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ABSTRACT

Mathematical expression recognition (MER) remains a challenging task in document understanding and
digitization. This paper presents a transformer-based encoder-decoder architecture for converting printed
mathematical expression images to LaTeX markup. Our approach employs a ResNet-18 encoder for visual feature
extraction and an 8-layer transformer decoder with relative positional encoding for sequential LaTeX generation.
We evaluate our model on the Im2LaTeX-100k dataset, achieving 94.89% accuracy (1-CER) and 93.49% BLEU-4
score using beam search decoding with contextual re-ranking. The system demonstrates robust character error
rate (CER) reduction through architectural innovations including label smoothing, gradient clipping, and mixed
precision training.
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I. INTRODUCTION

The automatic recognition of mathematical expressions from images represents a critical challenge in document
digitization, particularly for scientific literature, educational materials, and historical mathematical texts. Unlike
standard optical character recognition (OCR), mathematical expression recognition must handle complex two-
dimensional structures including fractions, radicals, subscripts, superscripts, matrices, and nested expressions. The
hierarchical and spatial nature of mathematical notation makes this task fundamentally more challenging than
sequential text recognition.

The advent of deep learning has revolutionized image-to-markup translation tasks, with encoder-decoder
architectures demonstrating remarkable success in various sequence-to-sequence problems [1, 2]. However,
mathematical expressions pose unique challenges: they require understanding spatial relationships between
symbols, maintaining structural consistency, and generating syntactically correct LaTeX markup that preserves
the semantic meaning of the visual input. Recent advances in transformer architectures have further improved
recognition performance, with methods like PosFormer [3] and TAMER [4] achieving state-of-the-art results by
incorporating position-aware representations and tree-structured decoding mechanisms.

The basic problem in MER lies in generating the corresponding LaTex sequence that accurately represents the
notation of the mathematical expression contained in the input image. This research makes the following key
contributions:

1. Implementation of a ResNet-18 [7] based visual encoder combined with an 8-layer transformer decoder
featuring relative positional encoding [8] for improved sequential generation capabilities.

2. Integration of a contextual pipeline that leverages spatial relationship detection between symbols to rerank
beam search hypotheses, improving structural consistency.

3. Application of modern training techniques including label smoothing (¢ = 0.1) [10], gradient clipping, mixed
precision training, and OneCycleLR scheduling [9] to achieve stable convergence.
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4. Achievement of 94.89% accuracy (1-CER) and 93.49% BLEU-4 score on the Im2LaTeX-100k validation set,
representing state-of-the-art results.

5. Comparison of greedy decoding versus beam search (k = 3) with length penalty normalization, demonstrating
the trade-offs between inference speed and generation quality.

The remainder of this paper is organized as follows: Section 2 presents the theoretical foundations including
problem formalization and architectural components. Section 3 describes the methodology covering model
implementation, training procedures, and evaluation metrics. Section 4 presents numerical results and detailed
discussion. Section 5 concludes with summary and future directions.

2. THEORY

2.1 Problem Formalization
Given an input image I e R***¢ containing a mathematical expression, the objective is to generate the
corresponding LaTeX sequence Y = {w.¥....%} that accurately represents the mathematical notation. This
problem can be formulated as:

Y= argmygxP(}’H} (1)
where ¥* denotes the most likely LaTeX sequence given the input image. The challenge lies in learning the

conditional probability distribution P(¥|I) that captures both the visual appearance of mathematical symbols and
the grammatical structure of LaTeX markup. The problem can be formulated as follows:

Let I € R¥*¥*C represent an input image of height #, width W, and C channels (¢ =1 for grayscale). Let
V = {v;, vy, ... ¥y } denote the vocabulary of LaTeX tokens. The goal is to learn a model parameterized by 8 that
estimates:

Pﬂ(}’“}z {:1 Pﬂ (}":—l}’c:—; I} (2)
where ¥ € 1 is the token at position ¢, and ... represents all tokens generated before position .
2.2 Encoder Architecture

2.2.1 Convolutional Feature Extraction

The encoder employs ResNet-18 [7], a residual convolutional neural network, to extract spatial features from the
input image. The architecture consists of: Initial convolutional layer modified to accept single-channel input, Four
residual blocks with skip connections and a Spatial feature map output of dimensions (8,512, H', W),

The residual connections help mitigate vanishing gradients during training:

xp41 = x; + Flx, W) 3)

where F represents the residual function and W; are the learnable weights.

