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ABSTRACT 
The present paper investigates multiplicative outliers in time series modeling. Multiplicative outliers are data 
points that exhibit a significant departure from the expected behavior and can distort the model's estimation. The 
study proposes a Bayesian approach for multiplicative outliers that incorporates prior knowledge and beliefs 
about the model parameters. It takes into account the outlier of the data. The results demonstrate the effectiveness 
of the proposed method in multiplicative outliers and improving the accuracy of the time series model. The study 
highlights the importance of considering outliers in time series modeling and provides a practical approach for 
the estimation of multiplicative outliers in this context. 
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INTRODUCTION 
A time series is a set of observations that are recorded in time. This may also be described as “a time series is a 
sequence of observations of variables recorded at equally spaced time points’’ [1]. Time-series observations are 
sometimes affected by interrupting events such as strikes, pandemics, natural disasters, and sudden political and 
economic crises, such values are usually referred to as outliers. Because Outliers have been known to wreak 
havoc on parameter estimation. it is therefore important to have procedures that will deal with such outlier effects. 

In real life, a time series may include anomalous data for a variety of causes that don't match the majority of the 
observations. Outliers are these anomalous findings that have an impact on both order and parameter (s). In such 
cases, managing outliers is crucial before beginning analysis to have a deeper comprehension of the data-
generating process and to be aware of its implications. Four kinds of outliers have been offered for univariate time 
series analysis. These are temporary changes, inventive outliers, level shifts, and additive outliers. These four 
categories of outliers affect an observed time series and associated residual process; see [8, 9, 18]. 

Various techniques exist for identifying outliers. For a Bayesian approach, look to the work of [14]. For non-
Bayesian methods, see the research of [8] and the accompanying references. The autoregressive model adheres to 
the idea of dependence, where the current observation is linearly dependent on past observations see [6]. Outliers 
are categorized based on their impact on the model of the series. The first category includes outliers that affect the 
model via addition, known as additive outliers. The second category includes outliers that affect the model 
through multiplication, known as multiplicative outliers. Researchers handle the outlier(s) by pursuing two main 
approaches: first, identifying the outlier(s), and second, studying its consequences in Time Series. 

The detection of outliers in the autoregressive model was first examined by [10] using the likelihood criterion 
when the number of outliers is known. In addition, he made a clear distinction between additive and multiplicative 
outliers and demonstrated that additive outliers should be given more consideration than multiplicative outliers. In 
their studies, [17, 9] examined the detection of outliers in an autoregressive integrated moving average (ARIMA) 
model. They used likelihood ratio criteria to identify both kinds of outliers and also evaluated the parameters 
associated with them. [4] suggested a test that may be used to discover outliers, but only under certain 
circumstances, such as when the outliers have a known distribution. In their paper, [5] proposed a technique for 
detecting the location of an outlier and then determining its size in the context of a non-linear time series. 

[2] examined the identification of outliers in the autoregressive time series model using the Bayesian technique 
and derived the posterior probability. They investigated the responsiveness of models to variations in both 
previous adjustments and model misrepresentation. [11] created an expanded version of the linear dynamic model 
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that incorporates a model-based approach. They then used this model to identify instances of abrupt shifts in the 
series.  [18, 3] examined the concepts of additive and multiplicative outliers within the Bayesian framework. They 
also established a testing process to determine the specific area of these outliers within a subset of a series. For 
more details, see [16]. [15] introduced a Bayesian method to identify additive outliers in the Poisson integer-
valued AR (1) time series model. [13] suggested a method for detecting an anomalous value in a time series that 
follows a stationary AR (1) model with an intercept term. This method was then expanded to include a linear 
temporal trend by [12]. 

Researchers are drawn to the outliers due to their significant influence on many statistical theories and practical 
applications. The number of observations that may behave as outliers is often relatively small. In recent years, 
there has been an increasing trend towards the use of individual observations due to the abundance of data and the 
growing familiarity with advanced computational systems and software. 

Thus, the focus of this paper is the Bayesian analysis of the time series model AR(p) impacted by a multiplicative 
outlier. There are five parts to the paper. The literature is discussed in this section. An overview of autoregressive 
time series models is provided in Section 1. Previous assumptions form the basis For a Bayesian approach in 
Sections 2 and 3. The suggested simulation and empirical analysis are shown in Sections 4 and 5. The 
significance of function and future growth is concluded in the concluding section. 

2. Model 
The topic of multiplicative outliers is covered in this subsection. An observation that occurs regularly as a result 
of inevitable circumstances and modifies the model's structure is called a multiplicative outlier. 

