Stochastic Modelling and Computational Sciences

EDGE CONGRUENCE SQUARE SUM LABELING

Geetha $\mathbf{T}^{1,2^{*}}$ and Kalamani \mathbf{D}^{3}
${ }^{1}$ Research Scholar, Department of Mathematics, Bharathiar University PG Extension and Research Centre, Erode638052, Tamil Nadu, India
${ }^{2}$ Assistant Professor, PG and Research Department of Mathematics, Bharathidasan College of Arts and Science, Erode - 638116, Tamil Nadu, India
${ }^{3}$ Professor, Department of Mathematics, Bharathiar University PG Extension and Research Centre, Erode-638052, Tamil Nadu, India
${ }^{1,2}$ geetha15520@gmail.com and ${ }^{3}$ kalamanikec @ gmail.com

Abstract

A new concept of labeling called the one or two modulo 4 square sum labeling is introduced and investigated for the comb graph $P_{n} \odot K_{l}$, the star graph $K_{l, n}$, the subdivision of the star graph $K_{l, n}$, the one point union of cycle C_{3} T_{n}.

Keywords: Square sum labeling, one or two modulo 4 square sum labeling.

1 INTRODUCTION

All graphs considered in this paper are finite, simple and undirected graphs. The symbol $V(G)$ and $E(G)$ denotes the vertex set and edge set of a graph G .One of the most important achievement made in graph theory is graph labeling. A graph labeling is an assignment of integers to the vertices or edges or both subject to certain conditions in the mid 1960's the labeling was introduced and more than 200 different types of labels have been derived. For a wide range of graph labeling applications include addressing communication networks, wi-fi security and secrete sharing schemes.
The concept of graph labeling was introduced by Rosa[7] in 1967. Gallian [2] has published a book named a dynamic survey of graph labeling and it contains the latest update related to the labeling of graphs. The square difference labeling was introduced by J.Shiama [8].
T Geetha and D.Kalamani [4] were derived the square difference labeling for some graphs and also proved that the square difference prime labeling for some graphs [5]. In 2020, Vanu Esakki and Syed Ali Nisaya [10] was established the two modulo three sum graph. Germina K A, Arumugam S and Ajitha V[3] were established on square sum graphs. In this paper, a new labeling called one or two modulo four square sum labeling are introduced. Further notations and terminologies are followed from Harary [6] and Bondy and Murty [1].

2 PRELIMINARIES

In this section, some basic definitions namely square sum labeling, path ${ }_{n}$ graph P_{n}, bipartite graph, complete bipartite graph $K_{m, n}$, comb graph $P_{n} \odot K_{1}$, one point union of cycle C_{3} with $\mathrm{K}_{1, n}$, star graph $K_{1, n}$, the subdivision of the star graph $K_{1, n}$, crown graph $\mathrm{C}_{\mathrm{n}}{ }^{+}$, the wheel graph W_{n}, the fan graph F_{n}, and the friendship graph T_{n} are given.

Definition 2.1. A path $\mathbf{P}_{\mathbf{n}}$ is obtained by joining u_{i} to the consecutive vertices $\mathrm{u}_{\mathrm{i}+1}$ for $1 \leq \mathrm{i} \leq \mathrm{n}-1$.
Definition 2.2. A closed walk $\mathrm{v}_{0} \mathrm{v}_{1} \mathrm{v}_{2} \ldots \ldots . . . \mathrm{v}_{\mathrm{n}}=\mathrm{v}_{0}$ in which $\mathrm{n} \geq 3$ and $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots . . \mathrm{v}_{\mathrm{n}}$ are distinct is a cycle . It is denoted by C_{n}.

Definition 2.3. A bipartite graph is one whose vertex set can be partitioned into subsets X and Y , so that each edge has one end in X and one end in Y ; such a partition (X, Y) is called a bipartition of the graph.

Stochastic Modelling and Computational Sciences

Definition 2.4. A complete bipartite graph $K_{1, n}$ is called a star and it has $n+1$ vertices and n edges. It is also denoted by S_{n}.
Definition 2.5. The comb is the graph obtained from a path P_{n} by attaching a pendent edges to each vertex of the path. It is denoted by $\mathrm{P}_{\mathrm{n}} \odot \mathrm{K}_{1}$.
Definition 2.6. The graph obtained by joining n pendent edges at one vertex of the cycle C_{3} is called one point union of C_{3} with $K_{1, n}$.
Definition 2.7. A subdivision $\operatorname{graph} \mathbf{S}(\mathbf{G})$ is obtained from G by subdividing each edge of G with a vertex.