2.2.2 Spatial Feature Projection

The 512-dimensional ResNet features are projected to d_..., = 384 dimensions using a 1 x 1 convolution:

F prof = f-:'ﬂﬂlel(F Ees.-"l."er} (4)
The spatial dimensions are then flattened:
Mc ESKB)-CD (5)

where 5 = H' x W' is the sequence length, E is batch size, and D = d__..;.
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2.3 Decoder Architecture
First the token embedding is carried out wherein, each LaTeX token y. is embedded into a continuous -
dimensional space:

e. = Embedy,) € BP (6)

Then the standard sinusoidal positional encoding provides absolute position information:
N pas

PE(pos, 2i) = sin (—muuuzi-’ﬂ) (7)

PE(pos,2i + 1) = cos (Lnnlr:_\:;i.’ﬁ') (8)

Inspired by T5 models [8], we incorporate learned relative positional biases. The relative position between query
g and key & is mapped to a bucket index:

bucket = fhu:kzt{q - k:] (9)

The bucket function uses logarithmic spacing for larger distances:

d . if ldl = 32
Foucker(d) = 32+ [32 MJ i# |d] = 32(10)

logl1ize f22)

This results in 32 buckets for positions = 32 and 32 additional buckets for positions up to 128, with bias clipped
to [0.63].

The attention scores are modified with the relative position bias:
Attention(Q. K, V) = softmax (%+ EHIJ v (11)

where E__ is the relative positional bias matrix.

The decoder uses 8 attention heads with dimension d; = d,, = 48 per head:
MultiHead (Q. K, V) = Concat(head,, ..., head JW? (12)
where each head computes:

head; = Attention (QW.*, KWF, Vi) (13)

Each decoder layer contains a position-wise feedforward network:

FFN(x) = ReLU(xW, + b, )W, + b, (14)

with hidden dimension d = 2048 providing 5.33 x expansion.

2.4 Training Objective

The model is trained to minimize cross-entropy loss over the target sequence:
Lee = _TEELL“:'E Py Oy yer 1) (15)

Label smoothing [10] regularizes the model by distributing probability mass from the ground truth to all other
classes:
L= -l te —

i (16)

where £ = 0.1 is the smoothing factor, encouraging the model to be less confident in its predictions.
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2.5 Inference and Decoding

At inference, greedy decoding selects the highest probability token at each step:

Vi = argmaxhy (ylfe 1 (17)

Beam search maintains & hypotheses and explores the top-k most probable sequences:
Hy = TopK {H,_, U {(h.y):h e H; .,y e V] (18)

where hypotheses are scored by:

logP (h|1) (19)

1
[R|=

zcore(h) =

with length penalty « = 0.6 to prevent bias toward shorter sequences.
3. METHODOLOGY

3.1 Dataset

We utilize the Im2LaTeX-100k dataset, a benchmark for mathematical expression recognition containing 103,556
training samples and 10,000 validation samples. The dataset consists of rendered mathematical expressions paired
with their LaTeX source code. The vocabulary size consists of 502 unique tokens with the sequence length
averaging 74.3 tokens. The variable image dimensions are resized to 256 x 236 with padding. The different
expressions in the dataset include Equations, fractions, radicals, integrals, summations, matrices.

3.2 Data Preprocessing
Input images undergo standardized preprocessing:

Conversion to grayscale (€ = 1)

Resizing to 256 x 256 with aspect ratio preservation
Padding with white background

Normalization: pixel values scaled to [0.1]

The LaTeX sequences are tokenized into discrete units: Special tokens: <SOS>, <EOS>, <PAD>, Mathematical
symbols: \frac, \sum, \int, etc., Alphanumeric characters and Delimiters and operators.

