the vibration of a rectangular membrane of the equation (6) for 
different values of the force constant ω. For various sample sizes and hidden layers, numerous experiments 
were undertaken to determine the minimal root mean square error (RMSE) and training time (TT). The 
RMSE value of the best ANN model is 0.0009, which is ten times better than the error of state-of-the-art. 
The developed ANN model’s average TT is faster than the state-of-the-art for solving differential equations 
using ANN. For solution prediction, ANN models perform 26 times more quickly                   than series solution of a 
rectangular vibrating membrane (SSRVM). In Section 2, the data set format and the algorithm of ANN are 
presented. Section 3 provides an explanation of performance evaluation strategies for accuracy and  time 
cost. Section 4 provides specifics on the experiments, results, analyses, and comparisons. Section 5 then 
provides conclusions. 

2  Artificial Neural Network: The number and arrangement of perceptrons [30] determine the structure of 
ANN. A perceptron [30] consists of weights, bias, and a transfer function. It takes R- dimensional 
input of real numbers and returns a real number, which               is the transfer function value of a weighted 
sum of the input numbers plus bias. The shorthand notation for representing the structure of a 
multilayer feed-forward neural network (MFFNN) [15] with H minus one hidden layer(s)  is 

 where R’ is  the  number  of  inputs,   are the number of 
perceptron’s in the first (input) layer, second (first hidden) layer, … H (H minus one hidden) layer 
respectively and  is the number of output. The number of input and output variables in equation (6) 
is four and   one respectively. Therefore,  and . The order of weight matrix  

corresponding to the first layer is , and the dimension of the bias vector  is  for first layer. 
Similarly, weight and bias matrices   and    are associated with other layers. 

 
Fig. 1 Flow diagram of ANN 
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ANN design is the estimation of parameters (weight and bias matrices) associated with each layer. It 
depends on training data and the choice of hyperparameters (number and arrangement of perceptrons, 
transfer function, loss function, and numerical technique for computing the minimum of the loss function). 

ANN works on discrete data.  The discrete data of the approximation  (6) is computed at 
discrete points ,  where  is  the  total  size  of  data and  

 are the uniform sampling rate (number of points in the unit interval) of  variables 

respectively. The computed value of the output variable  at  the point  of  is 
represented by   (say target value). The format of the data is provided in table 1. Training data set  

 is a subset of Table 1. 

Table 1 Data set format.   
S.N. Input Variables Target Variables 

1   
2   
3 
. 
. 

  

.   
   

Algorithm 1 Artificial Neural Network Design for  given in equation (6) 

Input: 1. Hyperparameters of ANN: structure, initial weights, transfer function, loss function, 
optimization technique. 

2. Dataset G. 

3. Size of the training dataset (Q). 

Stage 1: Select randomly without replacement  of size Q. 

Stage 2: Train ANN using hyperparameters Q and D. 

Stage 3: Store weights and bias of trained ANN. 

Stage 4: Obtain output values  for each input data entry of G,  

Stage 5: Obtain     for error analysis. 

Output: 1. Weights and biases of trained ANN. 

2. Errors   

It can be difficult to choose an appropriate transfer function. The best option for regression is the 
hyperbolic tangent sigmoid (HTSF), which is centered at zero [27]. 

For the training data set   loss function is (LF).  The following equation (7) 
yields the LF. 

                                                                                                
(7) 

where  is ANN output for input data corresponding to i. 

For the purpose of minimizing LF, a variety of optimization techniques are available, including steepest 
descent algorithm [28], Gauss-Newton algorithm [5], and the Levenberg Marquardt Backpropagation 
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Algorithm (LMBP) [15]. The LMBP method, which leads to backpropagation ANN, is the most 
effective way to minimize the loss function. In order to train the ANN, LMBP has a control parameter called 

 [15]. When  is raised, the algorithm approaches the steepest descent algorithm with a low learning rate, 
and when  is lowered to zero, the algorithm becomes Gauss-Newton [15]. A summary of the procedures 
needed for weight and bias estimation is shown in Figure (1). The squared error loss function is minimized 
in the estimation process. Algorithm 1 provides step-wise details for designing ANN for the solution of 
equation (1) given as  in equation (6). 

