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ABSTRACT 

This paper deals with the methods based on subdivision for the solution of systems of nonlinear polynomial 

equations based predicates for the Newton, Hansen-Sengupta, and Krawczyk contractor. 

The proposed algorithms of polynomial B-spline forms predicates for obtaining the solutions of polynomial 

system, is based on following technique: 

1) transformation of the original nonlinear algebraic equations into polynomial B-spline form; 2) includes a 

pruning step using polynomial B-spline predicate. 

We solved two numerical examples with proposed algorithms. The performance of proposed algorithms is 

compared with INTLAB solver based predicates. In algorithm suggested the value of polynomial B-spline 

predicate is obtained from B-spline coefficient. This approach avoids the repeated computation of function value 

and the derivative. We compare the performance of interval arithmetic based predicates with its polynomial B-

spline form  is directly obtained using B-spline coefficients. 

Keywords:  Nonlinear polynomial systems, Polynomial B-spline form, Interval analysis, Interval Newton 

operator, Hansen-Sengupta operator, Krawczyk operator. 

I. INTRODUCTION 
Finding the solutions of systems of nonlinear equations is a very important problem in scientific computing, 
constraint logic programming, geometric modeling, engineering, etc. A system of polynomial equations given by 

( ) 0,f x   (1) 

where 1 2( , , , ),
n

f f f f  and each 
i

f   is a s dimensional polynomial of independent variables 

1 2( , , , ).
s

x x x x The solutions can be obtained in a variety of ways, for instance, by directly solving the set of 

polynomial equations [1] or by resolving a simplified set of functions obtained by transforming the nonlinear 
polynomial equations [2][3].  Interval analysis provides a powerful solution tool based on the Newton method. 
The method, called the interval Newton method [4][5][6] provides guaranteed enclosures to the zeros of a given 
system of nonlinear equations. We compare three interval arithmetic based predicates (the interval Newton, 
Hansen-Sengupta and Krawczyk operators) with predicates based on their polynomial B-spline forms. The 
Newton-Raphson iteration is extended in the three operators we consider, the interval Newton operator due to 
Moore [7], Krawczyk's operator [8] and Hansen and Sengupta [9]. 

In literature, according to the tightness in the output interval of these operators they are ordered. Let “ ” define 
the ordering and for two operators R, S that R S if and only if R( ) S( )y y  for each interval that they process on. 

As in [6]: 

Interval Newton Hansen-Sengupta Karwczyk. 

Thus, the Newton operator provides the tightest output interval, and we will expect it to perform more frequently 
than the other operators on a given set of inputs. However, we note that, in practice, there has not been an 
examination of their results. 

In [1][2], the authors proposed several root finding algorithms for the solving systems of nonlinear polynomial 
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equations. In [5] [10] [11] the authors use interval methods for bounding zeros of systems of nonlinear 
polynomial equations. The approach of interval computation guaranteed an interval that contains all zeros of the 
system of polynomial equations can be assured using branch and bound strategy. Generally, interval branch and 
bound methods are time consuming because they requires evaluation of the polynomial functions during each 
iteration. 

Narrowing operators like Hansen-Sengupta, Newton, and Krawczyk can be introduced for pruning the search 
space. The interval enclosures for these narrowing operators requires evaluation of polynomial function 
derivatives during each iteration. Finding polynomial function derivatives using interval methods is often time-
consuming. Again, in [12] the authors combine Krawczyk contractor and domain subdivision for bounding zeros 
of systems of nonlinear polynomial equations in B-spline and Bernstein form respectively. 

We present an algorithm based on polynomial B-spline form of interval arithmetic based predicates such as 
Newton, Krawczyk, and Hansen-Sengupta for bounding zeros of systems of polynomial equations. The proposed 
algorithm combine the advantages of the interval arithmetic based predicates and the B-spline coefficient 
computation algorithm given in [13][14][15] used for unconstrained optimization problems. 

We use B-spline expansion approach to obtain estimate for the range of polynomial in power form. On expanding 
the polynomial in power form into polynomial B-spline form the minimum and the maximum value of B-spline 
coefficients provides the bound on the range of polynomial in power form. To obtain tight bounds on the range 
enclosure we increase number of segments of B-spline as shown in figure 1. 

 
Figure 1: Improvement in the range enclosure of univariate polynomial by increasing the number of segments of 

B-spline. 

The computational complexity of B-spline coefficients computation as given in [13] is  (( ) )s
m k mO . Therefore, 

to minimize the computation time a B-spline with single segments is a best option for bounding zeros of systems 
of polynomial equations. 

