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ABSTRACT 
Any network where a packet has to go through multiple nodes, where it would encounter queues, noise and other 
interferences. The governing dynamics for a packet like that needs to be derived. It can be analysed as an 
analogue to a charged particle moving through an electrohydrodynamic fluid under the influence of electric and 
magnetic fields. In the previous works, such an attempt has been made considering the effect of electric and 
magnetic fields exclusively. They have provided sable results with discernible accuracy. In this paper, the effect of 
electromagnetic field is considered as the cause for perturbation in the flow of a particle and an analogue has 
been drawn to a packet in a multi-hop network. 
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INTRODUCTION 
Networking has changed the way of life forever in an irreversible manner. One cannot imagine life without 
connectivity in the current scenario. Analysis of networks and design to meet the requirements has always been 
dependent extensively on various parameters such as noise, distance, cost and even probability of loss of packets. 
Thus, the analysis would never be a complete one and always been prone to errors. Hence networks never offer a 
closed solution for their services. The best solutions offered are usually best effort services which offer a 
sufficient error rate of 1X10-6. This is sufficient for working conditions. However, analytics require closed form 
solutions to run accurate diagnostics and design procedures. Hence, it is imperative to find a closed system 
analogy for the same and provide clear solution. In this paper, an attempt has been made to analyse a network as a 
fluid with a packet being analogised to a charged particle moving through the fluid under the influence of electric 
and magnetic fields. 

LITERATURE REVIEW 
Viscous flow and Rayleigh equation in inviscid flow, has been used to derive Orr-Somerfield equation in 
literature by Hyde [1], Howard [2][3], and Kent [4][5]. 

The hydrodynamic stability of heterogeneous inviscid fluid studied by Lynn [6], Drazin [7], Taylor [8], Goldstein 
[9], Synge [10], Miles [11] and Howard [12] propose their use in physical fluidic systems. 

Stuart [13] and Lock [14].used magnetic field to suppress the onset of instability in fluids. Later, Rudraiah 
[16][17][18]  etal continued the work of Synge [10] by applying a transverse magnetic field on a particle 
travelling in an electrically charged fluid pushed by electrical fields. This work is extended in this research paper. 

Kelvin- Helmholtz instability (KHI) and Richtmeyer-Meshkov instability (RMI) at the interfaces of two fluids 
have studied by Rudraiah [19]. Melcher and Taylor [8] and Lee et al [20], Lee [21], Roberts [22], Rudraiah etal 
[23] have further improved the work by studying the stress at the interface of two fluids for EHD fluid flow. 

Baygents and Baldessare [24] investigated EHD stability in a thin fluid layer that causes a noiseless flow, which 
brought fopcus onto noiseless fluid flow. 

Reynolds [25] and Orr [26] extensively studied the functional parameters proposed to assess EHD fluid flow. 
Rudraiah [27] continued this research and developed a system to compute the parameters accurately. 
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Harsha S and ShubhaNagaraj [28] have presented the energy requirement to neutralize a packet loss in a noisy 
network where the fluid is the network and longitudinal electrodes are the source of the packet and transverse 
electrodes are the source of the noise. 

METHODS AND MATERIALS 

 
Figure 2. Physical Configuration 

In this case Darcy-Lapwood-Brinkmann equation governing a poorly conducting fluid in the presence of electric 
and magnetic fields is utilized.  For this physical configuration, the required basic equations i.e. conservation of 
mass and electric charges, considering the combined effect of electric and magnetic fields in a porous medium 
assuming Brinkmann viscosity    , the viscosity of fluid,  is: 
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These equations have to be supplemented with suitable boundary and initial conditions as follows. 

Equation (1) using HqEJ m


   can be written as 
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Assuming two-dimensional flow as in previous chapters, Under the approximations from (1) and (2) the basic 
equations along with Maxwell`s equation, for a poorly electrically conducting, viscous, incompressible two 
dimensional homogeneous fluid saturated porous layer in the presence of electric and magnetic fields, after 
making them dimensionless are the same for conservation of mass, conservation of electric charges and 
Maxwell`s equations.  Conservation of Momentum takes the form 
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where 
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  is the Electric Number which  has the same meaning as explained earlier. 
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From the initial conditions, considering the usual basic state, substituting that basic state into (3), (4) and to 
Conservation of electric charge equation and then simplifying, 
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  is the electric number which physically represents the ratio of electric 