3  Artificial Neural Network Performance Evaluation: For the purpose of choosing a decent network 
architecture, performance is measured in terms of calculation time and accuracy [9]. The computation 
time is discussed in terms of TT and prediction time (PT). For a discussion of accuracy, the RMSE, 
peak signal to noise ratio (PSNR), and error histogram have been employed. In relation to random 
factors (starting weights and biases, as well as the choice of data), statistical measures [25] including 
average, standard deviation, boxplots of TT, PT, converged weights and biases and RMSE has been 
explored. 

The term ‘TT’ refers to the amount of time needed to estimate a ANN’s weights for a specific training 
data set. The execution time of the LMBP is given in this work as TT. 

The amount of time required for a trained ANN to predict the value of the unknown variable u for a given 
point (x, y, t, ω) is referred to as PT. The value  of an unknown at point (x, y, t, ω) is calculated for other 
NMs. 

RMSE at  is defined as follows:  

                                                      (8) 

where the approximation made at point   using ANN or numerical  approaches is  
approximation of  determined by equation (6) is    and data set size is N ′′. 

One well-liked method for displaying scientific data is the error histogram [21]. It is calculated by 
subtracting u′ from Oi for the supplied data set   

A well-liked quantitative method for comparing images based on human eyes’ properties is the PSNR 
[13]. PSNR at point  defined as follows:  

                                                           (9) 

 

Where  indicate the absolute value of  and  at  respectively. 

3.1  Statistical Measures: Statistical methods [25], including box plots, averages, and standard deviations 
(SD), have been used to examine performance measures like RMSE, TT, and PT as well as 
converged weights/biases in relation to random factors (selection of data, initial weights/biases). The 
box plot [25] describes the median, 25 percentile, 75 percentile, and outlier of the data set. For the 
investigation of  RMSE and TT, a boxplot is employed. To gather statistical data, images of the 
average and SD of converged weights and biases were employed. 
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(a)                                                                     (b) 

Fig. 2 (a) Graph showing the relationship between sample size and RMSE for various structures, (b) Graph 
showing the relationship between sample size and training time for various structures. 

4  Experiments, Result and Analysis: The series solution (6) of the vibrating membrane equation 
(1) is represented by ANNs. It is assumed that the parameter values are 

(equation (5)), A = 1 (equation (6)),   L = M = 15, c = 0.1 
(equation (1)). All of set 

 points 
define the whole data set. Consequently, the whole data set size is 250000. Data sets of the following 
sizes have been taken into consideration for              training: 1000, 10000, 20000, 60000. Taken into account 
here are ANNs with up to 7 hidden layers and a variety of structures, like [4 − 10 − 1], [4 − 100 − 1], [4 − 10 
− 10 − 1], [4 − 20 − 20 − 1], [4 − 10 − 10 − 10 − 1], [4 − 10 − 10 − 10 − 10 − 1], [4 − 10 − 10 − 10 − 10 − 10 − 10 − 10 − 1] have 

been examined. As a transfer function, the hyperbolic tangent sigmoid function  (where z is real variable) has 

been applied to all of the structures. Control parameter  is (0.001, 1010), Maximum iteration variable (k) 
is 1000, minimum performance gradient is  

4.1 Analysis of Prediction Error and TT Considering Sample Sizes and ANN Structures: Figures (2a) 
and (2b) show an analysis of RMSE and training time relative to               an ANN structure’s training data 
sample sizes. 

Here are a few important observations: 

1. In relation to the number of perceptrons in the hidden layers, RMSE declines and TT rises. 

2. Relative to the size of the training data, RMSE reduces and TT rises. 

3. RMSE nearly converges at sample sizes of 20000 and 60000 for the network structures 
and respectively, and TT is nearly satisfactory. 
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(a)                                                                              (b) 

Fig. 3 Box plots with RMSE and TT for different tuples. 

Random factors, like data selection, starting weights, and biases may have an impact on RMSE and TT. 
Therefore, studies on RMSE and TT in relation to random elements are important. 

4.2 RMSE and TT Distribution: 

Tuple SD of 

RMSE 

SD of TT 

(Sec) 

Avg of 

RMSE 

Avg of TT (Sec) 

S1 0.013 11.391 0.107 11.170 
S2 0.005 12.268 0.086 17.972 
S3 0.002 7.687 0.083 28.688 
S4 0.015 2.683 0.0478 8.087 
S5 0.0111 14.113 0.056 15.117 
S6 0.001 232.211 0.004 408.511 
S7 0.0006 328.873 0.001 4378.897 

RMSE and TT box graphs for the tuples   
   

  are displayed in figure 
(3a), (3b) respectively. Ten random values had been considered for each box plot because of random 
elements. It is difficult to find the most reliable combination. The idea of decreasing common RMSE and 
TT in addition to decreasing SD of RMSE and TT has been carried out in this examination. 

