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ABSTRACT 
The study aims to enhance the accuracy of rain predictions by decomposing rainfall data into various frequency 

components. The investigation involves the utilization of wavelet packet decomposition for feature extraction, 

allowing for a comprehensive analysis of rain patterns. The proposed approach showcases its potential to 

improve forecasting models, offering valuable insights for meteorological applications and contributing to more 

effective water resource management and disaster preparedness. In this paper, we have applied a technique using 

wavelet packet transform method at pre-processing stage using optimal thresholding technique which convert 

noisy data into best possible noise-free data, to compare and process the quality data for better forecasting. 

Keywords: wavelet packet transform, LSTM, forecasting, deep learning, rain 

data. 

1. INTRODUCTION 
In signal processing, considerable emphasis is placed on multiresolution analysis (MRA) and feature extraction. 
Time-frequency analysis, a robust mathematical approach, is crucial for examining time-varying, non-stationary 
signals, revealing their joint time and frequency domain distributions. This technique clarifies the intricate 
relationship between time and signal frequency. Key time-frequency distribution functions include the short-time 
Fourier transform (STFT), the Gabor transformation, Cohen's class of distributions (e.g., Wigner distribution), 
enhanced Wigner distribution, Gabor-Wigner distribution, and the S transform. [8]. 

The strength of the STFT lies in its lucid representation of the energy confined in each frequency element of a 
signal over a stated time interval, aligning with the intuitive perception of many actual test signals. Despite its 
widespread use, the STFT grapples with limitations in time or frequency resolution due to the fixed width 
function of the window, posing challenges in simultaneous optimization [9]. These limitations find resolution 
through the application of wavelets. 

Similar to the Fourier transform, the wavelet transform projects a signal onto a set of basis functions that provide 
localization in the frequency domain. Unlike the Fourier transform, which offers a uniform time-frequency 
representation, the wavelet transform excels in offering better high-frequency resolution at low frequencies and 
improved time resolution at high frequencies. This unique feature stems from the wavelet transform’s utilization 
of a collection of orthogonal bases with varying resolutions, allowing for the precise representation or 
approximation of a signal through the expansion and translation of the wavelet basis function. This characteristic 
marks a significant advancement in mathematical analysis compared to the Fourier transform. The versatility of 
wavelet analysis enables its application across diverse domains, including signal processing, image processing, 
pattern recognition, and speech analysis. 

Wavelet research saw significant advancement in the 1980s. In 1981, Stromberg provided evidence for the 
existence of wavelet functions, while between 1984 and 1988, Meyer, Battle, and Lemarie developed distinct 
wavelet basis functions characterized by rapid decay properties [14]. Additionally, Mallat introduced the Mallat 
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algorithm in 1984, a fast wavelet transform algorithm for signal analysis and reconstruction, based on the concept 
of Multiresolution Analysis (MRA) [16]. This algorithm, represented by a two-channel filter, enables the 
approximation of signals, whether in 2-dimensional images or 1-dimensional signals, by a series of sub-signals 
with varying resolutions. The Mallat algorithm has found extensive use in signal decomposition and 
reconstruction. 

In 1992, Soman and Vaidyanathan introduced wavelet packet theory for designing filter banks [22], which offers 
a more refined division of the time-frequency plane compared to wavelet transform. This finer division allows for 
enhanced resolution of the high-frequency segment of the signal, surpassing the capabilities of traditional wavelet 
analysis. 

The forecast rainfall [10, 19] has a broad impact on both agriculture and the travel plan of individuals. However, 
forecasting rainfall presents a considerable challenge due to its inherent complexity.  Various factors, such as 
humidity, maximum and minimum temperatures, wind speed, and direction, play crucial roles in influencing 
rainfall patterns [1, 4, 6, 19]. The arrangement of these parameters holds potential for rainfall prediction. 
Machine-learning algorithms employed for this purpose encompass k-nearest neighbours, decision trees, rule-
based methods, and linear regression [7]. Notably, deep learning emerges as particularly effective for larger 
datasets. 

