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ABSTRACT 
Mental stress presents a pervasive challenge affecting individuals across all age demographics in contemporary 

society, with profound implications extending beyond psychological well-being to encompass chronic ailments 

such as depression, cancer, and cardiovascular diseases (CVD). Effective management and prevention of mental 

stress are critical for promoting overall health and mitigating associated risks. This paper addresses the pertinent 

issue of mental stress in modern society, emphasizing the importance of early prediction and intervention. 

Leveraging the Random Forest (RF) method enhanced by band-pass filtration on electrocardiogram (ECG) data, 

we propose a robust framework for stress level prediction. Achieving a high accuracy of 96.73% in stress 

categorization, our approach demonstrates significant advancements over existing methodologies. Crucially, 

validation with real-time datasets enhances the model's reliability and applicability in practical settings. 
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I. INTRODUCTION 
Stress, a common experience in contemporary society, arises when individuals perceive themselves unable to 
cope with demands placed upon them [1]. This condition not only affects mental well-being but also contributes 
to various chronic illnesses such as depression, cancer, and cardiovascular diseases (CVD) [2]. The American 
Physiological Association and American Institute of Stress reported that in 2014, a significant majority of 
individuals in the United States experienced physical and psychological symptoms due to stress [2]. Similarly, in 
the EU, a substantial proportion of employees felt their health was compromised by work-related stress, resulting 
in substantial healthcare costs and lost productivity [3] [4]. 

The autonomic nervous system (ANS) plays a pivotal role in the physiological response to stress, comprising 
sympathetic and parasympathetic branches that regulate bodily functions [5]. Stressful events often disturb the 
balance between these branches, leading to heightened sympathetic activity and reduced parasympathetic tone, 
notably impacting heart function as observed through electrocardiogram (ECG) signals [5]. Heart rate variability 
(HRV), derived from ECG R peaks, is a reliable metric for assessing stress due to its sensitivity to autonomic 
changes [6]. HRV analysis typically involves placing ECG electrodes on specific body locations to capture 
signals, followed by computation of HRV features over defined time windows [7] [8] [9]. 

Various physiological markers, including elevated heart rate and altered HRV patterns, have been proposed for 
stress detection, underscoring the diverse manifestations of stress responses among individuals [9] [10]. 
Integration of multiple features has been shown to enhance the accuracy of stress classification, reflecting 
individual variability in stress reactions [10]. Traditional classifiers like Linear Discriminant Analysis (LDA) and 
Support Vector Machine (SVM) have been commonly employed for stress detection using these features [12]. 

Convolutional Neural Networks (CNNs), originally developed for image processing, have shown promise in 
biosignal classification tasks including ECG analysis [13] [14]. CNNs have been successfully applied in various 
bioinformatics domains such as arrhythmia detection and biometric identification [17] [19], highlighting their 
potential for stress detection based on ECG data [14]. 

This paper introduces a novel application of the Random Forest (RF) method for real-time detection of mental 
stress using ECG signals. Unlike previous approaches, which primarily focus on offline analysis, our method aims 

mailto:vanisha.vaidya@gmail.com
mailto:suresh_asole@yahoo.com


ISSN: 2633-4828  Vol. 5 No.3, September, 2023  

 

International Journal of Applied Engineering & Technology 
 

 

Copyrights @ Roman Science Publications Ins.  Vol. 5 No.3, September, 2023 

 International Journal of Applied Engineering & Technology 

 

 982 

 

to provide instantaneous stress assessment from specific ECG segments. Real-time stress detection is crucial for 
scenarios requiring immediate intervention, such as acute stress situations. 

The primary objective of this study is to investigate the feasibility and efficacy of RF in identifying acute 
cognitive stress using real-time ECG datasets. We conducted a comparative analysis to evaluate the performance 
of RF against conventional ECG-based stress estimation methods. Our results demonstrate that RF outperforms 
traditional techniques in accurately predicting mental stress in real-time applications. By enhancing the practical 
implementation of ECG-based stress measurement, our approach offers expedited and reliable stress assessment 
outcomes. 

This research contributes to advancing the field of stress detection by introducing a robust method capable of real-
time monitoring, thereby facilitating timely interventions to mitigate the adverse effects of stress on individuals' 
health and well-being. 

II. LITERATURE REVIEW 
Stress, a prevalent condition in modern society, poses significant health risks affecting both mental and physical 
well-being. Understanding stress and its physiological manifestations through biosignal analysis has been a focal 
point in research aimed at early detection and management. 

Neural Regulation of Stress Responses 
Ulrich-Lai and Herman [1] emphasize the neural mechanisms underlying stress responses, highlighting the 
intricate interplay between the central nervous system and the hypothalamic-pituitary-adrenal (HPA) axis. They 
discuss how chronic stress can dysregulate these systems, leading to prolonged physiological alterations 
detrimental to health. 

Epidemiology of Stress 
The American Psychological Association [2] reports on the pervasive impact of stress in American society, 
documenting its profound effects on physical and psychological health. The report underscores the need for 
effective stress management strategies to mitigate its adverse consequences. 