Definition 2.8. The crown graph $\mathbf{C}_{\mathbf{n}}{ }^{+}$is obtained from C_{n} by attaching a pendent vertex from each vertex of the graph C_{n}.

Definition 2.9. A wheel graph is a graph formed by connecting a single universal vertex to all vertices of a cycle. Wheel graph of $(n+1)$ vertices denoted by W_{n}.

Definition 2.10. A fan graph $\mathbf{F}_{\mathbf{n}}$ can be constructed from a wheel graph by deleting one edge on the n- cycle. Fan graph has ($\mathrm{n}+1$) vertices.
Definition 2.11. The friendship graph $\mathbf{T}_{\mathbf{n}}$ is a set of n triangles having a common central vertex.
Definition 2.12. A graph $G=(V, E)$ with p vertices and q edges is said to be square sum labeling if there exists a bijection mapping $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{0,1,2, \ldots, \mathrm{p}-1\}$ such that the induced function $\mathrm{f}^{*}: \mathrm{E}(\mathrm{G}) \rightarrow \mathrm{N}$ defined by $\mathrm{f} *(\mathrm{uv})=\mid[\mathrm{f}$ $(u)]^{2}+[f(v)]^{2} \mid$ for every $u v \in E(G)$ are all distinct.

3 MAIN RESULTS

In this section, we proved one or two modulo four square sum labeling for the comb graph $\mathrm{P}_{\mathrm{n}} \odot \mathrm{K}_{1}$, the star graph $K_{1, n}$, the subdivision of the star graph $K_{1, n}$, the one point union of cycle C_{3} with star graph $K_{1, n}$, the crown graph $\mathrm{C}_{\mathrm{n}}{ }^{+}$, the wheel graph W_{n}, the fan graph F_{n}, and the friendship graph T_{n}.
Definition 3.1. A graph $G=(V, E)$ is said to be one or two modulo four square sum labeling if there is a bijection $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{1,2, \ldots,|\mathrm{v}|\}$ and the induced function $\mathrm{f}^{*}: \mathrm{E}(\mathrm{G}) \rightarrow \mathrm{N}$ defined by $\mathrm{f}^{*}(\mathrm{uv})=\left|[\mathrm{f}(\mathrm{u})]^{2}+[\mathrm{f}(\mathrm{v})]^{2}\right| \equiv$ 1 or $2(\bmod 4)$ if $u v \in E(G)$ are all distinct.

Theorem 3.1.The star graph $K_{1, n}$ admits one or two modulo 4 square sum labeling.
Proof. Let G be a star graph $K_{1, n}$.
Let $\mathrm{V}(\mathrm{G})=\left\{\mathrm{v}, \mathrm{v}_{\mathrm{i}}: 1 \leq \mathrm{i} \leq \mathrm{n}\right\}$ and $\mathrm{E}(\mathrm{G})=\left\{\mathrm{vv}_{\mathrm{i}}: 1 \leq \mathrm{i} \leq \mathrm{n}\right\}$.
Hence G has $\mathrm{n}+1$ vertices and n edges.
Define $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{1,2, \ldots, \mathrm{n}+1\}$ as follows:
$f(v)=1$
$\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=\mathrm{i}+1,1 \leq \mathrm{i} \leq \mathrm{n}$
Clearly f is bijective and f induces a bijective function. $\mathrm{f}^{*}: \mathrm{E}(\mathrm{G}) \rightarrow\{1,2\}$ as follows:
$\mathrm{f}^{*}\left(\mathrm{Vv}_{\mathrm{i}}\right)=1,1 \leq \mathrm{i} \leq \mathrm{n}(\mathrm{i}$ is even)
$\mathrm{f}^{*}\left(\mathrm{vv}_{\mathrm{i}}\right)=2,1 \leq \mathrm{i} \leq \mathrm{n}(\mathrm{i}$ is odd)
Hence the edge labels are all distinct and congruence to 1 or $2(\bmod 4)$.
Therefore $\mathrm{G}=\mathrm{K}_{1, \mathrm{n}}$ is a one or two modulo four square sum labeling.