The role of noise in rain forecasting is a subject that has gained increasing attention in meteorological research. 
Recent studies, such as the work by Sarmad Dashti Latif et al. [19], have underscored the importance of 
understanding and incorporating noise factors in rain forecasting algorithms. Managing noise in meteorological 
models and datasets are crucial for improving the accuracy of rain forecasting models. Meteorologists strive to 
differentiate between relevant signals and random noise to enhance the precision of predictions. Incorporating 
advanced noise reduction techniques and data filtering methods into forecasting models helps mitigate the impact 
of irrelevant fluctuations, contributing to more reliable and effective rain forecasting [5, 12, 15]. Recently [1, 10, 
11, 13, 19, 23, 24, 25], researchers across the globe are applying wavelet theory with deep learning and machine 
learning for the prediction (forecasting) of data like wind power, wind energy, traffic prediction, weather, wind 
speed and rain mass. 

This paper aims to utilize the wavelet packet transform (WPT) on the collected rain data with the objective of 
effectively decomposing the noisy dataset into distinct frequency components. This decomposition enables the 
isolation and removal of unwanted noise, contributing to a cleaner and more refined dataset. In the context of rain 
forecasting, where precision is crucial, the reduction of noise in the data through wavelet packet transform 
facilitates a more robust and effective modeling of rainfall patterns. The application of this transform plays a 
significant role in improving the signal-to-noise ratio, thereby augmenting the quality of input data and ultimately 
enhancing the performance of rain forecasting algorithms. We have employed fundamental rainfall parameters 
including temperature, humidity, and precipitation. Deep learning techniques are utilized to construct the 
predictive model. Specifically, we propose the implementation of a Long Short-Term Memory (LSTM) model for 
daily rainfall prediction. Our research focuses on developing a predictive model tailored to the Quazigund district 
in Kashmir. It is widely recognized that inadequate water supply can have detrimental effects, while excessive 
water can be either harmful or beneficial depending on various environmental factors, especially in the context of 
coffee production. Despite existing research on rainfall prediction using techniques such as Artificial Neural 
Networks (ANN), Multi-layer Perceptron (MLP), and linear regression, there is a dearth of literature on the 
application of deep learning-based prediction specifically to the Quazigund area. 

2. Multiresolution Analysis (MRA) and Wavelets 
Understanding MRA is integral to grasping wavelet analysis, as it provides a foundational comprehension of the 

fundamental concepts underlying wavelets. The space )(2 L  represents the set of square integrable complex-
valued functions on  , equipped with the inner product 
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where the bar represents complex conjugation. )(2 l  is the vector space of square-summable sequences, i.e. 
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2.1 Definition [2, 3]. A set of nested closed subspaces jjV }{  within )(2 L , accompanied by a 

function ,  is referred to as MRA of the space )(2 L  when this set exhibits following (specific) 
properties. 
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The function   mentioned in (iv) is called a scaling function of the given MRA. 

Now, we give the construction of wavelets. Let 0W  be an orthogonal complement of 0V  in 1V , i.e. 

001 WVV  . By dilating elements of 0W  by j2 , we attain a closed subspace jW of 1jV  as 

.,1  jWVV jjj  

A function 0W  whose translates   
k

kx )(  form an orthonormal basis of  0W  is called 

a mother wavelet. We make the assumption that such a function is present. Since 0W  and 0V  are subspaces of 1V , 

therefore using recursion formula 
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must exist for some  kh ,  kg  in )(2 l . We represent the scaled translates of  and   as 
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In fact, },:{ , kjkj  is an orthonormal basis for  kjW j ,,  due to (iv) and by the definition of jW . 

Hence  is an orthonormal basis for )(2 L  [14], which displays that   is an orthonormal 

wavelet on .  