Wearable Physiological Sensors 
The integration of wearable physiological sensors for stress monitoring is explored in the study by IEEE [3], 
focusing on the evaluation of integrated systems that use biological markers to monitor stress levels in real-time 
working environments. This approach offers insights into continuous stress assessment beyond clinical settings. 

Psychological Stress Detection Using Biosignals 
Giannakakis et al. [7] review various methods for psychological stress detection using biosignals, highlighting the 
efficacy of heart rate variability (HRV) and electrocardiogram (ECG) signals in assessing stress levels. They 
emphasize the importance of robust feature extraction techniques and machine learning algorithms in enhancing 
detection accuracy. 

Heart Rate Variability and Stress Assessment 
Billman et al. [5] delve into the methodological considerations and clinical applications of heart rate variability 
(HRV) as a biomarker for stress assessment. Their review underscores HRV's sensitivity to autonomic nervous 
system modulation, offering valuable insights into its role in quantifying stress responses. 

Machine Learning Approaches for Stress Detection 
Recent advancements in machine learning have revolutionized stress detection methodologies. McDuff et al. [9] 
demonstrate remote stress measurement via HRV, utilizing machine learning techniques to correlate physiological 
responses with stress levels. Their study highlights the feasibility of real-time stress monitoring using non-
invasive techniques. 
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Deep Learning in Stress Detection 
The application of deep learning, particularly convolutional neural networks (CNNs), in stress detection is 
explored by various researchers [13], [14], [20]. These studies showcase CNN's effectiveness in analyzing ECG 
signals for automatic stress classification, paving the way for accurate and efficient stress monitoring systems. 

Summary of Relevant Studies 
The literature reviewed underscores the multifaceted nature of stress assessment, integrating neurophysiological 
insights with advanced computational techniques. Table 2.1 summarizes key studies and their contributions to 
stress detection using biosignals. 

Table 2.1: Summary of Key Studies in Stress Detection Using Biosignals 
Study Key Findings and Contributions 

Ulrich-Lai and Herman [1] Neural regulation of stress responses and implications for 
chronic stress management. 

American Psychological 

Association [2] 

Epidemiological data on stress prevalence in American 
society and its impact on health. 

IEEE [3] Evaluation of wearable sensors for real-time stress monitoring 
in workplace environments. 

Giannakakis et al. [7] Review of biosignal-based techniques for psychological stress 
detection, emphasizing HRV and ECG analysis. 

Billman et al. [5] Methodological considerations and clinical applications of 
heart rate variability in stress assessment. 

McDuff et al. [9] Remote stress measurement using HRV and machine learning, 
enabling real-time stress monitoring. 

Deep Learning Studies 

[13], [14], [20] 

Application of CNNs in ECG-based stress classification, 
highlighting advancements in automated stress detection. 

In conclusion, the integration of advanced biosignal analysis techniques with machine learning and deep learning 
approaches holds promise for enhancing the accuracy and efficiency of stress detection systems. These studies 
collectively contribute to the evolving landscape of stress research, emphasizing interdisciplinary collaboration 
and technological innovation. 

III. System Architecture 
In this part, we will go over the recommended techniques. Figure 3.1 depicts the total system architecture 
diagram. 

 
Figure 3.1: System Architecture 
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DATASET DESCRIPTION 

Training Dataset: 
The proposed study utilizes the MIT-BIH Database for training, consisting of ECG recordings from 47 patients. 
The database includes 23 recordings randomly selected from a collection of 4000 24-hour mobile ECG recordings 
gathered at Boston's Beth Israel Hospital. These recordings encompassed approximately 60% inpatients and 40% 
outpatients. The ECG signals were digitized at 360 bits per second per channel with an 11-bit resolution, spanning 
a range of 10 mV. Each record underwent individual annotation by two or more cardiologists, resolving 
discrepancies to provide computer-readable reference annotations for approximately 110,000 heartbeats in total. 

Testing Dataset: 
For real-time stress analysis, we acquired ECG signal data from renowned cardiologists in the Mumbai, India 
region. The dataset comprises ECG signals from 11 patients specifically for stress classification and prediction in 
our research. Due to space constraints, detailed data from all 11 patients cannot be included in this paper. 
However, Figures 3.2 and 3.3 show data from two representative patients. 

 
Figure 3.2: Patient 1 ECG Signal 

 
Figure 3.3: Patient 2 ECG Signal 

Preprocessing and Feature Extractions 
Electrocardiography (ECG) provides a non-invasive method to assess cardiac health by examining the heart's 
electrical activity. However, ECG signals are susceptible to noise, which can significantly degrade classification 
accuracy. To mitigate this, we applied a band-pass filter with a sample rate of 360 Hz and a cutoff frequency of 
0.15 Hz to remove 90.89% of the noise. 
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Figure 3.4 illustrates R-peak values extracted from the ECG waveforms. Segmenting these data during both 
stressed and unstressed conditions facilitates a more robust analysis of ECG features. R-peak and S-peak values 
were derived from the ECG after applying a threshold. During stress, the heart exhibits irregular and rapid beats, 
narrowing the R-R interval and increasing the R-peak amplitude. Conversely, in non-stressful conditions, the 
heart typically beats steadily, resulting in a widened R-R interval and lower R-peak amplitude. The standard 
deviation (SD) of R-peak amplitudes during stress was 1.47 mV, whereas it was 4.25 mV during non-stressful 
conditions. 