energy to kinetic energy. Solution of (6) using the boundary conditions is, 
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Then the solution of (5) using (8.3.3) and the no-slip boundary conditions is 
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To study the linear stability of the basic state, superimposing infinitesimal symmetrical disturbances and 
substituting these into. (3) and (4) and linearizing them by neglecting the product of higher order terms in 
perturbed quantities and for simplicity neglecting the primes, 
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Eliminating the pressure between the eqns.  (7)  and (8) and  using the stream function defined in eqn. (9) and 
using the normal mode solution of the form given by eqn. (10), and after some simplification  the stability 
equation takes the following form 
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Similarly, the equation of continuity of charges takes the form 
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Substituting  22 lD   from (8.4.4) into (8.4.3) and after simplification, 
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Equation (13) is a modified form of Orr-Sommerfeld Equation, modified in the sense of incorporating the 

contribution from the electric force, e E


 and the effect of magnetic field. 

Based on equations (1) through (13), it can be theorised that, 

A sufficient condition for Electromagnet hydrodynamic stability [EMHDS] of viscous homogeneous poorly conducting fluid 
saturated porous medium in the presence of electric field and magnetic field is 
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Proof: 

To prove the above theory, one needs to study the stability of a poorly conducting parallel flow. Complex 
conjugate method has been used for this purpose. Consider the modified Orr-Sommerfeld eqn. 
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Multiplying (14) by 
* , the complex conjugate of   and integrating from 0 to 1 with respect to y using the 

boundary condition, 
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From this equation  QRe  and  QIm are obtained in the form 
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Equating the real parts and imaginary parts of the eqn. (15) using eqns. (16) and (19) and ir iCCC  , from the 

real parts, 
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This eqn. (19) can be rewritten in the form 
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By equating the imaginary parts we get, 
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This eqn. can be rewritten in the form 
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Eqn. (19) is the growth rate of the perturbations and physically it represents the energy equation for two-
dimensional disturbances propagating in the direction of the basic flow. Similarly, 

rC given in eqn. (22) 

represents the phase velocity of the disturbances. 
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Hence, by Schwarz’s inequality, 

  2
110 IAIqIQIm                                                      (24) 

where b
y

umaxq 
 10

 

This gives an upper bound for iC  
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from which it follows that a sufficient condition for stability is 
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Where Al is the porous parameter and lq is the length of traversal. 

INFERENCES 
From the equations (26) and (27) it can be seen that, the hypothesis shown in the methods, is true and holds good 
for stable motion of a particle in an incompressible fluid under the influence of variable electromagnetic fields. 
Thus with the simulation for the equations (26) and (27) 
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Figure 3. Graph from simulating the equations 26 and 27 for a network 

From the graph in Figure 3. It can be observed that, when a particle moves through the fluid, the forced 
perturbations in the electric field as well as magnetic field, have little or no effect on the motion as the energy 
increases. The movement is stable over time. Thus, with a constant supply of energy to the routing system, a 
packet can traverse through a multi-hop network with multiple sources of noise. Thus, noise as per the analogy 
that has been hypothesised, has no effect on the packets if the packets are transmitted with increased energy. 

CONCLUSION 
To obtain stable particle movement, the sufficient conditions for the packet forwarding and the hop length are 
defined by equations (26) and (27) and the same have been simulated and plotted in figure3. The hypothesis is 
proven successfully and the analogy holds good for a multi hop network under the influence of noise. A packet 
that has been sufficiently energised will be able to survive the traversal through a network under noisy conditions. 

REFERENCES 
[1]. HIDE, R. AND STEWARTSON, K (1972) Hydromagnetic oscillations of earths core, Rev. Geophys. 

Space Phys. 10, 579-598. 

[2]. HOWARD, L.N. (1961) Note on a paper of John W. Miles., J. Fluid Mech., 10, 509. 

[3]. HOWARD, L.N., AND GUPTA, A.S (1962) On the hydrodynamic and hydromagnetic stability of swirling 
flows J. Fluid Mech. 14, 463. 

[4]. KENT, A (1966) “Instability of laminar flow of a magneto fluid Phys. of Fluids 9, 1286. 

[5]. KENT, A (1968) Stability laminar magneto fluid flow along a parallel magnetic field J. Plasma Phys. 2, 
543. 

[6]. LIN, C.C (1955) “On the theory of hydrodynamic stability” Cambridge University press pp 
102,126,134,164,231,292 

[7]. DRAZIN, P.G. AND HOWARD, L.N. (1966) “hydrodynamic stability of parallel flow of inviscid fluid” 
Advan. Appl. Mech., Vol. 7, pp 1-89. 