3. Construction of Wavelet Packets 
By generalizing the method of MRA, it is possible to construct wavelet packets. In general, two sequences 
 

jj  and  
jj  in )(2 l  are considered. Let   be a Hilbert space with orthonormal basis  kke . Then, 

k

k

kjj ef   22 2  , 

and                                                        
k

k
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are orthonormal bases for orthogonal closed subspaces 1  and 0 , respectively, such that 

01    

By this “splitting trick” [14, 16], we define the basic wavelet packets allied with a scaling function   as defined 
in MRA. A graphical representation is shown by Figure 1 (source: MATLAB). The wavelet packets 

 associated with the scaling function   are defined (recursively) by 
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where  1  and  0  are mother and father wavelets, respectively. Associated with a particular 

orthonormal scaling function   , the wavelet packets }{ n  defines a family of subspaces of )(2 L  as follows: 
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We observe that 
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so that the decomposition into orthogonal components can be expressed as: 
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A generalization for alternative values of n may be expressed as: 
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The functions n  are obtained by superposition of half scaled translated versions of functions of lower index. But 

supports of all n  are in [0, 2N−1]. Therefore, n  oscillates approximately n times, and in this context, n can be 

interpreted as a frequency parameter. 
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Initial from the n , let us examine the family of wavelet packet atoms characterized by three indices, derived 

from dyadic dilations and translations of n : 
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j

n

j
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. 

For a given value of  j: 

)(,, xknj  permit to analyse fluctuations of a given signal around the position x
j *2 , at the scale j2  and at 

various frequencies 
N

n

2
 for 0n  to 12 j . Some of the refinements of Daubechies wavelet packet with 

vanishing moment four can be seen in Figure 1 for example. 

4. Recurrent Neural Network (RNN): 
LSTM stands out as a specialized form of deep learning tool designed to capture long-term dependencies [15]. 
Unlike traditional neural networks, LSTMs were specifically engineered to overcome challenges associated with 
retaining information over extended periods. In a deep learning system, the input layer comprises artificial input 
neurons responsible for delivering pre-processed weather data to subsequent layers for processing [15, 26]. 
Despite their chain-like structure, LSTMs feature a distinct repeating module consisting of four neural network 
layers that interact in unique ways. Refer to Figure 2 for an illustration of these modules and their interactions. 
Employing LSTM, this model leverages five fundamental weather parameters to forecast rainfall based on input 
parameter values, as depicted in Figure 3. 

5. Simulation and Results 
The LSTM cell has several components: a cell state, an input gate, a forget gate, an output gate, and a hidden 
state. Here,  is the hidden state;  is the cell state;  is the input;  is the forget gate;  is the output gate;  
is the input gate at time  

Furthermore, following computations take place at different stages while applying LSTM. 

 At Input Gate:  

 At Forget Gate:  

 At Candidate Cell State:  

 At Update Cell State:  

 At Hidden State:  

 At Output Gate:  

Where  is the sigmoid activation function,  denotes the concentration of the hidden state and input, 
 are the weight matrices for the corresponding gates and  are the bias terms 

involved in the computational process. 
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Fig. 1 Wavelet packet (mother wavelet db4) and its refinements 

 
Fig. 2 LSTM Module and Interaction of Components 
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Fig. 3 LSTM Model Cell 

5.1 Dataset Description 
Considering the duration of the dataset, the continuity of data, and the concurrent observation period, this study 
utilized a daily weather parameter dataset spanning from 1974 to 2018, comprising 16,435 days of records. The 
dataset encompasses five parameters, with minimal missing values addressed during preprocessing. To assess 
stationarity, the Augmented Dickey Fuller Test (ADF Test) was conducted, taking into account the p-value. 
Weather parameters were derived from the dataset, including the mean of maximum temperature, minimum 
temperature, morning relative humidity, evening relative humidity, and rainfall. These parameters and their 
corresponding measurements are mentioned in Table 1. The first five parameters served as inputs, while rainfall 
was designated as the output variable. The dataset encapsulates a 44-year timeframe, with an 80% train-test ratio 
utilized for analysis in this study. 