 
Figure 3.4: Feature Extraction by Threshold Values 

Model Designing 
We evaluated various machine learning classification models for stress categorization and selected Random 
Forest based on key performance metrics such as accuracy, precision, recall, and F1-Score. 

Random Forest 
Random Forest employs a bagging approach to enhance prediction accuracy by aggregating multiple decision 
trees. Each tree is trained on a different subset of data samples, and during construction, tree characteristics are 
chosen randomly. Predictions from multiple trees are combined via majority voting. Fine-tuning parameters such 
as the number of trees, minimum node size, and the number of attributes used for node partitioning can further 
improve the accuracy of the Random Forest model. 

IV. Experimental Results 
After applying the random forest model for classification of stress on 11 patients real time dataset, we found the 
analysis of the patient’s records based on ECG signals of 30 sec ultrashort wavelength into the 3 classification 
stages as Normal (Stress Level 0), Moderate (Stress Level 1) and High (Stress Level 2). The results are discussed 
in table 4.1. 

Table 4.1: Real Time Data Stress Prediction 
  

BPM 

 

P(s) 

 

PR(s) 

 

QRS(s) 

Execution Time  

Prediction 

Patient1 90 0.111 0.188 0.04 0.17 Moderate 
Patient2 91 0.102 0.186 0.099 0.21 Moderate 
Patient3 86 0.115 0.185 0.089 0.19 Moderate 
Patient4 64 0.101 0.159 0.092 0.14 Moderate 
Patient5 48 0.116 0.18 0.09 0.28 High 
Patient6 64 0.094 0.198 0.093 0.15 Normal 
Patient7 86 0.081 0.152 0.067 0.21 Moderate 



ISSN: 2633-4828  Vol. 5 No.3, September, 2023  

 

International Journal of Applied Engineering & Technology 
 

 

Copyrights @ Roman Science Publications Ins.  Vol. 5 No.3, September, 2023 

 International Journal of Applied Engineering & Technology 

 

 986 

 

Patient8 106 0.072 0.151 -0.05 0.2 High 
Patient9 103 0.101 0.145 0.103 0.277 Moderate 
Patient10 68 0.094 0.157 0.084 0.207 Moderate 
Patient11 59 0.107 0.164 0.144 0.2477 High 

Out of 11 patient’s ECG prediction for stress, we found only 1 patient as normal,3 patients with high stress and 
rest 7 patients having moderate level of stress. The Random Forest model has produced 96.73% accuracy for the 
stress classification and prediction when tested on real time dataset which is higher comparative with other studies 
with real time classification of the stress using ECG Signals. 

Figure 4.1 show the stress prediction pie chart for real time dataset of 11 patients. We found that 64% patients are 
under moderate stress, 27% are under high stress and 9% are under normal stress. 

When we done the comparative analysis with our research work with most recent research work then we found 

 
Figure 4.1: Stress prediction pie chart for real time dataset 

that our model has performed better compared to all the recent research work. We are comparing on the basis of 
their model’s performance on ECG dataset for stress classification. Following table 4.2 summarizes the 
comparative analysis with most recent work. 

Table 4.2: Comparative Analysis of the proposed work 

Reference Accuracy Model Type of 

Signals 

Window 

Size 

Stress 

Classification 

[20] 90.19 CNN ECG 10 s 2 
[21] 89.8 CNN ECG 60 s 2 
[22] 87.39 CNN-RNN ECG 10 s 2 
[23] 83.9 CNN ECG and RSP 50 s 2 
[24] 82.7 CNN ECG 10 s 2 
[25] 92.8 CNN ECG 25 s 3 
[26] 86.5 CNN-BiLSTM ECG 10 s 3 
[27] 85.45 CNN ECG 30 s 3 
[28] 80.00 SVC ECG 60s 2 
[29] 98.5 KNN ECG 60s 2 
Proposed Work 96.73 Random Forest ECG 30s 3 
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Figure 4.2 Comparative Analysis 

V. CONCLUSION & FUTURE SCOPE 
In our study, we leveraged the Random Forest (RF) algorithm, identified as the top-performing model during our 
training phase with the MIT-BIH database, to classify stress levels in real-time ECG data sourced from a 
cardiologist in Mumbai. The RF model achieved an impressive accuracy of 96.73% in this real-world application. 

Upon testing the RF model with ECG signals from 11 patients, our findings revealed a breakdown of stress 
classifications as follows: one patient was categorized under normal stress levels, seven patients under moderate 
stress, and three patients under high stress. 

This study stands out as pioneering in its application of the Random Forest algorithm for stress classification, 
achieving high accuracy with an average prediction time of just 0.17 seconds. These results highlight the efficacy 
of our approach in early stress prediction using ECG signals, contributing significantly to the field's efforts in 
developing robust real-time stress monitoring systems. 
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