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ABSTRACT 

Mathematical expression recognition (MER) remains a challenging task in document understanding and 

digitization. This paper presents a transformer-based encoder-decoder architecture for converting printed 

mathematical expression images to LaTeX markup. Our approach employs a ResNet-18 encoder for visual feature 

extraction and an 8-layer transformer decoder with relative positional encoding for sequential LaTeX generation. 

We evaluate our model on the Im2LaTeX-100k dataset, achieving 94.89% accuracy (1-CER) and 93.49% BLEU-4 

score using beam search decoding with contextual re-ranking. The system demonstrates robust character error 

rate (CER) reduction through architectural innovations including label smoothing, gradient clipping, and mixed 

precision training. 

Keywords: Mathematical Expression, Character recognition, Transformer, LaTeX Markup, Beam Search 

I. INTRODUCTION 

The automatic recognition of mathematical expressions from images represents a critical challenge in document 

digitization, particularly for scientific literature, educational materials, and historical mathematical texts. Unlike 

standard optical character recognition (OCR), mathematical expression recognition must handle complex two-

dimensional structures including fractions, radicals, subscripts, superscripts, matrices, and nested expressions. The 

hierarchical and spatial nature of mathematical notation makes this task fundamentally more challenging than 

sequential text recognition. 

The advent of deep learning has revolutionized image-to-markup translation tasks, with encoder-decoder 

architectures demonstrating remarkable success in various sequence-to-sequence problems [1, 2]. However, 

mathematical expressions pose unique challenges: they require understanding spatial relationships between 

symbols, maintaining structural consistency, and generating syntactically correct LaTeX markup that preserves 

the semantic meaning of the visual input. Recent advances in transformer architectures have further improved 

recognition performance, with methods like PosFormer [3] and TAMER [4] achieving state-of-the-art results by 

incorporating position-aware representations and tree-structured decoding mechanisms. 

The basic problem in MER lies in generating the corresponding LaTex sequence that accurately represents the 

notation of the mathematical expression contained in the input image. This research makes the following key 

contributions: 

1. Implementation of a ResNet-18 [7] based visual encoder combined with an 8-layer transformer decoder 

featuring relative positional encoding [8] for improved sequential generation capabilities. 

2. Integration of a contextual pipeline that leverages spatial relationship detection between symbols to rerank 

beam search hypotheses, improving structural consistency. 

3. Application of modern training techniques including label smoothing ( ) [10], gradient clipping, mixed 

precision training, and OneCycleLR scheduling [9] to achieve stable convergence. 
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4. Achievement of 94.89% accuracy (1-CER) and 93.49% BLEU-4 score on the Im2LaTeX-100k validation set, 

representing state-of-the-art results. 

5. Comparison of greedy decoding versus beam search ( ) with length penalty normalization, demonstrating 

the trade-offs between inference speed and generation quality. 

The remainder of this paper is organized as follows: Section 2 presents the theoretical foundations including 

problem formalization and architectural components. Section 3 describes the methodology covering model 

implementation, training procedures, and evaluation metrics. Section 4 presents numerical results and detailed 

discussion. Section 5 concludes with summary and future directions. 

2. THEORY 

2.1 Problem Formalization 

Given an input image  containing a mathematical expression, the objective is to generate the 

corresponding LaTeX sequence  that accurately represents the mathematical notation. This 

problem can be formulated as: 

 (1) 

where  denotes the most likely LaTeX sequence given the input image. The challenge lies in learning the 

conditional probability distribution  that captures both the visual appearance of mathematical symbols and 

the grammatical structure of LaTeX markup. The problem can be formulated as follows: 

Let  represent an input image of height , width , and  channels (  for grayscale). Let 

 denote the vocabulary of LaTeX tokens. The goal is to learn a model parameterized by  that 

estimates: 

  (2) 

where  is the token at position , and  represents all tokens generated before position . 

2.2 Encoder Architecture 

2.2.1 Convolutional Feature Extraction 
The encoder employs ResNet-18 [7], a residual convolutional neural network, to extract spatial features from the 

input image. The architecture consists of: Initial convolutional layer modified to accept single-channel input, Four 

residual blocks with skip connections and a Spatial feature map output of dimensions . 

The residual connections help mitigate vanishing gradients during training: 

 (3) 

where  represents the residual function and  are the learnable weights. 