Table 1. The Rainfall parameters and their corresponding measurement units 

Parameters Corresponding Measurements 

Rain Millimeter (mm) 

Relative Humidity at 8:30 Percentage (%) 

Relative Humidity at 17:30 Percentage (%) 

Minimum Temperature Celcius 

Maximum Temperature Clecius 

5.2 Data Pre-processing 
The data is preprocessed in five stages. In the first four stages (Fig 3.) the dataset underwent cleaning, wherein 
blank records in the data pertinent to this training were removed. During the preprocessing phase, null values 
within the dataset were standardized. For precipitation data, missing values were estimated using statistical 
method in XL STAT 2018. Missing values for daily measured temperature, as well as humidity (relative), were 
filled using the mean value of the respective data. Initially, missing values were imputed by sampling from a 
normal distribution with mean and standard error equal to those obtained from available data. Normalization of 
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weather parameters was performed using a min-max scaler to obtain scaled values, as the feature ranges varied. 
[17].  The flowchart of such preprocessing data is shown in Figure 4. Finally, we know that white noise is very 
naturally mixed with the data set while recording.  Figure 5, represent the given rain dataset in noisy 
environments. At final stage we have applied wavelet packet transform to minimise the white noise components 
from the given dataset. The input layer definition of the LSTM model is often misread. We address this by 
transforming the data sequence from a two-dimensional matrix to the required three-dimensional format of the 
input layer, generally known as data reshaping [12]. 

 
Fig. 4 Data Preprocessing 

5.3 Methodology and Discussion 
The proposed method is estimated using some fundamental scoring metrics, namely root mean square error 
(RSME), mean absolute error (MAE) and R2-test. The experiment’s outcomes are depicted based on LSTM model 
in wavelet packet transform domain. Furthermore, we assess the prediction accuracy using data obtained from the 
government of Jammu and Kashmir; India, distinct from the training phase, and evaluate its predictive 
performance using a testing dataset. The results demonstrate the proposed model’s effectiveness in mitigating 
various types of errors. Figure 4 illustrates the outcomes of the proposed model for estimating rainfall. The results 
indicate a 98.92% accuracy in forecasting average rainfall (in mm). Consequently, the proposed model holds 
potential for accurately predicting rainfall on specific days. The plot illustrates the actual daily rainfall values over 
Quazigund against the predicted rainfall values, with the x-axis representing days and the y-axis representing daily 
rainfall values. 

In this paper, we have proposed a method to investigate the effectiveness of wavelet packet transform for rainfall 
prediction using historical data which is having some white noise because of the inherent error of the recording 
machines. Specifically, we have used Haar wavelet as a mother wavelet to extract features from the rainfall time 
series and then used these features to train a machine learning model for rainfall prediction. We have compared 
the performance of wavelet analysis using the existing performance metrics techniques. 

In this paper, we employ the LSTM and wavelet packet transform algorithms to forecast rainfall. Additionally, 
various other prediction techniques are employed for the purpose of comparative analysis. One of the metrics is 
the Mean Squared Error (MSE) quantifies the average squared disparity between the predicted values and the 
actual values. The formula for calculating the mean squared error is: 

MSE = , 

Where  is the number of data points in the validation set,  is the actual value of the th data point and  is the 
predicted value of the th data point. Similarly, we have used mean absolute error (MAE) and - tests to validate 
the present technique. These examinations are depicted in Table 3. 

5.4 Algorithm 

 Collect Rainfall Data: In this step we have collected rainfall data of Jammu and Kashmir from 1974-2018, 
which is to be used to train the forecasting model. 
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(Station: QAZIGUND, District: KULGAM, Division: SRINAGAR, DATE OF INSTALLATION 20-06-1956, 
HEIGHT A.M.S.L 1690 M, LATITUDE 33 35' N, LONGITUDE  75 05’ E) 

 Data Refinement: We have refined the data e.g. missing values and other kinds of artifacts to make data ready 
for further processing. We have used 4800 days data from refined dataset. LSTM was employed to analyze 
fundamental parameters to predict rainfall using them. 

