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ABSTRACT 

In this paper, we present an analysis of availability and maintenance for systems experiencing multiple 

failures, utilizing alternating renewal processes along with an M/E2/1 queue model to represent the system’s 

reliability and availability. The primary objective of this study is to demonstrate the findings obtained through the 

proposed model. 

Keywords: Multi-failure systems, Availability analysis, Maintenance optimization, Alternating renewal processes, 
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INTRODUCTION 

In this model, we analyze a Power Distribution System (PDS) to demonstrate the derived results. Globally, 

PDSs are among the most intricate infrastructures and are required to function with high standards of quality and 

reliability. Power systems aim to create an economical and dependable network to transport electric power from 

generation sites to customer locations. However, balancing economic constraints and reliability demands can be 

challenging, making power system operations complex. This analysis centers on the station and feeder design at the 

utilization end of the power grid (Sajeesh Babu, 2017). There are two primary failure modes in this setting: active 

and passive failure events. Active failure events, which are the more common in power systems, involve faults, such 

as a defect in a conductor component. In these cases, the defective conductor is disconnected from the rest of the 

system by a circuit breaker assigned to the protection zone, classifying this as an active failure. Passive failures, on 

the other hand, may arise from material defects, operator inexperience, and similar factors. 

Consider a PDS where both active and passive failures are modeled with theoretical random failure times 

denoted by 𝛼1 and 𝛼2, respectively. Let 𝐸1(𝑡) and 𝐸2(𝑡) describe the distribution of sequential failure times, where 

𝐸1(𝑡)  = 𝐸2(𝑡) = 1 − 𝑒−𝑡. The successive service times, β1 and β2, follow an Erlang distribution with a shape 

parameter of 2 and a service rate of 6. Thus, setting η1 = η2 = 1 and ζ1 = ζ2 = 6, we get 
2.1

6
=

1

3
< 1. Additionally, the 

values of σ and ω are -8 and -3, respectively. The results for this example are outlined below. 

 

RELIABILITY ANALYSIS FOR POWER DISTRIBUTION SYSTEM (PDS) 

An equation given by: 

𝐴(𝑡) = 𝑅(𝑡) + ∑ ∑ ∫ 𝐴(𝑡 − (𝑙 + 1)𝜃 − 𝑧) 
(𝜁𝑞−2𝜂𝑞)

𝜔−𝜎

𝑡−(𝑙+1)𝜃

0
 𝐵

𝑞=1
∞
𝑙=0 𝜁𝑞𝑒𝑤𝑧 − 𝑒𝜎𝑧 𝑑𝑧                             …..(1) 

where,   𝐴(𝑡) represented the primary performance metric for complex systems    

              𝑅(𝑡) represents the system's reliability. 

             𝜁𝑞  is the rate of repair of qth mode of failure. 

             𝜂𝑞 is the failure rate of qth failure mode. 
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             𝜃 is the length of inspection interval 

             B is the number of failure modes 

With the help of equation (1), Using equation (1), the reliability of the PDS is assessed as shown in Table 1 and 

illustrated in Fig. 1 

 

Time 
R(t) for PDS 

M/E2/1 queue M/M/1 queue 

0.0 1.1 1.1 

0.3 0.6704 0.6704 

0.6 0.4495 0.4495 

0.9 0.3015 0.3015 

1.2 0.2022 0.2022 

1.5 0.1356 0.1356 

1.8 0.0910 0.0910 

2.1 0.0611 0.0611 

2.4 0.0411 0.0411 

2.7 0.0276 0.0276 

3.0 0.0186 0.0186 

Table 1: Time vs Reliability Analysis 

 

 

Fig 1: PDS Reliability function R (t) vs Time (t) 

 

ANALYSIS OF AVAILABILITY FOR THE POWER DISTRIBUTION SYSTEM 

𝐴 =
∫ 𝑅(𝑡) 𝑑𝑡

∞
0

∑ (𝑙+1)𝜃[𝑅(𝑙𝜃)−𝑅(𝑙+1)𝜃]+∑ 𝐸(𝑍𝑞) ∫ 𝑅(𝑡)𝜂𝑞(𝑡)𝑑𝑡
∞

0
𝐵
𝑞=1

∞
𝑙=0

                                        ….(2) 
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The point availability, A(t), and the long-term availability, A(θ), of the PDS can be determined using equations (1) 

and (2). The values of A(t) and A(θ) are presented in Tables 2 and 3 and are shown graphically in Figures 2 and 3, 

respectively. 

Time 
𝑨(𝒕) 

M/E2/1 queue M/M/1 queue 

0.0 1.1 1.1 

0.3 0.6704 0.6704 

0.6 0.4495 0.4495 

0.9 0.3015 0.3015 

1.2 0.2022 0.2022 

1.5 0.1358 0.1358 

1.8 0.2715 0.5271 

2.1 0.3936 0.5139 

2.4 0.4029 0.4038 

2.7 0.3511 0.2927 

3.0 0.3800 0.2044 

3.3 0.2494 0.3619 

3.6 0.2760 0.4717 

3.9 0.3210 0.4500 

4.2 0.3453 0.3700 

4.5 0.3376 0.3246 

Table2: Point Probability vs Time 

 

Fig 2: PDS Availability function A (t) vs Time (t) 

 

θ A(θ) 