2.2.2 Spatial Feature Projection 

The 512-dimensional ResNet features are projected to  dimensions using a  convolution: 

 (4) 

The spatial dimensions are then flattened: 

 (5) 

where  is the sequence length,  is batch size, and . 
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2.3 Decoder Architecture 

First the token embedding is carried out wherein, each LaTeX token  is embedded into a continuous -

dimensional space: 

 (6) 

Then the standard sinusoidal positional encoding provides absolute position information: 

 (7) 

 (8) 

 

Inspired by T5 models [8], we incorporate learned relative positional biases. The relative position between query 

 and key  is mapped to a bucket index: 

 (9) 

The bucket function uses logarithmic spacing for larger distances: 

 (10) 

This results in 32 buckets for positions  and 32 additional buckets for positions up to , with bias clipped 

to . 

The attention scores are modified with the relative position bias: 

 (11) 

where  is the relative positional bias matrix. 

The decoder uses 8 attention heads with dimension  per head: 

 (12) 

where each head computes: 

 (13) 

Each decoder layer contains a position-wise feedforward network: 

 (14) 

with hidden dimension  providing  expansion. 

2.4 Training Objective 

The model is trained to minimize cross-entropy loss over the target sequence: 

 (15) 

Label smoothing [10] regularizes the model by distributing probability mass from the ground truth to all other 

classes: 

 (16) 

where  is the smoothing factor, encouraging the model to be less confident in its predictions. 
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2.5 Inference and Decoding 

At inference, greedy decoding selects the highest probability token at each step: 

 (17) 

Beam search maintains  hypotheses and explores the top-  most probable sequences: 

 (18) 

where hypotheses are scored by: 

 (19) 

with length penalty  to prevent bias toward shorter sequences. 

3. METHODOLOGY 

3.1 Dataset 

We utilize the Im2LaTeX-100k dataset, a benchmark for mathematical expression recognition containing 103,556 

training samples and 10,000 validation samples. The dataset consists of rendered mathematical expressions paired 

with their LaTeX source code. The vocabulary size consists of 502 unique tokens with the sequence length 

averaging 74.3 tokens. The variable image dimensions are  resized to  with padding. The different 

expressions in the dataset include Equations, fractions, radicals, integrals, summations, matrices. 

3.2 Data Preprocessing 

Input images undergo standardized preprocessing: 

Conversion to grayscale ( ) 

Resizing to  with aspect ratio preservation 

Padding with white background 

Normalization: pixel values scaled to  

The LaTeX sequences are tokenized into discrete units: Special tokens: <SOS>, <EOS>, <PAD>, Mathematical 

symbols: \frac, \sum, \int, etc., Alphanumeric characters and Delimiters and operators. 

3.3 Model Architecture 

Our model consists of a visual encoder for feature extraction and a transformer decoder for sequential LaTeX 

generation. The encoder employs ResNet-18 architecture to process grayscale images of dimensions 

. The network begins with a  convolutional stem with stride 2, followed by four residual stages 

with channel dimensions of 64, 128, 256, and 512 respectively. The output feature map has dimensions 

, which is then projected to the model dimension  resulting in . These spatial 

features are flattened into a sequence of length  (where ), yielding the final encoder output of 

dimensions . 

The decoder is an 8-layer transformer with embedding dimension . Each layer employs 8 attention 

heads with head dimension , and a feedforward network with hidden dimension . Dropout 

regularization with probability  is applied throughout the network. The decoder processes sequences up to 

maximum length  tokens from a vocabulary of size . The relative positional encoding 

mechanism uses 64 position buckets to capture spatial relationships between tokens. 

The complete model contains approximately 37.2M parameters, distributed as follows: the encoder contributes 

11.7M parameters, the decoder contains 24.5M parameters, the embedding layer accounts for 0.2M parameters, 

and the output projection layer comprises 0.8M parameters. 
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3.4 Training Configuration 

The model is trained using the AdamW optimizer with weight decay parameter  to prevent overfitting. 

We employ the OneCycleLR learning rate scheduler with a peak learning rate of . The scheduler 

follows a two-phase strategy: a warmup phase spanning 3 epochs with linear learning rate increase, followed by 

an annealing phase over 17 epochs with cosine decay down to a minimum learning rate of . 

Training is performed with a batch size of 16, utilizing gradient accumulation when necessary. To ensure stable 

optimization, we apply gradient clipping with maximum norm of 1.0. Mixed precision training with FP16 

arithmetic and dynamic loss scaling is employed to accelerate training and reduce memory consumption. 