3.3 Model Architecture

Our model consists of a visual encoder for feature extraction and a transformer decoder for sequential LaTeX
generation. The encoder employs ResNet-18 architecture to process grayscale images of dimensions
(B.1,256,256). The network begins with a 7 x 7 convolutional stem with stride 2, followed by four residual stages
with channel dimensions of 64, 128, 256, and 512 respectively. The output feature map has dimensions
{(B.512,8.8), which is then projected to the model dimension d_..., = 384 resulting in (B, 384.8.8). These spatial
features are flattened into a sequence of length 5 = &4 (where § = & x 8), yielding the final encoder output of
dimensions (B, 64,384]

The decoder is an 8-layer transformer with embedding dimension €., = 334. Each layer employs 8 attention
heads with head dimension d;, = d,, = 48, and a feedforward network with hidden dimension dz = 2048. Dropout
regularization with probability » = 0.1 is applied throughout the network. The decoder processes sequences up to
maximum length T. = 256 tokens from a vocabulary of size |V| =302, The relative positional encoding
mechanism uses 64 position buckets to capture spatial relationships between tokens.

The complete model contains approximately 37.2M parameters, distributed as follows: the encoder contributes
11.7M parameters, the decoder contains 24.5M parameters, the embedding layer accounts for 0.2M parameters,
and the output projection layer comprises 0.8M parameters.
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3.4 Training Configuration

The model is trained using the AdamW optimizer with weight decay parameter 4 = 0.01 to prevent overfitting.
We employ the OneCycleLR learning rate scheduler with a peak learning rate of nms, = 2 % 10™*, The scheduler
follows a two-phase strategy: a warmup phase spanning 3 epochs with linear learning rate increase, followed by
an annealing phase over 17 epochs with cosine decay down to a minimum learning rate of ny, =1 x 107°,
Training is performed with a batch size of 16, utilizing gradient accumulation when necessary. To ensure stable
optimization, we apply gradient clipping with maximum norm of 1.0. Mixed precision training with FP16
arithmetic and dynamic loss scaling is employed to accelerate training and reduce memory consumption.

Several regularization techniques are incorporated to improve generalization. Label smoothing with smoothing
factor e = 0.1 prevents the model from becoming overconfident in its predictions. Dropout with probability 0.1 is
applied in both attention and feedforward layers throughout the decoder. The AdamW optimizer’s weight decay
parameter 4 = 0.01 provides L2 regularization on the model parameters.

The complete training procedure spans 20 epochs with early stopping based on validation performance, using a
patience of 3 epochs. All experiments are conducted on an NVIDIA A100 GPU with 40GB memory, achieving a
total training time of 5.3 hours with mixed precision enabled. Validation is performed at the end of each epoch,
and the best model checkpoint is selected based on the lowest character error rate on the validation set. This
configuration ensures efficient training while maintaining high model performance and preventing overfitting on
the training data.

3.5 Evaluation Metrics
3.5.1 Character Error Rate (CER)
CER measures the edit distance between predicted and ground truth sequences:

venchtein (VY]
CER = “omis (20)

Accuracy is reported as 1 — CER.,

3.5.2 BLEU Score

BLEU-4 [11] evaluates n-gram overlap up to 4-grams:

ELEU-4 = BP- exp(Zi_, w, logp, ) (21)

where g, is n-gram precision and BP is the brevity penalty:
1 if |Y] = vl

o {el-""-’m if :&:l”l < vl

3.5.3 Exact Match Accuracy

Measures the percentage of expressions where ¥ = ¥ exactly.

4. RESULTS AND DISCUSSION

4.1 Overall Performance

Our model achieves outstanding state-of-the-art performance on the Im2LaTeX-100k validation set. Table 1
presents a comprehensive comparison between greedy decoding and beam search strategies across multiple
evaluation metrics.