Let us consider that  follows an autoregressive model of order p (AR(p)) 

 = t=1, 2, 3………T         (1) 

If the time series model is contaminated by a multiplicative outlier at time point T, then error ( ) is partitioned 
into two parts as follows: (i) error without outlier (ii) error with outlier. We rewrite the Model (1) 

 

Where θ is the intercept term, are autoregressive coefficients,  is the error term and 

  are initial observations. 

3. Bayesian Estimation 
In the Bayesian technique, prior to defining the probability distribution of model parameters based on past 
experience or some initial confidence, experimentation and data collecting may start. When analyzing time series, 
this method is often used to derive conclusions on the parameters of the model under consideration. [7] extends 
Fisher's information measure to cover prior distributions, providing a method for selecting a prior distribution 
based on the relative value of experimental data and prior information. We consider the following prior 
distribution 

 

 

 

 

The Likelihood function for the model 
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The posterior distribution is inherited by multiplying the likelihood function with joint prior distribution. The 
posterior distribution is 

 

Using a loss function, we were able to determine the best estimator from the posterior distribution under the 
Bayesian situation. The squared error loss function (SELF) and the absolute loss function (ALF) are two 
symmetric loss functions that need now be examined. Estimators often need many integrations under these loss 
functions and solving them analytically is challenging. Numerical and computational methods are therefore used 
to get around this problem. Two methods in MCMC are used to calculate Bayes estimators: the Gibbs sampler 
and the Metropolis-Hastings (M-H) algorithm. This is accomplished by using the conditional posterior 
distribution for each model parameter, which is as follows: 

 

 

 

 

Where,  , 
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Where, 

 

Where,    

Note that the conditional posterior distribution is coming in standard distribution form. Thus, Gibbs sampler is 
used for the model parameters to simulate the conditional posterior distribution because of explicitly known 
nature of distributions. 

4. Simulation 
Here we conducted a simulation study to examine the effectiveness of model. In this simulation, we sampled 
observations from the AR model with T=200, 300, 500 and used the minimum values of the parameters to 
estimate the parameters of the proposed model 

We calculate the conditional posterior for each parameter because we know that the posterior distribution of the 
model is not closed forms. We then used the Gibbs sampler to generate sample from the conditional distribution 
of parameter estimates. We produced 10,000 realizations of the parameters of the Markov chain for this purpose 
using the conditional posterior distribution. Using the generated series, we calculate mean square error (MSE) 
absolute bias (AB), present in the table respectively. 

Paramete

r (True 

value) 

Estimated Value T=200 Estimated value T=300 Estimated value T=500 

SELF ALF ELF SELF ALF ELF SELF ALF ELF 

θ(4.77) 
4.48960

9 
4.48576

1 4.49387 
4.48144

5 
4.48220

3 4.48573 
4.48950

9 
4.49003

1 
4.49378

6 

α(0.4) 
0.42178

7 
0.42074

5 
0.42239

1 
0.41954

2 
0.41821

2 0.42013 
0.42051

3 
0.41955

1 
0.42110

4 

τ(1) 
0.96987

3 
0.97161

4 
0.97374

3 
0.96743

7 
0.96929

4 
0.97196

6 
0.97216

8 
0.96713

6 
0.97715

8 

σ(1.20) 
3.70177

7 
3.20390

3 
4.32531

9 
3.55721

7 
3.11081

1 
4.09993

8 
3.51031

7 
3.10922

7 
3.99960

8 
 

 
Estimated Value T=200 

Parameter 
MSE AB 

SELF ALF ELF SELF ALF ELF 
θ(4.77) 0.089095 0.092513 0.086427 0.285034 0.287267 0.280891 
α(0.4) 0.000589 0.000551 0.00062 0.022221 0.021043 0.02281 
τ(1) 0.007145 0.007758 0.006987 0.068262 0.065941 0.066977 

σ(1.20) 8.945202 6.134988 14.26065 2.507786 2.012814 3.130804 
 

 
Estimated Value T=300 

Parameter 
MSE AB 

SELF ALF ELF SELF ALF ELF 
θ(4.77) 0.090626 0.092527 0.087912 0.288555 0.287797 0.28427 
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α(0.4) 0.000514 0.000472 0.000542 0.020215 0.018707 0.020757 
τ(1) 0.009056 0.010022 0.008766 0.07408 0.074248 0.072974 