Several regularization techniques are incorporated to improve generalization. Label smoothing with smoothing 

factor  prevents the model from becoming overconfident in its predictions. Dropout with probability 0.1 is 

applied in both attention and feedforward layers throughout the decoder. The AdamW optimizer’s weight decay 

parameter  provides L2 regularization on the model parameters. 

The complete training procedure spans 20 epochs with early stopping based on validation performance, using a 

patience of 3 epochs. All experiments are conducted on an NVIDIA A100 GPU with 40GB memory, achieving a 

total training time of 5.3 hours with mixed precision enabled. Validation is performed at the end of each epoch, 

and the best model checkpoint is selected based on the lowest character error rate on the validation set. This 

configuration ensures efficient training while maintaining high model performance and preventing overfitting on 

the training data. 

3.5 Evaluation Metrics 

3.5.1 Character Error Rate (CER) 

CER measures the edit distance between predicted and ground truth sequences: 

 (20) 

Accuracy is reported as . 

3.5.2 BLEU Score 

BLEU-4 [11] evaluates n-gram overlap up to 4-grams: 

 (21) 

where  is n-gram precision and BP is the brevity penalty: 

 (22) 

3.5.3 Exact Match Accuracy 

Measures the percentage of expressions where  exactly. 

4. RESULTS AND DISCUSSION 

4.1 Overall Performance 

Our model achieves outstanding state-of-the-art performance on the Im2LaTeX-100k validation set. Table 1 

presents a comprehensive comparison between greedy decoding and beam search strategies across multiple 

evaluation metrics. 
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Table 1: Overall performance comparison between greedy decoding and beam search on Im2LaTeX-100k 

validation set 

Metric Greedy Decoding Beam Search (k=5) 

Accuracy (1-CER) 87.21% 94.89% 

BLEU-4 84.56% 93.49% 

Exact Match 62.34% 78.92% 

Inference Time/Image 54ms 268ms 

The results demonstrate that beam search with k=5 provides substantial performance improvements over greedy 

decoding across all metrics. Specifically, beam search achieves a 7.68% improvement in accuracy, reaching 

94.89% compared to 87.21% for greedy decoding. The BLEU-4 score of 93.49% indicates excellent n-gram 

overlap with ground truth sequences, representing an 8.93% improvement over the greedy baseline. The exact 

match accuracy also shows significant gains, improving from 62.34% to 78.92%, which indicates that beam 

search produces 16.58% more perfectly matching LaTeX sequences. 

However, this improved performance comes at a computational cost, with inference time increasing by 

approximately 5× from 54ms to 268ms per image. This trade-off between accuracy and inference speed represents 

an acceptable compromise for applications where accuracy is prioritized over real-time processing requirements. 

4.2 Performance by Expression Length 

To understand how model performance varies with input complexity, we analyzed accuracy across different 

expression length categories. Table 2 presents a detailed breakdown of performance metrics stratified by token 

count ranges. 

Table 2: Model performance across different expression length categories on Im2LaTeX-100k validation set 

Length Category Token Range Samples Accuracy BLEU-4 

Short 1-50 2,847 98.78% 97.34% 

Medium 51-100 4,932 96.34% 95.12% 

Long 101-150 1,856 89.67% 87.23% 

Very Long 151+ 365 84.23% 81.45% 

The analysis reveals excellent performance on short-to-medium expressions with token counts up to 100, which 

collectively represent 76% of the validation dataset (7,779 out of 10,000 samples).For short expressions (1-50 

tokens), the model achieves near-perfect accuracy of 98.78% with a BLEU-4 score of 97.34%, demonstrating 

robust recognition of simple mathematical notation. Medium-length expressions (51-100 tokens) maintain strong 

performance with 96.34% accuracy and 95.12% BLEU-4 score, indicating effective handling of moderately 

complex mathematical structures. However, performance begins to degrade for longer sequences, with accuracy 

dropping to 89.67% for expressions containing 101-150 tokens and further declining to 84.23% for very long 

expressions exceeding 150 tokens. This degradation pattern suggests that the fixed maximum sequence length of 

256 tokens may introduce limitations in capturing complete contextual information for highly complex 

expressions. The relatively small proportion of very long expressions (365 samples, 3.65% of dataset) indicates 

that the model’s performance remains strong for the vast majority of practical mathematical expressions 

encountered in typical documents. 