The average (Avg) and standard deviation (SD) of the RMSE and TT are displayed in table 2 Average 
RMSE values for S6 and S7 are lower than those for other tuples at the expense of acceptable TT. The 
SD of the RMSE for S6 and S7 is likewise less. However, the TT’s Avg and SD values of S6 and S7            
are higher. S6 and S7 are chosen for further study since they have low RMSE                   and acceptable TT. 
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(a)                                                 (b)  

          
(c)                                                             (d)  

4.3  Converged Weights and Biases Distribution: Figures (4), (5), illustrate the average and 
SD of the converged weight and bias matrices of the tuple S6, respectively. Figure (6) displays the 
converged weight and bias matrices for the minimal RMSE of the tuple S6 (S6∗). For the value S6∗, 
the RMSE and TT (seconds) are 0.0017 and 806.134, respectively.     Figures (7), (8), illustrate the 
average and SD of the converged weight and bias matrices of the tuple S7, respectively. Figure (9) 
illustrates the converged weight and bias matrices for the minimal RMSE of the tuple S7 (S7∗). For 
the    value S7∗, the RMSE and TT (seconds) are 0.00093 and 4579.077, respectively. 

                 
(a)                                                  (b)  
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(c)                                                    (d)  

Fig. 5 SD of the S6 tuple weight and bias matrices 

                     
(a)                                                              (b)  

            
(c)                                                                             (d)  

Fig.6 S6* tuple weight and bias matrices 
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(a)                               (b)                                 (c)  

 
(d)                                                (e)  

Fig. 7 Average of the S7 tuple weight and bias matrices 

 

(a)                               (b)                                       (c)  
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(d)                                                     (e)  

Fig. 8 SD of the S7 tuple weight and bias matrices 

4.4  SSRVM and Proposed Work Comparison: Regarding computation time and solution similarity, series 
solutions of rectangular vibrating membrane (SSRVM) and ANN approaches have been                          
examined. Images, difference histograms, and PSNR are used to analyze the similarity of the solutions. 
At every point in the set G, the solutions are estimated. 

Figures 10, 11 and 12 successively illustrate the pictures for the solution at (t, ω) = (0.2, 0.2), (0.5, 0.5), 
(1, 1). Table 3 provides the PSNR between the SSRVM (6) and S6∗ and S7∗. PSNR by S7∗ is superior to 
S6∗. The difference between SSRVM (6) and S7∗ is not substantial in the human visual system 
because the PSNR value for S7∗ is greater than 50 dB. Figure 13 depicts the difference’s histogram. 

The table 4 shows the average time required by SSRVM, S6∗, and S7∗ for estimating the solution (u) 
of equation (6) at all points of G. Figure (14) displays the average PT of several ANN models. ANN 
models outperform SSRVM 26 times faster in terms of solution prediction. 

 

(a)                              (b)                                 (c)  
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(d)                                              (e)  

Fig. 9 S7* tuple weight and bias matrices 

 

(a) SSRVM                                    (b) S6*                                            (c) S7* 

Fig. 10 Solution images of equation of rectangular vibrating membrane (1) at (t, ω) = (0.2, 0.2). (a)SSRVM (b) 
solution by S6* (c) solution by S7* 

4.5  Proposed Work and Existing Solution of ANN Comparison: Table 5 provides a planned work that is 
evaluated in relation to current best  practices. A (2+1) dimensional partial differential equation 
(PDE) has been taken into consideration and analyzed with (1+1) and (2+1) dimensional PDE              in 
previous work in the suggested work. Compared to the state of the art, the error order is reasonable. 
Compared to Samaniego et al. [31], the average inaccuracy of S6 and S7 is lower. 

 
(a) SSRVM                                 (b) S6*                                                (c) S7* 

Fig. 11 Solution images of equation of rectangular vibrating membrane (1)  at  (t, ω) = (0.5, 0.5). (a) SSRVM (b) 
solution by S6* (c) solution by S7* 
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Table 3 PSNR (dB) between images of series solution (6) of equation of rectangular vibrating 
membrane (1) and solution by tuples S6*, S7*. 