σ(1.20) 7.787707 5.410962 12.09363 2.357217 1.912656 2.899938 
 

 
Estimated Value T=500 

Parameter 
MSE AB 

SELF ALF ELF SELF ALF ELF 
θ(4.77) 0.087601 0.088485 0.084999 0.283862 0.282711 0.279609 
α(0.4) 0.000539 0.000499 0.000566 0.021248 0.020121 0.02177 
τ(1) 0.007928 0.008828 0.007751 0.071921 0.07326 0.070572 

σ(1.20) 7.239183 5.04308 10.98477 2.310317 1.911991 2.799608 

Squaring the difference eliminate negative values for the differences and ensure that the mean square error is 
always greater than or equal to zero. This property is necessary when we want our model to have small error. In 
statistics the concept of mean square error is an essential measure used to determine the performance of an 
estimator. 

Bayes estimator outperforms OLS in terms of MSE and ABS. The MSEs and ABs of the estimators decrease as 
the size of the series is increase for all the parameters. The estimated values of the parameters approach to the 
actual values when we increase the series size. The absolute loss function (ALF) outperforms other Bayes 
estimators with respect to Bayesian inference. 

5. DATA ANALYSIS 
The cryptocurrency market has expanded quickly in the past few years, and more people are starting to see it as a 
useful instrument to supplement conventional stock and futures markets. 

These currencies are totally digital and are mostly utilized online, in contrast to cash. Digital currencies may 
compete with existing online payment options like PayPal and credit/debit cards. Though they are still in their 
infancy, digital currencies like Solana, Ethereum, Bitcoin, and others might have a significant long-term impact 
on payment systems and currencies. We examine two popular digital currencies using our model because only 
two currencies are suitable according to our model and also provide sufficient results. The currency's description 
and analysis are given below. 

5. 1 Solana 
Solana, a high-performance blockchain, has been the subject of various studies. Launched in 2020, the goal of the 
public blockchain platform Solana is to improve scalability over existing blockchains without sacrificing security 
and decentralization. It facilitates the development of decentralized apps (DApps) and smart contracts. Cui (2022) 
developed VRust, an auto Smated vulnerability detection framework for Solana smart contracts, while Pierro 
(2022) proposed a tool to verify the ownership of these contracts. These contributions are crucial for ensuring the 
security and transparency of the Solana blockchain. Solana currently has 894963197 in supply and is trading on 
1382 active data. Data from 10 April 2020 to 21 January 2024 were collected, and the following data analysis was 
done: 

Parameter OLS SELF ALF ELF 

 0.3519501 0.362934 0.36302412 0.363059 

 0.9889833 0.988866 0.98886771 0.988866 

 0.0940395 0.094316 0.09430019 0.094385 

 5473 220.3066 188.095105 259.2982 
 



ISSN: 2752-3829  Vol. 3 No.2, (December, 2023)  

 

Stochastic Modelling and Computational Sciences 
 

 

Copyrights @ Roman Science Publications Ins.                                    Stochastic Modelling and Computational Sciences   

  

 

 366 

 

5.2 Ethereum 
Ethereum is a blockchain platform that supports smart contracts, with a key feature being a full-featured 
programming language for complex business logic (Tikhomirov, 2017). It is designed as a secure, decentralized, 
and generalized transaction ledger, providing a plurality of resources that can interact with each other (Wood, 
2014). The platform's data can be explored using a systematic and high-fidelity framework called Data Ether, 
which allows for comprehensive and precise data analysis (Chen, 2019). Ethereum has a current supply of 
16182147521 and is traded on 2267 active data. We have analyzed ETH-USD data from 9 November 2017 to 23 
January 2024, as follows. 

Parameter OLS SELF ALF ELF 

 
0.351227 6.308601 6.312257 6.736590 

 
0.953485 0.994077 0.994078 0.994077 

 
0.000126 0.000251 0.000251 0.000251 

 
250.000006 115.577006 99.311184 99.311184 

CONCLUSION 
The paper proposes a bayesian approach to handle multiplicative outliers. It takes into consideration the outlier as 
well as past information and assumptions about the model parameters. Under bayesian set-up the model is 
justifies by simulation and then application on cryptocurrencies. There are two suitable cryptocurrencies 
according to our model among existing digital currencies. Using the help of simulation studies, various sizes 
t=200, 300, 500 used to test the suggested technique against other outlier identification techniques already in use. 
The results show that the suggestion's approach works with multiplicative outliers and increases the time series 
model's accuracy. The study provides a helpful approach for performing multiplicative outliers in this particular 
scenario to improve knowledge of the time series modeling data generation process. 
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