This paper is organized as follows. Section 2, gives an overview of B-spline expansion  and domain subdivision 
approach. In section 3, we explain an interval arithmetic based predicates  Newton operator, Hansen-Sengupta 
operator, and Krawczyk operator and propose subdivision algorithm for solving the system of polynomial 
equation. In section 4, we illustrate the use of the proposed algorithm for solving two numerical examples. We 
compare the performance of proposed algorithm with INTLAB based solver for interval arithmetic based 
predicates. Finally, in the last section we conclude. 
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II. BACKGROUND: POLYNOMIAL B-SPLINE FORM 
Firstly, we present brief review of B-spline form, which is used as inclusion function to bound the range of 
multivariate polynomial in power from. The B-spline form is then used as basis of main zero finding algorithm in 
section 3. 

We follow the procedure given in [7],[6] for B-spline expansion. Let 1( , )
l

t t  be a multivariate polynomial in l  

real variables with highest degree  1 ,
l

m m (2). 

1

1

1

1

1 1
0 0

( , ) .
l

l

l

l

mm
ss

l s s l

s s

t t a t t
 

   (2) 

2.1 Univariate polynomial 

Lets consider univariate polynomial case first, (3) 

 
0

( ) ,  , ,
m

s

s

s

t a t t p q


   (3) 

for degree d  (i.e. order d+1) B-spline expansion where ,d m  on compact interval I=[p,q].  We use  ,
d

I u  to 

represent the space of splines of degree d on the uniform grid partition known as Periodic or Closed  knot vector, 
u : 

 0 1 1: ,
k k

t t t t    u  (4) 

Where : ,
i

t p iy  0 ,i k  k  denotes B-spline segments and  : / .y q p k   

Let 
d

P  reflects the space of degree d  splines. We then denote the space of degree d  splines with 1d
C

  

continuous on [ , ]p q  and defined on u as 

  1
1,u : { ( ) : | [ , ] P ,  0, , 1}.d

d i i d
I C I t t i k  

     (5) 

Since  ,u
d

I is ( )k d  dimension linear space [8]. Therefore to construct basis of splines supported locally for 

 ,u ,
d

I  we use few extra knots 1d
t t p    and 1k k d

q t t     at the ends in knot vector. These types of 

knot vectors are known as Open or Clamped knot vectors, (6). Since knot vector u  is uniform grid partition, we 
choose :  

i
t p iy  for    , , 1 1, , ,i d k k d       

1 0 1 1 1: { }.
d k k k k d

t t p t t t q t t t                u  (6) 

The B-spline basis    1

1

k
d

i
i

B t



of  ,u

d
I  is defined in terms of divided differences: 

     1 1: [ , ,, , ] .
dd

i i d i i i i dB t t t t t t t    
    (7) 

where  . d


 represent the truncated power of degree .d  This can be easily proven that 

  : , 1,d

i d

t a
B t i d i k

h

        
 

 (8) 

where 
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1

0

11
: 1 ,

!

d
i d

d

i

d
t t l

ld






 
    

 
  (9) 

     1 1: [ , ,, , ] .
dd

i i d i i i i dB t t t t t t t    
    is the polynomial B-spline of the degree .d  The B-spline basis can be 

computed by a recursive relationship that is known as Cox-deBoor  recursion formula 

          1 1
, 1, 1: 1 ,  1,d d d

i i d i i d i
B t t B t t B t d  

     (10) 

where 

,

,     if  ,
( )

0,     otherwise,

i

i i d

i d ii d

t t
t t

t tt 



  




 (11) 

and 

10 1,     if  [ , ),
( ) :

0,     otherwise.
i i

i

t t t
B t


 


 (12) 

The set of spline basis    1

1

k
d

i
i

B t



 satisfies following interesting properties: 

1. Each  d

i
B t  is positive on its support 1[ , ]

i i d
t t   . 

2. Set of spline basis    1

1

k
d

i
i

B t



 exhibits a partition of unity, i.e.  