 Perform Wavelet Packet Transform: It is assumed that the collected rainfall data is corrupted with white 
noise due to inherent error of the system. We have used wavelet packet transform by using Haar wavelet as a 
mother wavelet to decompose the signal into different scales. The performance of wavelet packet filter with 
LSTM can be visualised in Figure 6 for thirty days prediction 

 Feature Extraction: After performing the previous step, statistical features are extracted from the 
decomposed signals. 

 Use the Model for Forecasting: Once the model is validated, it can be used for forecasting rainfall for a 
future time period based on the weather conditions and other relevant factors. We have used one month data of 
the year 2018 for model validation. 

Table 2: Dataset of Jammu and Kashmir 
STNID Year Month Day TempMax Temp 

Min 
Rain(mm) RH 

0830 
RH 

1730 
42044 1974 1 1 9.5 -2.7 0.0 96 61 
42044 1974 1 2 10.9 -3.6 0.0 96 57 
42044 1974 1 3 11.1 -2.6 0.0 93 61 
42044 1974 1 4 8.7 -3.2 0.0 93 64 
42044 1974 1 5 10.9 -4.1 0.0 88 56 
42044 1974 1 6 9.4 -3.1 0.0 96 70 
42044 1974 1 7 9.1 -1.3 0.0 89 75 
42044 1974 1 8 6.7 -2.0 10.5 97 57 
42044 1974 1 9 7.3 -3.0 0.0 93 25 
42044 1974 1 10 10.9 -4.1 0.0 85 52 
42044 1974 1 11 9.3 -3.2 0.0 90 63 
42044 1974 1 12 9.1 -0.3 201.0 100 53 
42044 1974 1 13 4.5 -1.7 123.0 100 25 
42044 1974 1 14 0.8 -7.0 82.0 100 59 
42044 1974 1 15 2.8 -12.1 25.0 100 60 
42044 1974 1 16 1.9 -11.4 0.0 100 57 
42044 1974 1 17 4.8 -11.3 0.0 x 58 
42044 1974 1 18 1.7 -3.6 20.0 89 49 
42044 1974 1 19 1.7 -3.6 0.0 95 50 
42044 1974 1 20 3.1 -2.9 130.0 100 59 
42044 1974 1 21 2.5 -0.9 240.0 100 55 
42044 1974 1 22 4.1 -6.4 25.0 92 56 
42044 1974 1 23 1.7 -5.4 94.0 93 52 
42044 1974 1 24 2.6 -1.3 0.0 93 56 
42044 1974 1 25 4.4 -7.5 0.0 92 59 
42044 1974 1 26 2.1 -3.3 103.0 100 60 
42044 1974 1 27 2.5 -2.3 123.0 93 55 
42044 1974 1 28 3.6 -8.5 13.0 x 57 
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42044 1974 1 29 1.7 -6.7 0.0 x 60 
42044 1974 1 30 4.1 -9.2 0.0 x 41 
42044 1974 1 31 4.4 -7.5 0.0 82 60 

…………………….. 
………………………….. 