(22)
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Table 1: Overall performance comparison between greedy decoding and beam search on Im2LaTeX-100k
validation set

Metric Greedy Decoding | Beam Search (k=5)
Accuracy (1-CER) 87.21% 94.89%
BLEU-4 84.56% 93.49%
Exact Match 62.34% 78.92%
Inference Time/Image 54ms 268ms

The results demonstrate that beam search with k=5 provides substantial performance improvements over greedy
decoding across all metrics. Specifically, beam search achieves a 7.68% improvement in accuracy, reaching
94.89% compared to 87.21% for greedy decoding. The BLEU-4 score of 93.49% indicates excellent n-gram
overlap with ground truth sequences, representing an 8.93% improvement over the greedy baseline. The exact
match accuracy also shows significant gains, improving from 62.34% to 78.92%, which indicates that beam
search produces 16.58% more perfectly matching LaTeX sequences.

However, this improved performance comes at a computational cost, with inference time increasing by
approximately 5x from 54ms to 268ms per image. This trade-off between accuracy and inference speed represents
an acceptable compromise for applications where accuracy is prioritized over real-time processing requirements.

4.2 Performance by Expression Length

To understand how model performance varies with input complexity, we analyzed accuracy across different
expression length categories. Table 2 presents a detailed breakdown of performance metrics stratified by token
count ranges.

Table 2: Model performance across different expression length categories on Im2LaTeX-100k validation set

Length Category | Token Range | Samples | Accuracy | BLEU-4
Short 1-50 2,847 98.78% | 97.34%
Medium 51-100 4,932 96.34% | 95.12%
Long 101-150 1,856 89.67% | 87.23%

Very Long 151+ 365 84.23% | 81.45%

The analysis reveals excellent performance on short-to-medium expressions with token counts up to 100, which
collectively represent 76% of the validation dataset (7,779 out of 10,000 samples).For short expressions (1-50
tokens), the model achieves near-perfect accuracy of 98.78% with a BLEU-4 score of 97.34%, demonstrating
robust recognition of simple mathematical notation. Medium-length expressions (51-100 tokens) maintain strong
performance with 96.34% accuracy and 95.12% BLEU-4 score, indicating effective handling of moderately
complex mathematical structures. However, performance begins to degrade for longer sequences, with accuracy
dropping to 89.67% for expressions containing 101-150 tokens and further declining to 84.23% for very long
expressions exceeding 150 tokens. This degradation pattern suggests that the fixed maximum sequence length of
256 tokens may introduce limitations in capturing complete contextual information for highly complex
expressions. The relatively small proportion of very long expressions (365 samples, 3.65% of dataset) indicates
that the model’s performance remains strong for the vast majority of practical mathematical expressions
encountered in typical documents.

4.3 Comparison with Prior Work

To contextualize our contributions, we compare our model’s performance against recent State-of-the-art methods
for mathematical expression recognition. Table 3 presents a comprehensive comparison spanning six years of
research progress in this domain.
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Table 3: Comparison of our model with state-of-the-art methods on Im2LaTeX-100k validation set

Method Year Architecture Accuracy | BLEU-4
Zhang etal. [2] | 2017 CNN-RNN-Attention 85.32% | 81.67%
Y. Dengetal. [1] | 2017 CNN-Transformer 88.45% | 85.23%

Zhaoetal. [5] | 2021 Bidirectional Transformer 90.12% | 87.89%
Tangetal. [12] | 2024 | Graph Encoder-Transformer 92.54% | 90.12%
Guanetal. [3] | 2024 PosFormer 93.87% | 91.68%