M/ E2/1 queue M/M/1queue 

0.1 0.5218 0.71429 

1.1 0.3097 0.36860 

2.1 0.2004 0.22349 

3.1 0.1444 0.15589 

4.1 0.1122 0.11901 

5.1 0.0917 0.09615 

6.1 0.0775 0.08065 
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7.1 0.0671 0.06945 

8.1 0.0592 0.06098 

9.1 0.0530 0.05435 

10.1 0.04782 0.04902 

Table 3: Steady-State Availability vs Time 

 

 

Fig. 3: Steady-state availability A(θ) versus θ for PDS 

 

Time A(t) 

When θ = 1 When θ = 1.5 When θ = 2 

0.1 1.1 1.1 1.1 

0.7 0.3013 0.3013 0.3013 

1.1 0.1354 0.1354 0.1354 

1.7 0.4022 0.1154 0.0408 

2.1 0.2800 0.4128 0.0184 

2.7 0.3198 0.2586 0.4158 

3.1 0.3362 0.1411 0.2996 

3.7 0.3296 0.2513 0.1221 

4.1 0.3351 0.3194 0.0606 

Table 4: Sensitivity Analysis for PDS 

 

 

Fig. 4: Sensitivity analysis for PDS 
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MAINTENANCE COST ANALYSIS 

Generally, conducting inspections more frequently raises inspection costs, while a prolonged interval 

between inspections results in higher penalties when the system fails. Although the system experiences similar 

lifetime and service time distributions, varying inspection periods can cause fluctuations in availability at different 

stages. Therefore, it is essential to select an appropriate inspection interval that enhances system availability while 

simultaneously lowering maintenance costs. This is clearly demonstrated in Figure 5, which shows that as the value 

of θ increases, the average long-run cost rate initially decreases in the time range [1, 1.5] before subsequently rising. 

Consequently, the analysis indicates that the minimum average long-run cost rate of 5.3782occurs at θ* = 0.5, which 

is identified as the optimal inspection interval. 

θ W(θ) 

M/ E2/1 queue M/M/1 queue 

0.2 8.2424 9.3570 

0.4 5.4816 5.6322 

0.5 5.3782 5.4836 

0.9 5.8660 6.0520 

1.1 6.2008 6.4295 

1.6 6.9369 7.2183 

3.1 8.1853 8.4420 

4.1 8.5893 8.8100 

5.1 8.8474 9.0386 

6.1 9.0259 9.1936 

7.1 9.1565 9.3056 

8.1 9.2562 9.3903 

                                       Table 5: Maintenance Cost vs. Time 

 

 

Fig. 5: Average long run cost rate for PDS 

 

COMPARISON BETWEEN M/E2/1 AND M/M/1 QUEUE MODELS IN A PDS SYSTEM 

1. Analysis shows that the M/M/1 model demonstrates significantly better performance than the M/E2/1 model. 
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2. As both M/E2/1 and M/M/1 queue models are assumed to have identical failure rates, their reliability curves 

align, as illustrated in Figure 1. 

3. For the M/E2/1 model, the average waiting time to repair each failed component—whether from active or 

passive failures in the PDS—is considerably longer than in the M/M/1 model. This is supported by the fact 

that the long-run availability in the M/M/1 model is notably higher than in the M/E2/1 model for the PDS 

system, as depicted in Figure 3. 

 

Queuing Model 

A(θ) 

θ = 1.1 θ = 1.6 θ = 2.1 

M/E2/1 0.3097 0.2455 0.2004 

M/M/1 0.36860 0.2812 0.22349 

Table 6 : Steady state system availability with respect to M/E2/1 and M/M/1 queuing models 

Table 6 shows that the M/M/1 queuing model achieved a notable improvement in availability over the 

M/E2/1 model, as illustrated in Figure 3. From Fig.5, it is evident that the minimum long-run cost rate for the M/M/1 

model is slightly higher than that of the M/E2/1 model, which may be an acceptable trade-off for a more reliable PDS 

system. Nevertheless, the optimal inspection interval is the same for both queuing models, at 0.4. 

Queuing Model W(θ) 

M/E2/1 queue 5.3781 

M/M/1 queue 5.4835 

Table7: Minimum long run average cost for M/E2/1 queue and M/M/1 queuing model 

 

CONCLUSION 

 The parameters used to assess reliability and its characteristics are outlined in Table 8. Fig.1 illustrates 

that system reliability declines as time, t, increases. In Fig. 2, the relationship between instantaneous availability and 

time for a PDS following the M/E2/1 queuing model is depicted. Since active and passive failure events occurring 

initially are only addressed during the first inspection, they are repaired afterward. As a result, A(t) initially rises in 

the interval [1.1,1.6] as t increases, followed by a decrease between [1.6, 2.1], and then gradually stabilizes at a 

steady value of 0.3097. 

We also aim to evaluate the sensitivity of A(t) concerning the parameter θ. Fig. 4 shows that the station and 

feeder architecture at the power grid's utilization end in the Power Distribution System is more sensitive when the 

inspection interval θ is set to 2.1. This sensitivity is demonstrated across inspection intervals of θ = 1.1, 1.6, and 2.1. 

Notably, as θ increases, the system's availability declines, raising the likelihood of a failure event; thus, a higher θ 

results in lower availability. The data in Table 6 and Fig. 4 support this finding. 

Additionally, it can be noted that when θ equals 1, the long-run availability is 0.3097, aligning with the point 

availability. 

Parameters Values 

CI 1 

CME21= CME22 5 

θ 1 

Cd 10 

Table 8: Parameter values for reliability, availability of PDS 
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