[8]. DRAZIN, P.G. AND REID, W.H (1995) “Hydrodynamic Stability”, Cambridge University Press. 



ISSN: 2752-3829  Vol. 3 No.2, (December, 2023)  

 

Stochastic Modelling and Computational Sciences 
 

 

Copyrights @ Roman Science Publications Ins.                                    Stochastic Modelling and Computational Sciences   

  

 

 436 

 

[9]. TAYLOR, G.I. (1931) “Effect of Variation in Density on the Stability of Superposed Streams of   Fluid”,  
Proc. Roy. Soc. (London), A 132, 499 

[10]. GOLDSTEIN, S. (1931) “On the Stability of Superposed Streams of Fluids of Different   Densities”   Proc. 
Roy. Soc. (London), A 132, 524. 

[11]. SYNGE, J.L. (1933) “The Stability of Heterogeneous Liquids”, Trans. Roy. Soc. Can. 3, 27, 1. 

[12]. MILES, J.W. (1961) “On the Stability of Heterogeneous Shear Flows”, J. Fluid Mech., 10, 496. 

[13]. HOWARD, L.N. (1961) Note on a paper of John W. Miles., J. Fluid Mech., 10, 509. 

[14]. STUART, J.T. (1954) “On the Stability of viscous flow between parallel planes in the presence of coplanar 
magnetic field”, Proc. Roy. Soc. (London), A 221,189. 

[15]. LOCK, R.C. (1955) “The Stability of the flow of an electrically conducting fluid between parallel planes 
under a transverse magnetic field” Proc. Roy. Soc. (London), 233, 105. 

[16]. RUDRAIAH, N. (1964a) “Magnetohydrodyanamic stability of heterogeneous incompressible non-
dissipative conducting liquids”, Appl., Sci. Res.,   B11, 105. 

[17]. RUDRAIAH, N. (1964b) “Magnetohydrodynamicstability of heterogeneous dissipative conducting fluids”, 
Appl., Sci. Res., B11, pp 118-33. 

[18]. RUDRAIAH, N. (1970) “Stability of heterogeneous conducting fluid with a radial gravitational Force” 
Publ. Astro. Soc., Japan, 22, 41. 

[19]. RUDRAIAH, N. (2003)  “Instabilities of importance in the manufacture of nano and smart materials”, in 
Mode ling of Nano and Smart Materials, Book Paradise, Bangalore. 

[20]. LEE, C. O., KIM, M. U. AND KIM, D. T. (1972) “Electrohydrodyanmic cellular bulk convection induced 
by a temperature gradient”, Phys. Fluids, 15 (5), 789. 

[21]. LEE, C. O.  (1974)   “Thermal instability of slightly conducting liquid layer in a vertical electric field”, 
Proc. 5th IHTC, Tokyo, 3, 173. 

[22]. ROBERTS P.H., (1969), “On the thermal instability of a rotating fluid sphere containing heat sources” 
Phil. Trans. Roy. Soc. Lon, A, 256, 99. 

[23]. RUDRAIAH, N.  AND C. O. NG., (2004) “A model for manufacture of Nano-Sized materials free from 
impurities”, Current Science, 86, 1076. 

[24]. BAYGENTS, J. C. AND BALDESSARI, F. (1998) “Electrohydrodynamic instability in a thin fluid layer 
with an electrical conducting gradient, Phys. of Fluids, 10(1), 301. 

[25]. REYNOLDS, (1895)  “On the dynamical theory of incompressible viscous fluids and the determination of 
the criterion.” Phil. Trans. A 186,   pp 123. 

[26]. ORR, W., MCF, (1907) “The stability or instability of the steady motions of a liquid part II: A viscous 
liquid”, Proc. Roy. Irish Acad. A 27, 69. 

[27]. RUDRAIAH, N. (2003) “Effect of porous lining on reducing the Growth rate of Rayleigh-Taylor instability 
in the Inertial Fusion Energy Target”, American J. of Fusion Sci. and Tech., 43,307. 

[28]. HARSHA S, SHUBHA NAGARAJ, “An analogy of a network to an electro hydrodynamic fluid flow to 
analyze the energy required for transmitting a packet in a network susceptible to multiple failures”, IJITEE, 
Volume-9 Issue-7, May 2020 

 