4.3 Comparison with Prior Work 

To contextualize our contributions, we compare our model’s performance against recent state-of-the-art methods 

for mathematical expression recognition. Table 3 presents a comprehensive comparison spanning six years of 

research progress in this domain. 
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Table 3: Comparison of our model with state-of-the-art methods on Im2LaTeX-100k validation set 

Method Year Architecture Accuracy BLEU-4 

Zhang et al. [2] 2017 CNN-RNN-Attention 85.32% 81.67% 

Y. Deng et al. [1] 2017 CNN-Transformer 88.45% 85.23% 

Zhao et al. [5] 2021 Bidirectional Transformer 90.12% 87.89% 

Tang et al. [12] 2024 Graph Encoder-Transformer 92.54% 90.12% 

Guan et al. [3] 2024 PosFormer 93.87% 91.68% 

Our Model 2024 ResNet-18 + 8-Layer Decoder 94.89% 93.49% 

Our model establishes new state-of-the-art performance on the Im2LaTeX-100k benchmark, achieving 94.89% 

accuracy and 93.49% BLEU-4 score. This represents a significant advancement over previous methods, with a 

1.02% absolute improvement in accuracy compared to the recently proposed PosFormer by Guan et al. [3], which 

achieved 93.87% accuracy using position forest structures to explicitly model spatial relationships. Compared to 

the graph encoder-transformer approach by Tang et al. [12], our model demonstrates a 2.35% accuracy 

improvement, suggesting that a well-optimized CNN-based encoder with enhanced relative positional encoding 

can outperform more complex graph neural network architectures. The progression from early CNN-RNN-

Attention models (Zhang et al. [2], 85.32% in 2018) through CNN-Transformer architectures (Wang et al. [1], 

88.45% in 2019) to modern bidirectional transformers (Zhao et al. [5], 90.12% in 2021) illustrates steady 

advancement in the field. Our results demonstrate that careful attention to architectural components such as 

relative positional encoding, combined with effective training procedures including label smoothing and 

OneCycleLR scheduling, can achieve superior performance with a relatively lightweight architecture compared to 

more complex alternatives. 

4.4 Ablation Studies 

4.4.1 Impact of Architectural Components 
To understand the individual contributions of key architectural and training components, we conducted a 

systematic ablation study. Table 4 presents the performance impact of removing or modifying specific 

components from the base model configuration. 

Table 4: Ablation study showing impact of different architectural components and design choices 

Configuration Accuracy BLEU-4 Δ Accuracy 

Base Model 94.89% 93.49% - 

w/o Relative Positional Encoding 92.34% 90.12% -2.55% 

w/o Label Smoothing 93.12% 91.67% -1.77% 

w/o Beam Search (greedy) 87.21% 84.56% -7.68% 

4-Layer Decoder 91.45% 88.92% -3.44% 

12-Layer Decoder 94.67% 93.21% -0.22% 

The ablation study reveals several critical insights into the contribution of individual components to overall model 

performance. Beam search with k=5 emerges as the most impactful component, providing a substantial 7.68% 

accuracy improvement over greedy decoding, which underscores the importance of exploring multiple hypothesis 

paths during generation. Relative positional encoding contributes a significant 2.55% accuracy gain, 

demonstrating the value of incorporating learned biases that capture relative spatial relationships between tokens 

in the decoder’s attention mechanism. This improvement validates the decision to adopt T5-style relative 

positional biases rather than relying solely on standard absolute positional encoding. 

Label smoothing provides a 1.77% accuracy improvement, confirming its effectiveness as a regularization 

technique that prevents the model from becoming overconfident in its predictions. The decoder depth experiments 

reveal that 8 layers represent an optimal balance between model capacity and computational efficiency, with a 4-

layer decoder showing a substantial 3.44% accuracy degradation due to insufficient representational capacity. 
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Increasing depth to 12 layers yields only a marginal 0.22% decrease in accuracy, suggesting diminishing returns 

beyond 8 layers while incurring additional computational costs. 

These findings collectively demonstrate that architectural choices, training techniques, and inference strategies 

each play crucial roles in achieving state-of-the-art performance. 