1

1

1.
k

d

i

i

B t




  

The power basis functions  
0

m
r

r
t


 in power form polynomial (3) can be represented in term of B-spline using 

following relation 

   
1

: , 0, , ,
k

ss d

v v

v d

t B t s d




   (13) 

and the symmetric polynomial  s

v  defined as 

 

   Sym 1, ,
: ,  0, , .

s s

v

s

v v d
s d

d
k

s


 

 
 
 
 

 (14) 

Then by substituting (13) in (3) we get B-spline extension of power form polynomial (3) as follows: 

         
1 1 1

0 0

( ) : = = ,
m k k m k

s sd d d

s v v s v v v v

s v d v d s v d

t a B t a B t d B t  
  

    

 
  

 
      (15) 

where 

 

0

: .
m

s

v s v

s

d a 


  (16) 
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2.2 Multivariate Polynomial Case 

Lets consider next multivariate power form polynomial (17)  for B-spline expansion 

1

1

1

1

1 1
0 0

( , ) : ,
l

l

l

l

kk
ss

l s s l

s s

t t a t t a t
  

    k

s

s k

 (17) 

where  1: , ,
l

s ss and  1: , , .
l

k kk  By substituting (13) for each s
t , (17) can be written as 

         
1 1

1 1

1 1 1

1 1 1

11

1 2 ... 1
0 0

, ,..., ... ... ,
l l

l l

l l l

s l l

m km k
ss dd

l s s v v v v l

s s v d v d

t t t a B t B t  


   

     

       
1 1

1 1

1 1 1

1 1 1

11

... 1
0 0

... ... .... ... ,
s l

l l

l l l

l l l

k mk m
ss dd

s s v v v v l

v d v d s s

a B t B t 


   

 
   

 
    (18) 

   
1

1

1 1

1 1

11

... 1... ... ,
l

l

l l

l l

kk
dd

v v v v l

v d v d

d B t B t


 

    

we can write (18) as 

   k
v v

v k

: .t d B t


  (19) 

where  1v : , ,
l

v v and vd is B-spline coefficient given as 

   1

1

1 1 1

1

... ...
0 0

... .... .
l

l

l l l

l

mm
ss

v v s s v v

s s

d a  
 

   (20) 

The B-spline expansion of  (17) is given by (18). The derivative of polynomial can be found in a particular 
direction using the values of vd i.e. B-spline coefficients of original polynomial for ,Iy the derivative of a 

polynomial  t with respect to 
r

t  in polynomial B-spline form is (21), 

     
,1 , 1

, 1

,

1 1

( ) ,1  , ,
r r

rr

r

r

Im

m
d d B t r l t







  

         s s m s

ms s

y y y y
u u

 (21) 

where u is a knot vector. The partial derivative ( )
r

 
y now includes range enclosure for derivative of  on .y  Lin 

and Rokne proposed (14) for symmetric polynomial and used closed or periodic knot vector (4).  Due to change 
in knot vector from (4) to (6) we propose new form of (14) as follows, 

   Sym 1, ,
: .

s s

v

v v d

d

s


 


 
 
 

 (22) 

2.3 B-spline Range Enclosure Property 

 
1

: ( ), .
m

d

i i

i

t d B t t


  y  (23) 

Let (23) be a B-spline expansion of polynomial ( )q t in power form and ( )q y denotes the range of the power form 

polynomial on subbox .y  The B-spline coefficients are collected in an array ( ) : ( ( ))
i i

D d y y where : {1, , }.m   

Then for ( )D y it holds 
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( ) ( ) [min ( ),max ( )].q D D D y y y y  (24) 

The range of the minimum and the maximum value of B-spline coefficients of multivariate polynomial B-spline 
expansion provides an range enclosure of the multivariate polynomial q on .y  

2.4 Subdivision Procedure 

We can improve the range enclosure obtained by B-spline expansion using subdivision of subbox .y  Let 

1 1: , , , ,
r r l l

              y y y y y y y  

represent the box to be subdivided in the r th direction (1 ).r l   Then two subboxes 
Ay and 

By are generated as 

follows 

1 1: , , ( ) , ,
r r l l

m              Ay y y y y y y  

 1 1: , ( ), , ,
r r l l

m          By y y y y y y  

where )(
r

m y is a midpoint of [ , ].
rr

y y  

III. INTERVAL ARITHMETIC BASED PREDICATES AND ALGORITHM 
In this section we explain interval arithmetic based predicates Newton operator, Krawczyk operator and Hansen-
Sengupta operator and present subdivision algorithm for solving a polynomial systems. 

3.1 Newton operator 
The interval Newton operator is given in [19] as 

( )
, , .