Stochastic Modelling and Computational Sciences

Example 3.1. The star graph $\mathrm{K}_{1,7}$ is a one or two modulo four square sum labeling which is shown in the Figure 1

Figure 1: The star graph $K_{1,7}$.
Theorem 3.2. The comb graph $P_{n} \odot K_{1}$ admits one or two modulo 4 square sum labeling.
Proof. Let G be the comb graph $\mathrm{P}_{\mathrm{n}} \odot \mathrm{K}_{1}$.
Let $\mathrm{V}(\mathrm{G})=\left\{\mathrm{u}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}}: 1 \leq \mathrm{i} \leq \mathrm{n}\right\}$ and $\mathrm{E}(\mathrm{G})=\left\{\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1}: 1 \leq \mathrm{i} \leq \mathrm{n}-1\right\} \cup\left\{\mathrm{u}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}}: 1 \leq \mathrm{i} \leq \mathrm{n}\right\}$.
Hence G has 2 n vertices and $2 \mathrm{n}-1$ edges.
Define $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{1,2,3, \ldots, 2 \mathrm{n}\}$ as follows:
$\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=2 \mathrm{i}-1,1 \leq \mathrm{i} \leq \mathrm{n} \mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=2 \mathrm{i}, \quad 1 \leq \mathrm{i} \leq \mathrm{n}$
Clearly f is injective and f induces a bijective function $\mathrm{f}^{*}: \mathrm{E}(\mathrm{G}) \rightarrow\{1,2\}$ as follows:
$\mathrm{f}^{*}\left(\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1}\right)=2,1 \leq \mathrm{i} \leq \mathrm{n}-1$ (i is odd)
$\mathrm{f}^{*}\left(\mathrm{u}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}}\right)=1,1 \leq \mathrm{i} \leq \mathrm{n}(\mathrm{i}$ is even $)$
Hence the edge labels are all distinct and congruence to 1 or $2(\bmod 4)$. Therefore $G=P_{n} \odot K_{1}$ is a one or two modulo 4 square sum labeling.

Example 3.2. The comb graph $\mathrm{P}_{6} \odot \mathrm{~K}_{1}$ is a one or two modulo 4 square sum labeling which is shown in the Figure 2.

Figure 2: The comb graph $P_{6} \odot K_{1}$.
Theorem 3.3: The subdivision of the edges of the star $k_{1, n}$ admits one or two modulo 4 square sum labeling.
Proof. Let G be a graph obtained by the subdivision of the edges of the star $k_{1, n}$.
Let $\mathrm{V}(\mathrm{G})=\left\{v, u_{i}, w_{i}: 1 \leq i \leq n\right\}$ and $\mathrm{E}(\mathrm{G})=\left\{v u_{i}, u_{i} w_{i}: 1 \leq i \leq n\right\}$.
Hence G has $2 \mathrm{n}+1$ vertices and 2 n edges.

Stochastic Modelling and Computational Sciences

Define $f: V(G) \rightarrow\{1,2,3, \ldots, 2 n+1\}$ as follows
$f(v)=1$
$f\left(u_{i}\right)=2 i+1, \quad 1 \leq i \leq n$
$f\left(w_{i}\right)=2 i, \quad 1 \leq i \leq n$
Clearly f is bijective and f induces a bijective function. $\mathrm{f} *: \mathrm{E}(\mathrm{G}) \rightarrow\{1,2\}$ as follows:
$f^{*}\left(\mathrm{vu}_{\mathrm{i}}\right)=2, \quad 1 \leq i \leq n$
$f^{*}\left(\mathrm{u}_{\mathrm{i}} \mathrm{w}_{\mathrm{i}}\right)=1, \quad 1 \leq i \leq n$
Hence the edge labels are all distinct and congruence to 1 or $2(\bmod 4)$. Therefore $\mathrm{G}=$ subdivision of the edges of the star K_{ln} is a one or two modulo 4 square sum labeling.
Example 3.3: The subdivision of the edges of the star $\mathrm{K}_{1,7}$ is a one or two modulo 4 square sum labeling which is shown in the figure 3 .