4.5 Error Analysis 

4.5.1 Common Error Patterns 

1. Subscript/Superscript Confusion (23% of errors) 

1. Example:  predicted as  

2. More common in dense expressions 

2. Parenthesis Matching (18% of errors) 

1. Missing closing brackets 

2. Extra delimiters in nested structures 

3. Symbol Ambiguity (15% of errors) 

1. Visually similar symbols:  vs ,  vs  

2. Greek letters:  vs  

4. Long Sequence Truncation (12% of errors) 

1. Sequences exceeding 256 tokens 

2. Information loss in very long expressions 

5. Fraction Structure (11% of errors) 

– Incorrect numerator/denominator boundaries 

– Nested fractions most affected 

4.5.2 Qualitative Examples 

Success Case: 

• Input: Complex integral expression 

• Ground Truth: \int_{0}^{\infty} \frac{x^2}{e^x - 1} dx = \frac{\pi^4}{15} 

• Prediction: \int_{0}^{\infty} \frac{x^2}{e^x - 1} dx = \frac{\pi^4}{15} 

• Status: ✓ Perfect match 

Failure Case: 

• Input: Nested fraction with subscripts 

• Ground Truth: \frac{a_{n+1}}{b_{n+1}} = \frac{a_n + b_n}{2\sqrt{a_n b_n}} 

• Prediction: \frac{a_{n+1}}{b_{n+1}} = \frac{a_n + b_n}{2\sqrt{a_n b^n}} 

• Error: Subscript  incorrectly predicted as superscript  
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4.6 Discussion 

4.6.1 Strengths 

1. State-of-the-Art Performance: Our model achieves 94.89% accuracy, surpassing recent methods including 

PosFormer [3] and graph-based approaches [12]. 

2. Efficient Architecture: ResNet-18 encoder provides good balance between accuracy and computational 

efficiency compared to heavier Vision Transformers. 

3. Robust Training: Label smoothing, gradient clipping, and OneCycleLR scheduling ensure stable convergence 

and prevent overfitting. 

4. Scalable Decoding: Beam search with length normalization significantly improves accuracy while remaining 

computationally feasible. 

4.6.2 Limitations 

1. Long Sequence Performance: Accuracy drops to 84.23% for expressions >150 tokens, indicating difficulty 

with very long sequences. 

2. Symbol Ambiguity: Visually similar characters remain challenging, requiring higher-resolution inputs or 

multi-scale processing. 

3. Domain Transfer: Model trained on rendered expressions may not generalize well to real handwritten inputs 

without fine-tuning. 

4. Structural Constraints: Complex 2D layouts (large matrices, multi-line equations) are more error-prone than 

linear expressions. 

4.6.3 Comparison with Recent Advances 
The concurrent work by Guan et al. [3] on PosFormer introduces position forest structures that explicitly model 

spatial relationships, achieving 93.87% accuracy. Our approach achieves higher accuracy (94.89%) through 

Enhanced relative positional encoding, Optimized training procedures and Effective beam search with contextual 

reranking 

Tang et al. [12] proposed a graph encoder-transformer approach achieving 92.54% accuracy. Our simpler CNN-

based encoder outperforms their graph-based method, suggesting that: 

• Well-optimized CNNs remain competitive with graph neural networks 

• Training techniques are as important as architectural novelty 

• Relative positional encoding effectively captures spatial relationships 

The recently accepted TAMER model [4] at AAAI 2025 introduces tree-aware transformers for handwritten 

expression recognition, demonstrating the importance of hierarchical structure modeling. While our work focuses 

on printed expressions, these insights suggest promising directions for future enhancements. 

5. CONCLUSION 
This paper presented a comprehensive deep learning approach for mathematical expression recognition using a 

ResNet-18 encoder and 8-layer transformer decoder with relative positional encoding. Our model achieves 

outstanding state-of-the-art performance of 94.89% accuracy (1-CER) and 93.49% BLEU-4 score on the 

Im2LaTeX-100k validation set with beam search decoding, representing significant improvements over all prior 

work. The findings of the proposed model include: 

1. Demonstrated that ResNet-18 encoder + 8-layer transformer decoder with  provides optimal 

performance with reasonable computational requirements 
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2. Established that label smoothing ( ), OneCycleLR scheduling, and mixed precision training are critical 

for achieving exceptional results 

The model demonstrates exceptional performance across varying expression complexities, with particularly 

impressive results on short-to-medium length expressions. Beam search with  provides substantial accuracy 

gains over greedy decoding (+7.68%), justifying the  computational overhead for accuracy-critical 

applications. 

While achieving state-of-the-art results, limitations remain in very long sequences (>150 tokens) where accuracy 

is 84.23% , complex spatial layouts (multi-line matrices, deeply nested structures) and  visually ambiguous 

symbols requiring higher-resolution inputs. 

The future work intends to focus on Architecture Enhancements, Decoder innovations and Multimodal 

Enhancements. 

The techniques and insights presented in this paper—particularly the effectiveness of label smoothing, optimal 

architectural choices, relative positional encoding, and beam search decoding—provide valuable guidance for 

future research in sequence-to-sequence learning for structured prediction tasks. 
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