( )

p y
y y


       

N p y
p y

 (25) 

Let  be a continuously differentiable multivariate polynomial on ,y  let that there exists *
y  y  

such that  * 0,p y   and suppose that .y


y  Then, since the mean value theorem implies 

   * *0 ,p y p y p y y
          

   
 

therefore 
 

*

p y

y y
p 





 
 
  


 for some . y  If  p y  is any interval extension of the derivative of p  over ,y  then 

 
*  ,   .

p y

y y y



 

 
 
   


y
p y

 (26) 

Because of (26), any solution of ( ) 0p y   that are in y  must also be in N , , y
 

 





p y  and therefore (26) is the basis 

of the  univariate Newton method (25). 

The  univariate Newton method (25) can be extended as a Multivariate Newton method which execute an 
iteration equation similar to equation (25). 
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Suppose now that  and  (continuously differentiable nonlinear) polynomial equations in s  

unknowns, and let that  Then a basic formula for multivariate Newton method is 

, , ,f y y
     

 
N y w  (27) 

where w  is a vector of interval bounding all zeros w  of system ,Aw f y
    

 
 as  ,A f y such that  f y  is the 

Jacobi matrix f  interval extension over .y  Therefore obtaining the interval vector w  bounding the solution set 

to the interval linear system in (27) is an important step in multivariate interval method, 

  .f y
     

 
f y w  

From (25) and (27), the interval vector w  is given by 

 
.

f y
 

 
  


w
f y

 

Thus the interval linear system form of multivariate Newton method is given as 

  ,f y
      

 
f y w  (28) 

It is necessary to precondition the system (28) by a point matrix  given by the inverse of the midpoint 

matrix of an interval extension of the Jacobi matrix ( ),f y i.e.    1

mid  .Y


 f y  

w ,A B   (29) 

where  A Y  f y and .B Y f y
     

 
 

Then to compute sharper bounds on w  the interval Gauss-Seidel method [20] or the interval hull method [21] can 

be used to solve the system (29). The components of , , y
 

 
 

N f y  is given by (27). Then the intersection 

, , y
   

 
y N f y  results in contracted domain of .y  

Interval Newton method requires repeated evaluation of the (polynomial) function at y


y  to compute ( ),f y


 

which can be time consuming operation. Moreover, interval computations are used for finding ( )f y  to compute 

the precondition matrix ,Y  which apart from time consuming , often give quite pessimistic results. 

The B-spline Newton method can alleviate some of these difficulties. In this method, it is quite simple and 

straightforward to compute ( ),f y


 if we choose y


 to be any vertex point of ,y  then ( )f y


 is given directly by the 

B-spline coefficient value at y


. This obviates the need to evaluate the system of polynomial at y


as done in the 

interval Newton method. In proposed method the B-spline coefficients of the first partial derivatives are simply 
obtained as the differences of coefficients of the original polynomial f (21). 
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3.2 Krawczyk Operator 

The proposed B-spline Krawczyk operator algorithm is based on interval Krawczyk pruning operator. This 
algorithm is used to decrease the number of iterations. Krawczyk interval contractor is given in [12] as 

 

Where is a nonsingular precondition real matrix, i.e., and J is the real Jacobian matrix 

computed over the interval x , mx
   is the center of the interval x i.e.  midm x x . The computation of the 

Krawczyk interval contractor requires the evaluation of the nonlinear polynomial equations at the midpoint,  and 
Jacobian matrix over the interval. 

In B-spline Krawczyk method the evaluation of the nonlinear polynomial equations at midpoint can be computed 
just by subdivision, and the Jacobian value of the nonlinear polynomial equations can be computed by evaluating 
the partial derivative in all the component directions. Computation of partial derivatives using B-spline 
coefficients requires only the B-spline coefficients of nonlinear polynomial equations as given in  (21). 

The intersection between B-spline Krawczyk operator K and the initial domain x gives the new contracted 
domain

new
x , as  

new
K x x . The convergence of the solution bounds with B-spline Krawczyk operator will be 

much faster than interval Krawczyk operator. 

3.3  Hansen-Sengupta Operator 
As interval Newton operator given by (27), we can write as follows: 

  , , .x x f x
                 

f x N f x  (30) 

Preconditioning equation (30) withY , as midpoint inverse of an interval extension of the Jacobi matrix ( )f x , i.e. 