S.N. Time, Frequency (t, ω) PSNR (S6∗) PSNR (S7∗) 
1 (t, ω) =0.1, 0.1 62.79 79.01 
2 (t, ω) =0.2, 0.2 63.79 72.63 
3 (t, ω) =0.2, 0.5 60.22 68.02 
4 (t, ω) =0.4, 0.4 59.59 66.58 
5 (t, ω) =0.4, 0.6 58.62 63.22 
6 (t, ω) =0.5, 0.5 59.04 62.33 
7 (t, ω) =0.5, 0.9 54.73 57.41 
8 (t, ω) =0.8, 0.8 52.51 56.21 
9 (t, ω) =0.9, 0.9 50.25 54.47 
10 (t, ω) =1.0, 0.2 59.00 61.85 
11 (t, ω) =1.0, 0.4 59.00 61.85 
12 (t, ω) =1.0, 0.6 52.58 57.94 
13 (t, ω) =1.0, 0.7 51.57 57.31 
14 (t, ω) =1.0, 0.9 49.35 55.81 
15 (t, ω) =1.0, 1.0 48.01 54.33 

 
(a) SSRVM                            (b) S6*                                   (c) S7* 

Fig. 12 Solution images of equation of rectangular vibrating membrane (1) at (t, ω) = (1, 1). 
(a) SSRVM (b) solution by S6* (c) solution by S7* 

 
(a) S6∗           (b) S7∗ 

Fig. 12 Solution images of equation of rectangular vibrating membrane (1) at (t, ω) = (1, 1). (a) 
SSRVM (b) solution by S6* (c) solution by S7* 
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Table 4 Average (Avg) and Standard deviation (SD) of PT (seconds) of various models. 
 SSRVM S6* S7* 

Avg 40.0816 1.2556 1.5007 
SD 1.4669 0.2032 0.1728 

 
Fig. 14 Average PT of various ANN structures and sample size tuples. 

5 CONCLUSIONS 
In this paper, an experimental study has been performed for the identification of an artificial neural 
network (ANN) for the series solution representation of the differential equation model of the 
rectangular vibrating membrane.          Minimization of the modeling error by selection of data-set size and 
ANN               architecture and estimation of ANN parameters (weights and biases) is the main focus of the study. 
The root mean square error (RMSE) has been used for the error computations. Seven different architectures 
have been used in the experiments, and it has been found that the architectures [4 − 10 − 10 − 10 − 1] and 

 with data-set size 20000 and 60000 respectively, offer the lowest error. The 
corresponding minimum RMSE values are 0.0017 and 0.0009. The obtained RMSE values of 0.0009 is ten times 
better than the RMSE of the solution reported by the state-of-the-art ANN method. 

Table 5 State-of-the-art and proposed work comparison. 
References TT 

(Hrs) 

Error PDE PT (Sec) 

Jafarian and Baleanu [18] - 10−11 (1+1) - 

Moseley and Markham [2] - - (2+1) - 
Samaniego et al. [31] - 10−3 order (1+1) - 
Brink et al. [6] - - (2+1) - 
Proposed Work (S6, S7) 1.1 10−4 order (2+1) 1.5 

For the ANN with RMSE 0.0009, the average of weights and biases spans a range [-0.8, 1], [-1.5, 2], [-2, 3], 
[-3, 3], and the standard deviation of weights and biases spans a range of [-0.8, 1], [-1.5, 2], [-2, 3], [-3, 3], for 
the first, second, third, fourth, and fifth layers, respectively. The training time of the five layers ANN model is 
4579 seconds. The time required by the ANN model to predict the 250000 values is approximately 1.5 
seconds, which is 26 times faster than the series solution method. 
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The peak signal-to-noise ratio (PSNR) has been used to evaluate the acceptance of the solution by the 
human visual system. Its value is 50 dB between the ANN solution and the series solution. The high 
value of PSNR ensures that the difference between both solutions is beyond the observation limit of the 
human visual system. 

REFERENCES 
[1] R. W. Baker. Membrane technology and applications. John Wiley and Sons, 2012. 

[2] A. M. Ben Moseley and T. Nissen-Meyer. Solving the wave equation with physics-informed deep 
learning. arXiv, Computational Physics, 2020. 

[3] L. Bergmann.  Experiments with vibrating soap membranes.  The Journal of the Acoustical Society of 
America, 28(6):1043–1047, 1956. 