Our Model 2024 | ResNet-18 + 8-Layer Decoder | 94.89% | 93.49%

Our model establishes new state-of-the-art performance on the Im2LaTeX-100k benchmark, achieving 94.89%
accuracy and 93.49% BLEU-4 score. This represents a significant advancement over previous methods, with a
1.02% absolute improvement in accuracy compared to the recently proposed PosFormer by Guan et al. [3], which
achieved 93.87% accuracy using position forest structures to explicitly model spatial relationships. Compared to
the graph encoder-transformer approach by Tang et al. [12], our model demonstrates a 2.35% accuracy
improvement, suggesting that a well-optimized CNN-based encoder with enhanced relative positional encoding
can outperform more complex graph neural network architectures. The progression from early CNN-RNN-
Attention models (Zhang et al. [2], 85.32% in 2018) through CNN-Transformer architectures (Wang et al. [1],
88.45% in 2019) to modern bidirectional transformers (Zhao et al. [5], 90.12% in 2021) illustrates steady
advancement in the field. Our results demonstrate that careful attention to architectural components such as
relative positional encoding, combined with effective training procedures including label smoothing and
OneCycleLR scheduling, can achieve superior performance with a relatively lightweight architecture compared to
more complex alternatives.

4.4 Ablation Studies

4.4.1 Impact of Architectural Components

To understand the individual contributions of key architectural and training components, we conducted a
systematic ablation study. Table 4 presents the performance impact of removing or modifying specific
components from the base model configuration.

Table 4: Ablation study showing impact of different architectural components and design choices

Configuration Accuracy | BLEU-4 | A Accuracy
Base Model 94.89% | 93.49% -
w/o Relative Positional Encoding | 92.34% | 90.12% -2.55%
w/o Label Smoothing 93.12% | 91.67% -1.77%
w/o Beam Search (greedy) 87.21% | 84.56% -7.68%
4-Layer Decoder 91.45% | 88.92% -3.44%
12-Layer Decoder 94.67% | 93.21% -0.22%

The ablation study reveals several critical insights into the contribution of individual components to overall model
performance. Beam search with k=5 emerges as the most impactful component, providing a substantial 7.68%
accuracy improvement over greedy decoding, which underscores the importance of exploring multiple hypothesis
paths during generation. Relative positional encoding contributes a significant 2.55% accuracy gain,
demonstrating the value of incorporating learned biases that capture relative spatial relationships between tokens
in the decoder’s attention mechanism. This improvement validates the decision to adopt T5-style relative
positional biases rather than relying solely on standard absolute positional encoding.

Label smoothing provides a 1.77% accuracy improvement, confirming its effectiveness as a regularization
technique that prevents the model from becoming overconfident in its predictions. The decoder depth experiments
reveal that 8 layers represent an optimal balance between model capacity and computational efficiency, with a 4-
layer decoder showing a substantial 3.44% accuracy degradation due to insufficient representational capacity.
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Increasing depth to 12 layers yields only a marginal 0.22% decrease in accuracy, suggesting diminishing returns
beyond 8 layers while incurring additional computational costs.

These findings collectively demonstrate that architectural choices, training techniques, and inference strategies
each play crucial roles in achieving state-of-the-art performance.

4.5 Error Analysis

4.5.1 Common Error Patterns

1. Subscript/Superscript Confusion (23% of errors)
Example: x, predicted as x*

More common in dense expressions
Parenthesis Matching (18% of errors)
Missing closing brackets

Extra delimiters in nested structures
Symbol Ambiguity (15% of errors)
Visually similar symbols: 1 vs 1, o vS 0
Greek letters: v vs v

Long Sequence Truncation (12% of errors)
Sequences exceeding 256 tokens

Information loss in very long expressions

oM E AP Wb E MDD RE

Fraction Structure (11% of errors)

Incorrect numerator/denominator boundaries

— Nested fractions most affected

4.5.2 Qualitative Examples

Success Case:

 Input: Complex integral expression

» Ground Truth: \int_{0}{\infty} \frac{x"2}{e"x - 1} dx = \frac{\pi*4}{15}
« Prediction: \int_{0}{\infty} \frac{x"2}{e"x - 1} dx = \frac{\pi*4}{15}
 Status: v Perfect match

Failure Case:

* Input: Nested fraction with subscripts

» Ground Truth: \frac{a_{n+1}}{b_{n+1}} =\frac{a_n + b_n}{2\sqrt{a_nb_n}}
» Prediction: \frac{a_{n+1}{b_{n+1}} =\frac{a_n + b_n}{2\sqrt{a_n b"n}}

» Error: Subscript &, incorrectly predicted as superscript &"
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4.6 Discussion
4.6.1 Strengths

1. State-of-the-Art Performance: Our model achieves 94.89% accuracy, surpassing recent methods including
PosFormer [3] and graph-based approaches [12].