   1

mid Y


 f x gives 

  , , .Y x x Yf x
                 

f x N f x  (31) 

Changing the notation , , x
 

 
 

N f x to , , x
 

 
 

H f x and defining, 

  , ,M Y b Yf x
    

 
f x  

the interval Gauss-Seidel procedure proceeds component by component to give the iteration 

1 11
1 1

1 1
, , ,

k ki n
k k

i ij ijk k
j j ik

i

iii

b Y x Y x

x x
Y

 

 

 
 

  

   
      

       
 

 x x

H f x  (32) 

1 , , ,
k

k k k

i i

i

x


  
  

 
x H f x x  (33) 

for 0,1, ,k n and .
k

k
x


x  
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In this iteration after the ith component of , ,
k

k
x
 

 
 

H f x  is computed using (32), the intersection (33) is performed. 

The result is then used to calculate subsequent component of , ,
k

k
x
 

 
 

H f x . Neumaier [6] shows that this operator 

yields a tighter enclosure than the Krawczyk operator. Next we present subdivision algorithm for solving a 
polynomial systems similar to [22]. 

Algorithm 3.1: Subdivision Algorithm for Solving a Polynomial Systems 

 Input    : 

 

 

Output : 

Here 
c

A  is a cell structure containing the coefficients array 
I

a  of the polynomials in the 

power form. 
c

N  is a cell structure, containing degree vector, 
I

N  which contains degree 

of each variable in polynomial function. Initial bound x  of each variable and tolerance 
limit .ò  

The zero(s) of f in x or   as no solution exists in .x  

Begin Algorithm 

1 

 

 

{Compute the B-spline coefficients} 

Compute the B-spline coefficients ( )
i

D x  of given n  polynomials on the initial box ,x  where 

1,2, , .i n ( Use algorithms given in [13]) 

2 {Initialize iteration number} 

Set 0,k   0
.x x  

3 

 
{Compute ( )f x



} 

Choose ( )mid( )k
x


 x and obtain the value of ( )f x


directly from the B-spline coefficient value at the 

vertex of ( )mid( )k
x . 

4 {Compute ( )f x } 

Use the B-spline coefficients of f on   ,
k

x to compute the B-spline coefficients of all the first 

partial derivatives of f on  k
x via (21). From the minimum and maximum B-spline coefficients of 

the first derivative, construct their range enclosure interval, and form the interval Jacobian matrix 
( ).f x  

5 {Compute the precondition matrix Y } 

Compute the preconditioning matrix Y as 

   1

= mid  .k
Y


f x  
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6 

BNO 

{Compute the value of B-spline predicates and update solution} 

{ B-spline Newton operator} 

Solve the linear interval system 

 
ˇ

,Y Y f x
       
 

f x v  

and obtain  , ,
k

x
 

 
 

N f x to update the solution as 

     =  , , .
k k k

x
   

 
x x N f x  

BKO { B-spline Krawczyk operator} 

Compute the value of B-spline Krawczyk operator k as, 

( ) ( ) (  ( ))( )].K f x Yf x I Y x
  

    f x x  

and update the solution as 

   =  .
k k

Kx x  

  

BHSO { B-spline Hansen-Sengupta operator} 

Compute the value of B-spline Hansen-Sengupta operator H and update the solution, 

Set  M Y  f x , b Y f x
    

 
and .n s  

for i=1 to n do 

 if i == 1 then 

 

   
       

 
     

ˇ

( ) ( )

, 2 : 2 : 2 :

,
,

,k k

b i M i n n x n

H i x i
M i i

i H i i



    
  

 

x

x x  

else 
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ˇ

( ) ( )

,
,

where

,1: 1 : 1 : 1

and

, 1: , 1: , 1: ,

,k k

b i
H i x i

M i i

M i i i i x i i

M i i n i i n x i i n

i H i i

 









 
 

       
 

       
 

 

x

x

x x

 

end 
 

end 
 

7 {Return   } 

If   0,
k x then return   as solution and exit algorithm. 

8 {Termination} 

If   ,
k x ò then return  1k

x  as solution and exit algorithm. 

9 Set 1k k  and go to step 3. 

End Algorithm 

IV. NUMERICAL RESULTS 
We consider the two problems from [23]to test and compare the performance of three interval arithmetic based 
predicates (the interval Newton, Hansen-Sengupta and Krawczyk operator) with predicates based on their 
polynomial B-spline forms. The performance metrics are taken as the number of iterations and computational 
time (in seconds). Table 2 and Table 5 shows that except for B-spline Hansen-Sengupta operator the performance 
of polynomial B-spline predicates for interval Newton and Krawczyk operator is more efficient than the interval 
Newton and Krawczyk operator, because polynomial B-spline predicates avoids the repeated evaluations of 
polynomials and derivatives. Whereas polynomial B-spline predicates requires more number of iterations than 
interval arithmetic predicates because the bounds on the range of polynomials provided by B-spline coefficients is 
over estimated. 