[4] J. Blechschmidt and O. G. Ernst. Three ways to solve partial differential equations with neural 
networks, a review. GAMM-Mitteilungen, 44(2): e202100006, 2021. 

[5] A. Botev, H. Ritter, and D. Barber. Practical gauss-newton optimisation for deep learning, 2017. 

[6] N. F. D. Brink A.R. and M. C. The neural network collocation method for solving partial differential 
equations. Neural Comput and Applic, 33(5591- 5608), 2021. 

[7] W. Cai, X. Li, and L. Liu. A phase shift deep neural network for high frequency approximation and 
wave problems. SIAM Journal on Scientific Computing, 42(5): A3285–A3312, 2020. 

[8] R. Courant and D. Hilbert. Methods of Mathematical Physics: Partial Differential Equations. John 
Wiley and Sons, 2008. 

[9] H. B. Demuth, M. H. Beale, O. De Jess, and M. T. Hagan. Neural Network Design. Martin Hagan, 
2nd edition, 2014. 

[10] V. Dwivedi and B. Srinivasan. Physics informed extreme learning machine (pielm), a rapid method for 
the numerical solution of partial differential equations. Neurocomputing, 391:96–118, 2020. 

[11] W. E, J. Han, and A. Jentzen. Deep learning based numerical methods for high-dimensional 
parabolic partial differential equations and backward stochastic differential equations. Communications 
in Mathematics and Statistics, 5(4):349–380, Nov 2017. 

[12] T. Gilet and J. W. M. Bush.  The fluid trampoline: droplets bouncing on a soap film. Journal of 
Fluid Mechanics, 625:167–203, 2009. 

[13] R. C. Gonzalez and R. E. Woods. Digital Image Processing. Prentice Hall, 2002. 

[14] W. Greiner. The vibrating membrane, classical mechanics.  Springer, pages 133–157, 2009. 

[15] M. Hagan and M. Menhaj. Training feedforward networks with the marquardt algorithm. IEEE 
Transactions on Neural Networks, 5(6):989–993, 1994. 

[16] V. Henner, T. Belozerova, and M. Khenner. Ordinary and partial differential equations. CRC 
Press, 2013. 

[17] J. Henseler and P. J. Braspenning. Membrain: a cellular neural network model based on a vibrating 
membrane. International journal of circuit theory and applications, 20(5):483–496, 1992. 

[18] A. Jafarian and D. Baleanu. Application of anns approach for wave-like and heat-like equations. 
Open Physics, 15(1):1086–1094, 2017. 

[19] C. H. Jenkins and U. A. Korde. Membrane vibration experiments: An historical review and recent 



ISSN: 2752-3829  Vol. 3 No.2, (December, 2023)  

 

Stochastic Modelling and Computational Sciences 
 

 

Copyrights @ Roman Science Publications Ins.                                    Stochastic Modelling and Computational Sciences   

  

 

 486 

 

results. Journal of Sound and Vibration, 295(3):602–613, 2006. 

[20] Y.-T. C. Jichun Li. Computational Partial Differential Equations Using MATLAB. CRC Press, 
2nd edition, 2019. 

[21] M. N. Kobrak. Systematic and statistical error in histogram-based free energy calculations. Journal of 
Computational Chemistry, 24(12):1437– 1446, 2003. 

[22] H. Lee and I. S. Kang. Neural algorithm for solving differential equations. Journal of Computational 
Physics, 91(1):110–131, 1990. 

[23] G. M. Raissi, P. Perdikaris. Physics-informed neural networks: A deep learning framework for solving 
forward and inverse problems involving nonlinear partial differential equations. Journal of 
Computational Physics, 378:686–707, Feb. 2019. 

[24] S. Mall and S. Chakraverty. Comparison of artificial neural network architecture in solving ordinary 
differential equations. Advances in Artificial Neural Systems, 2013, 2013. 

[25] M. Mirzargar, R. T. Whitaker, and R. M. Kirby. Curve boxplot: Generalization of boxplot for 
ensembles of curves. IEEE Transactions on Visualization and Computer Graphics, 20(12):2654–
2663, 2014. 

[26] R. Y. X. X. S. Y. L. Nie and Y. Chen. A physics based neural network way to perform seismic 
full waveform inversion. IEE Access, 2020. 

[27] V. K. Pandey, H. Agarwal, and A. K. Aggarwal. Time and solution error analysis of neural network 
model of (2+ 1) dimensional wave equation. S ādhan ā, 48(1):2, 2022. 
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