Figure 3: Subdivision of edges of $\mathrm{K}_{1,7}$
Theorem 3.4. The one point union of cycle C_{3} with star graph $K_{1, n}$ admits one or two modulo 4 square sum labeling.
Proof. Let G be the one point union of cycle C_{3} with star graph $K_{1, n}$.
Let $\mathrm{V}(\mathrm{G})=\left\{\mathrm{u}, \mathrm{v}, \mathrm{w}, \mathrm{v}_{\mathrm{i}}: 1 \leq \mathrm{i} \leq \mathrm{n}\right\}$ and $\mathrm{E}(\mathrm{G})=\{\mathrm{uv}, \mathrm{vw}, \mathrm{wu}\} \cup\left\{\mathrm{uv}_{\mathrm{i}}: 1 \leq \mathrm{i} \leq \mathrm{n}\right\}$. Hence G has $\mathrm{n}+3$ vertices and $\mathrm{n}+3$ edges.

Define $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{1,2,3, \ldots, \mathrm{n}+3\}$ as follows:
$\mathrm{f}(\mathrm{u})=1$
$\mathrm{f}(\mathrm{v})=\mathrm{n}+2$
$f(w)=n+3$
$\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=\mathrm{i}+1,1 \leq \mathrm{i} \leq \mathrm{n}$
Clearly f is injective and f induces a bijective function $\mathrm{f} *: \mathrm{E}(\mathrm{G}) \rightarrow\{1,2\}$ as follows:
$\mathrm{f}^{*}(\mathrm{uv})=1$
$\mathrm{f}^{*}(\mathrm{uw})=2$
$\mathrm{f}^{*}(\mathrm{vw})=1$

Stochastic Modelling and Computational Sciences

$\mathrm{f}^{*}\left(\mathrm{uv}_{\mathrm{i}}\right)=1,1 \leq \mathrm{i} \leq \mathrm{n}(\mathrm{i}$ is even $)$
$\mathrm{f}^{*}\left(\mathrm{uv}_{\mathrm{i}}\right)=2,1 \leq \mathrm{i} \leq \mathrm{n}(\mathrm{i}$ is odd $)$
Hence the edge labels are all distinct and congruence to 1 or $2(\bmod 4)$.Therefore $G=$ one point union of cycles C_{3} with star graph $\mathrm{K}_{1, \mathrm{n}}$ admits one or two modulo 4 square sum labeling.

Example 3.4. The one point union of cycles C_{3} with star graph $\mathrm{K}_{1,9}$ admits one or two modulo 4 square sum labeling which is shown in the Figure 4.

Figure 4: One point union of cycle C_{3} with star graph $K_{1,9}$
Theorem 3.5. The crown graph $\mathrm{C}_{\mathrm{n}}{ }^{+}$admits one or two modulo 4 square sum labeling.
Proof. Let G be the crown graph $\mathrm{C}_{\mathrm{n}}{ }^{+}$.
Let $\mathrm{V}(\mathrm{G})=\left\{\mathrm{u}_{\mathrm{i}}, \mathrm{v}_{\mathrm{i}}: 1 \leq \mathrm{i} \leq \mathrm{n}\right\}$ and
$\mathrm{E}(\mathrm{G})=\left\{\mathrm{u}_{\mathrm{n}} \mathrm{u}_{1}\right\} \cup\left\{\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1}: 1 \leq \mathrm{i} \leq \mathrm{n}-1\right\} \cup\left\{\mathrm{u}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}}: 1 \leq \mathrm{i} \leq \mathrm{n}\right\}$. Hence G has 2 n vertices and 2 n edges.
Define $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{1,2, \ldots, 2 \mathrm{n}\}$ as follows:
$\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=2 \mathrm{i}-1,1 \leq \mathrm{i} \leq \mathrm{nf}\left(\mathrm{v}_{\mathrm{i}}\right)=2 \mathrm{i}, \quad 1 \leq \mathrm{i} \leq \mathrm{n}$
Clearly f is injective and f induces a bijective function $\mathrm{f}^{*}: \mathrm{E}(\mathrm{G}) \rightarrow\{1,2\}$ as follows:
$\mathrm{f}^{*}\left(\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1}\right)=2,1 \leq \mathrm{i} \leq \mathrm{n}-1$ (i is odd)
$\mathrm{f}^{*}\left(\mathrm{u}_{\mathrm{n}} \mathrm{u}_{1}\right)=2$
$\mathrm{f}^{*}\left(\mathrm{u}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}}\right)=1,1 \leq \mathrm{i} \leq \mathrm{n}(\mathrm{i}$ is even)
Hence the edge labels are all distinct and ${ }_{n}$ congruence to 1 or $2(\bmod 4)$. Therefore $G=$ crown graph $C_{n}{ }^{+}$admits one or two modulo 4 square sum labeling.