As In Table 1 and Table 4 we summarize some representative numerical results. In each numerical tests, the 

iterations was terminated when the width of each final box bounding a solution was less than 0610 . The width, w 
of a box with components  x ,

i i i
a b ( 1, , )i n is defined to be 

 
1
max .

i i
i n

w b a
 

   

As shown in Table 3 and Table 6, interval Newton, Hansen-Sengupta and Krawczyk operators required almost 
same number of iterations in each numerical tests with different computational time because these three operators 
do not have equal computational costs. 
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Our MATLAB source code implementation of interval arithmetic predicates using INTLAB [23]solver is made 
available at [https://bit.ly/34Kb4Ix] for all two test problems. The MATLAB source code for problem evaluation 
at roots is made available at [bit.ly/34jiiTB] for the interested reader. 

Example 1: This example is taken from [23].  This is a problem with 4 variables. The polynomial systems is 
given by 

1 2 3 4

1 1 2 2 3 3 4 4

1 2 1 2 3 2 3 4 3 4 1 4

1 2 3 1 2 3 4 2 3 4 3 4 1 1 2 4

1 0,

0,

0,

0.

x x x x

x x x x x x x x

x x x x x x x x x x x x

x x x x x x x x x x x x x x x x

    
    
    
    

 

and the bounds on the variables are 

1 2 3 4[0.95,1.05],  [0.95,1.05],  [ 2.65, 2.6],  [ 0.4, 0.37].x x x x         

The results of algorithm are tabulated in Table 1. 

Table 1:  Roots of Example 1. 
Roots 

1x  1 

2x  1 

3x  -2.6180 

4x  -0.3819 

Table 2: A Comparison of performance between BNO, BHSO and BKO. 

 
Number of 

Iterations 

Computation 

Time (Sec.) 

BNO 5 1.71 

BHSO 15 3.77 

BKO 18 1.26 

Table 3: A Comparison of interval arithmetic based predicates for problem 1. 

 
Number of 

Iterations 

Computation 

Time (Sec.) 

INO 4 2.23 

IHSO 4 3.06 

IKO 6 2.33 

Example 2: This example is taken from [23].  This is a problem with 5 variables. The polynomial systems is 
given by 

1 2 3 4 5

1 1 2 2 3 3 4 4 5 5

1 2 1 2 3 2 3 4 3 4 5 4 5 1 5

1 2 3 1 2 3 4 2 3 4 5 3 4 5 1 4 5 1 2 5

1 2 3 4 1 2 3 4 5 2 3 4 5 3 4 5 1 1 2 4 5 1 2 3 5

1 0,

0,

0,

0.

0.

x x x x x

x x x x x x x x x x

x x x x x x x x x x x x x x x

x x x x x x x x x x x x x x x x x x x x

x x x x x x x x x x x x x x x x x x x x x x x x x

     

     

     

     

     
 

and the bounds on the variables are 
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1 2 3 4 5[0.95,1.05],  [ 3.75, 3.70],  [ 0.28, 0.25],  [0.95,1.01],  [0.95,1.01].x x x x x          

The results of algorithm are tabulated in Table 4. 

Table 4:  Roots of Example 2. 
Roots 

1x  1 

2x  -3.7320 

3x  -0.2679 

4x  1 

5x  1 

Table 5: Comparison of performance between BNO, BHSO and BKO. 

 
Number of 

Iterations 

Computation 

Time (Sec.) 

BNO 7 1.23 

BHSO 14 6.01 

BKO 17 1.73 

Table 6: A Comparison of interval arithmetic based predicates for problem 2. 

 
Number of 

Iterations 

Computation 

Time (Sec.) 

INO 4 1.44 

IHSO 4 3.83 

IKO 6 3.65 

V. CONCLUSION 
In this paper we implemented subdivision algorithms for solving a polynomial systems using predicates based on 
polynomial B-spline form and we measured their performance with the interval arithmetic based predicates (the 
interval Newton, Hansen-Sengupta, and Krawczyk operator).  Except for B-spline Hansen-Sengupta operator 
the performance of B-spline Newton operator and B-spline Krawczyk operator is more efficient than interval 
Newton and the Krawczyk operator in terms of computation time performance metrics and though in theory the 
Krawczyk operator is the weakest test, practically it might be a viable choice because it is computational efficient 
and easy to implement. 
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