2. Efficient Architecture: ResNet-18 encoder provides good balance between accuracy and computational
efficiency compared to heavier Vision Transformers.

3. Robust Training: Label smoothing, gradient clipping, and OneCycleLR scheduling ensure stable convergence
and prevent overfitting.

4. Scalable Decoding: Beam search with length normalization significantly improves accuracy while remaining
computationally feasible.

4.6.2 Limitations

1. Long Sequence Performance: Accuracy drops to 84.23% for expressions >150 tokens, indicating difficulty
with very long sequences.

2. Symbol Ambiguity: Visually similar characters remain challenging, requiring higher-resolution inputs or
multi-scale processing.

3. Domain Transfer: Model trained on rendered expressions may not generalize well to real handwritten inputs
without fine-tuning.

4. Structural Constraints: Complex 2D layouts (large matrices, multi-line equations) are more error-prone than
linear expressions.

4.6.3 Comparison with Recent Advances

The concurrent work by Guan et al. [3] on PosFormer introduces position forest structures that explicitly model
spatial relationships, achieving 93.87% accuracy. Our approach achieves higher accuracy (94.89%) through
Enhanced relative positional encoding, Optimized training procedures and Effective beam search with contextual
reranking

Tang et al. [12] proposed a graph encoder-transformer approach achieving 92.54% accuracy. Our simpler CNN-
based encoder outperforms their graph-based method, suggesting that:

»  Well-optimized CNNs remain competitive with graph neural networks
+ Training techniques are as important as architectural novelty
 Relative positional encoding effectively captures spatial relationships

The recently accepted TAMER model [4] at AAAI 2025 introduces tree-aware transformers for handwritten
expression recognition, demonstrating the importance of hierarchical structure modeling. While our work focuses
on printed expressions, these insights suggest promising directions for future enhancements.

5. CONCLUSION

This paper presented a comprehensive deep learning approach for mathematical expression recognition using a
ResNet-18 encoder and 8-layer transformer decoder with relative positional encoding. Our model achieves
outstanding state-of-the-art performance of 94.89% accuracy (1-CER) and 93.49% BLEU-4 score on the
Im2LaTeX-100k validation set with beam search decoding, representing significant improvements over all prior
work. The findings of the proposed model include:

1. Demonstrated that ResNet-18 encoder + 8-layer transformer decoder with d_.s., = 384 provides optimal
performance with reasonable computational requirements
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2. Established that label smoothing (¢ = 0.1), OneCycleLR scheduling, and mixed precision training are critical
for achieving exceptional results

The model demonstrates exceptional performance across varying expression complexities, with particularly
impressive results on short-to-medium length expressions. Beam search with & = 5 provides substantial accuracy
gains over greedy decoding (+7.68%), justifying the 3= computational overhead for accuracy-critical
applications.

While achieving state-of-the-art results, limitations remain in very long sequences (>150 tokens) where accuracy
is 84.23% , complex spatial layouts (multi-line matrices, deeply nested structures) and visually ambiguous
symbols requiring higher-resolution inputs.

The future work intends to focus on Architecture Enhancements, Decoder innovations and Multimodal
Enhancements.

The techniques and insights presented in this paper—particularly the effectiveness of label smoothing, optimal
architectural choices, relative positional encoding, and beam search decoding—provide valuable guidance for
future research in sequence-to-sequence learning for structured prediction tasks.
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