Example 3.5. The crown graph $\mathrm{C}_{8}{ }^{+}$admits one or two modulo 4 square sum labeling which is shown in the Figure 5.

Stochastic Modelling and Computational Sciences

Figure 5: The Crown graph C_{8}^{+}.
Theorem 3.6. The wheel graph W_{n} (n is even) admits one or two modulo 4 square sum labeling.
Proof. Let G be the wheel graph W_{n}.
Let $V(G)=\left\{\mathrm{v}_{\mathrm{i}}: 1 \leq \mathrm{i} \leq \mathrm{n}+1\right\}$ and
$\mathrm{E}(\mathrm{G})=\left\{\mathrm{v}_{2} \mathrm{v}_{\mathrm{n}+1}\right\} \cup\left\{\mathrm{v}_{1} \mathrm{v}_{\mathrm{i}+1}: 1 \leq \mathrm{i} \leq \mathrm{n}\right\} \cup\left\{\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+1}: 2 \leq \mathrm{i} \leq \mathrm{n}\right\}$. Hence G has $\mathrm{n}+1$ vertices and 2 n edges.
Define $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{1,2, \ldots, \mathrm{n}+1\}$ as follows:
$\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=\mathrm{i}, 1 \leq \mathrm{i} \leq \mathrm{n}+1$
Clearly f is injective and f induces a bijective function $\mathrm{f}^{*}: \mathrm{E}(\mathrm{G}) \rightarrow\{1,2\}$ as follows:
$\mathrm{f}^{*}\left(\mathrm{v}_{1} \mathrm{v}_{\mathrm{i}}\right)=1,1 \leq \mathrm{i} \leq \mathrm{n}+1$ (i is even)
$\mathrm{f}^{*}\left(\mathrm{v}_{\mathrm{l}} \mathrm{v}_{\mathrm{i}}\right)=2,1 \leq \mathrm{i} \leq \mathrm{n}+1$ (i is odd)
$\mathrm{f}^{*}\left(\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+1}\right)=1,2 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{f}^{*}\left(\mathrm{v}_{2} \mathrm{v}_{\mathrm{n}+1}\right)=1$,
Hence the edge labels are all distinct and congruence to 1 or $2(\bmod 4)$. Therefore $G=$ wheel graph $W_{n}(n$ is even $)$ admits one or two modulo 4 square sum labeling.
Example 3.6 The wheel graph $\mathrm{W}_{8}(\mathrm{n}$ is even) admits one or two modulo 4 square sum labeling which is shown in the Figure 6.

Figure 6: The wheel graph W_{8}.
Theorem 3.7. The fan graph F_{n} admits one or two modulo 4 square sum labeling.
Proof. Let G be the an graph F_{n}

Stochastic Modelling and Computational Sciences

Let $\mathrm{V}(\mathrm{G})=\left\{\mathrm{v}_{\mathrm{i}}: 1 \leq \mathrm{i} \leq \mathrm{n}+1\right\}$ and
$\mathrm{E}(\mathrm{G})=\left\{\mathrm{v}_{1} \mathrm{v}_{\mathrm{i}+1}: 1 \leq \mathrm{i} \leq \mathrm{n}\right\} \cup\left\{\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+1}: 2 \leq \mathrm{i} \leq \mathrm{n}\right\}$.
Hence G has $\mathrm{n}+1$ vertices and $2 \mathrm{n}-1$ edges.
Define $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{1,2, \ldots, \mathrm{n}+1\}$ as follows:
$\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=\mathrm{i}, 1 \leq \mathrm{i} \leq \mathrm{n}$
Clearly f is injective and f induces a bijective function $\mathrm{f}^{*}: \mathrm{E}(\mathrm{G}) \rightarrow\{1,2\}$ as follows:
$\mathrm{f}^{*}\left(\mathrm{v}_{1} \mathrm{v}_{\mathrm{i}}\right)=1,1 \leq \mathrm{i} \leq \mathrm{n}+1$ (i is even)
$\mathrm{f}^{*}\left(\mathrm{v}_{1} \mathrm{v}_{\mathrm{i}}\right)=2,1 \leq \mathrm{i} \leq \mathrm{n}+1$ (i is odd)
$\mathrm{f}^{*}\left(\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+1}\right)=1,2 \leq \mathrm{i} \leq \mathrm{n}$
Hence the edge labels are all distinct and congruence to 1 or $2(\bmod 4)$. Therefore $G=$ fan graph F_{n} admits one or two modulo 4 square sum labeling.
Example 3.7. The fan graph F_{9} admits one or two modulo 4 square sum labeling which is shown in the Figure 7.