STNID Year Month Day TempMax Temp 
Min 

Rain(mm) RH 
0830 

RH 
1730 

42044 2017 12 28 11.8 -1.6 0.0 89 64 
42044 2017 12 29 12.2 -2.4 0.0 89 69 
42044 2017 12 30 12.2 -3.0 0.0 92 66 
42044 2017 12 31 10.2 -4.0 0.0 96 67 
42044 2018 1 1 10.6 -3.4 0.0 96 74 
42044 2018 1 2 10.4 -4.6 0.0 92 62 
42044 2018 1 3 10.0 -4.0 0.0 96 61 
42044 2018 1 4 9.4 -4.4 0.0 96 58 
42044 2018 1 5 9.6 -4.0 0.0 88 68 
42044 2018 1 6 8.2 -2.2 0.0 90 60 
42044 2018 1 7 8.6 -4.6 0.0 92 58 
42044 2018 1 8 9.6 -5.8 0.0 95 58 
42044 2018 1 9 10.4 -5.8 0.0 91 57 
42044 2018 1 10 10.2 -5.4 0.0 96 50 
42044 2018 1 11 9.4 -2.8 0.0 85 58 
42044 2018 1 12 12.8 -2.2 0.0 89 52 
42044 2018 1 13 12.6 -5.0 0.0 77 49 
42044 2018 1 14 13.0 -4.4 0.0 75 48 
42044 2018 1 15 13.4 -4.2 0.0 88 48 
42044 2018 1 16 12.8 -5.2 0.0 87 52 
42044 2018 1 17 9.6 -4.4 0.0 84 70 
42044 2018 1 18 11.0 0.4 1.0 90 66 
42044 2018 1 19 11.4 -3.0 0.0 93 60 
42044 2018 1 20 14.2 -4.0 0.0 45 61 
42044 2018 1 21 15.0 -4.2 0.0 85 41 
42044 2018 1 22 14.0 -4.4 0.0 85 43 
42044 2018 1 23 6.0 -3.2 0.0 85 79 
42044 2018 1 24 11.3 -5.2 0.0 85 60 
42044 2018 1 25 12.1 -5.0 0.0 88 46 
42044 2018 1 26 13.2 -4.2 0.0 88 40 
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Fig. 5 Noisy Rainfall Data (including missing values) 

Table 3. Comparative analysis of different tests with different models 
 

Decision 
Tree 

SVM Linear Regression WPT+LSTM 

MSE 0.002714 0.0130270 2.58490 0.001905 

MAE 0.008832 0.0312822 1.28178 0.007275 

 0.977790 0.9635140 1.00000 0.959836 

MSE for the 
station Banihal 

0.002335 0.0312820 1.28178 0.002124 
 

MSE for the 
station Batotle 

0.002321 0.0263510 2.65320 0.002122 

 

 

Models 

T
ests 
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Fig. 6 Forecasting Rainfall for one month using wavelet packet transform 

6. CONCLUSION 
The investigation into deep-learning techniques for rainfall prediction is outlined, with a focus on developing a 
rainfall prediction model utilizing LSTM networks and wavelet packet transform for Jammu and Kashmir, India 
for the data given in Table 2. In general, we have taken three stations viz. Quazigund, Banihal and Batotle and in 
particular Quazigund station for detail analysis. The dataset comprises daily records of parameters for instance 
tmax, tmin, relative humidity and rain from 1974 to 2018. Multiple tests and assessments with existing machine 
learning models are conducted on this dataset to assess and validate the performance of the proposed model. Only 
4800 days data has been utilised in the present paper and one month data of the year 2018 has been utilised to 
validate our proposed model. From Table 3, we observed that in all the testing parameters used in this paper, the 
LSTM model jointly with wavelet packet transform gives the better performance. As a result, the proposed model 
is well-suited for various applications where accurate rainfall prediction is essential, including but not limited to 
smart agriculture. We have used MATLAB and PYTHON for simulation. 

An algorithm for rain forecasting using wavelet packet transform has been developed in this paper. This algorithm 
may be used by meteorologists and weather forecasting agencies to provide accurate and reliable rainfall 
forecasts, which can help in disaster management and resource allocation. In future, we are planning to create a 
rainfall prediction model incorporating global wind circulation patterns and climate indices. Additionally, we will 
try to explore the effects of climate change on rainfall patterns. 

Acknowledgements: The authors are thankful to Government of the State Jammu and Kashmir (imd.gov.in) 
India, for providing Rainfall data. 
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