Figure 7: Fan graph F_{9}
Theorem 3.8. The friendship graph Tn admits one or two modulo 4 square sum labeling.
Proof. Let G be the friendship graph T_{n}. ${ }^{n}$
Let $V(G)=\left\{\mathrm{v}_{\mathrm{i}}: 1 \leq \mathrm{i} \leq 2 \mathrm{n}+1\right\}$ and
$\mathrm{E}(\mathrm{G})=\left\{\mathrm{v}_{1}\right.$ vi : $\left.2 \leq \mathrm{i} \leq 2 \mathrm{n}+1\right\} \cup\left\{\mathrm{v}_{2 \mathrm{i}} \mathrm{v}_{2 \mathrm{i}+1}: 1 \leq \mathrm{i} \leq \mathrm{n}\right\}$.
Hence G has $2 n$ vertices and $2 n$ edges.
Define $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{1,2, \ldots, 2 \mathrm{n}+1\}$ as follows:
$\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=\mathrm{i}, 1 \leq \mathrm{i} \leq 2 \mathrm{n}+1$
Clearly f is injective and f induces a bijective function $f^{*}: E(G) \rightarrow\{1,2\}$ as follows:
$\mathrm{f}^{*}\left(\mathrm{v}_{1} \mathrm{v}_{\mathrm{i}}\right)=1, \quad 1 \leq \mathrm{i} \leq 2 \mathrm{n}+1$ (i is even)
$\mathrm{f}^{*}\left(\mathrm{v}_{1} \mathrm{v}_{\mathrm{i}}\right)=2,1 \leq \mathrm{i} \leq 2 \mathrm{n}+1$ (i is odd)
$f^{*}\left(v_{i} v_{i+1}\right)=1,2 \leq i \leq 2 n$
Hence the edge labels are all distinct and congruence to 1 or $2(\bmod 4)$. Therefore $\mathrm{G}=$ friendship graph Tn admits one or two modulo 4 square sum labeling.
Example 3.8. The friendship graph T_{4} admits one or two modulo 4 square sum labeling which is shown in the Figure 8.

Stochastic Modelling and Computational Sciences

Figure 8: Friendship graph T_{4}

CONCLUSION

In this paper, one or two modulo four square sum labeling are introduced and proved for some standard graphs like comb graph, star graph, wheel graph and so on. This work contributes several new result to the theory of graph labeling.

REFERENCES

[1] Bondy J.A and Murty U.S.R, Graph theory with applications, Macmillan Press, London(1976).
[2] Gallian J.A, A Dynamic survey of graph labeling, The Electronic Journal of Combinatorics, 22(2019).
[3] Germina K A, Arumugam S and Ajitha V, On square sum graphs, AKCE International Journal of Graphs and Combinatorics, vol. 6, no.1, pp.1-10, 2009
[4] Geetha T and Kalamani D, Square difference labeling for some graphs, Journal of Computer and Mathematical Sciences, 10(4), 695 - 70, 2019.
[5] Geetha T and Kalamani D, Square difference prime labeling of some graphs, A journal of the histroy of Ideas and Culture, 38(6,I), 183-188, 2021.
[6] Harary F, Graph theory, Adison-wesely, Reading Mass, 1969.
[7] Rosa A, On certain valuation of the vertices of a graph, Theory of graphs, Gordon and breach,N.V and Dunod paris, 349 - 355, 1967.
[8] Shiama, Square difference labeling for some graphs, International Journal of computer applica- tions, 44(4), 30-33, 2012.
[9] Shiama J, Square sum labeling for some middle and total graphs, International journal of Computer vol.37,no. 4,0975-8887,January 2012
[10] Vanu Esakki M and SyedAli Nisaya M.P, Two modulo three sum graphs, World Scientific News, 145, 274 285, 2020.

