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ABSTRACT 
A strong dominating set D of a graph G= (V, E) is a strong split (nonsplit) dominating set if the induced sub-

graph <V-D> is disconnected (connected). The strong split (nonsplit) domination number  )()( GG snsss   of G 

is the minimum cardinality of a strong split (nonsplit) dominating set. In this work, we obtained some bounds 

on )()( GandG snsss  . 
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1 INTRODUCTION 
Let G= (V, E) be a graph and uvE, then u and v dominate each other. Further, u strongly dominates v and v 
weakly dominates u if deg (u) deg (v). A set DV is a strong dominating set of G. If every vertex in V-D is 

strongly dominated by at least one vertex in D. The strong domination number )(Gs  of G is the minimum 

cardinality of such a set. This concept was introduced by Sampath Kumar and Pushpa Latha [26]. Recently, Kulli 
and Janakiram introduced the concept of split domination and nonsplit domination, see, [18, 19]. Analogously, we 
define the following concept. 

A strong dominating set D of G is a strong split (nonsplit) dominating set if the induced sub-graph <V-D> is 
disconnected (connected). The strong split (nonsplit) domination number  )()( GG snsss   of G is the minimum 

cardinality of a strong split (nonsplit) dominating set. 

Example: For the graph G is given in Figure 1, {v2} is a minimum strong nonsplit dominating set and {v2, v4, v7} 
is a minimum strong split dominating set. 

so ( ) 1sns G  and  ( ) 3ss G   

 
Figure 1 
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Results on strong split domination number: 

Observation 2. For any cycle Cp with p4 vertices,   




3
p

Cpss . 

Observation 3. For any wheel Wp with p5 vertices,   3Wp ss . 

Observation 4. For any complete bipartite graph tr , with tr  and 2t , 

  rtrss  ,  

Theorem 5. For any graph G, 

    pGss
, 

where   is the independence number of a graph. 

Proof: Let M be a maximum independent set of vertices in G. Then M has at least two vertices and every in M is 
adjacent to some vertex in V-M. This implies that V-M is a strong split dominating set of G. Thus, 

  pGss MV)( . 

Corollary 6. For any graph G, 

   Gss
, 

where   is the vertex covering number of a graph G. 

We state without proof a straight forward result that characterizes strong dominating set of G that are strong split 
dominating sets. 

Theorem 7. A strong dominating set D of G is a split strong dominating set if and only if there exist two vertices 
x,yV-D  such that every x-y path contains a vertex of D. 

Theorem 8. For any graph G, 

(i)    GG sss    

(ii)    GG ssk  , 

where k(G) is connectivity of G. 

Proof: Follows by the definitions of )(Gs , )(Gss and k(G). 

Theorem 9. For any graph G with an end-vertex, 

   GG sss   . 

Furthermore, there exists a 
ss -set of G containing all vertices adjacent to end-vertices. 

Proof: Let v be an end-vertex of G. Then there exists a cut-vertex x adjacent to v. Let D be a s -set of G. Suppose 

x D, then D is a 
ss -set of G. Suppose xV-D, then vD and hence    xv D is a 

ss -set of G. Repeating 

this process for all such cut-vertices adjacent to end -vertices, we obtain a 
ss -set of G containing all cut-vertices 

adjacent to end –vertices. 
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Theorem 10. If diam (G) =2, then 

   GG  ss
, 

Where )(G is minimum degree of G. 

Proof: Let v be a vertex of minimum degree in G. Since diam (G)=2 there exists a vertex u not adjacent to v. 
Hence u must be adjacent to some vertex in N(v). Hence it follows that N(v) is a strong split dominating set of G.  
Thus    GG  ss . 

Results on strong nonsplit domination in graphs: 
We start with some elementary results, since their proofs are trivial, we omit the same. 

Theorem 11. 

   GG snss   . 

Theorem 12. For any graph G, 

      GGG snssss  ,min  

In [26], Sampathkumar and Pushpa Latha gave necessary and sufficient conditions for a minimal strong 
dominating set. 

Theorem 13 
[26]

. Let D be a minimal strong dominating set. Then, for each vD, one of the following holds: 

(i) No vertex in D strongly dominates v. 

(ii) There exists a vertex uV-D such that v is the only vertex in D which strongly dominates u. 

Theorem 14. A strong nonsplit dominating set D of G is minimal if and only if for each vertex vD one of the 
following conditions is satisfied. 

(i) No vertex in D strongly dominates v. 

(ii) There exists a vertex uV-D such that v is the only vertex in D which strongly dominates u. 

(iii) N(v) (V-D)= . 

Proof: Suppose D is minimal. On the contrary, if there exists a vertex vD such that v does not satisfy any of the 
given conditions, then by Theorem, D'=D-{v} is a strong dominating of set G and by (iii) <V-D'> is connected. 
This implies that D' is a strong split dominating set of G, a contradiction. 

Sufficiency is straight forward. 

Next we obtain a relation between sns (G) and sns (H), where H is any spanning sub-graph of G. We omit the 
proof. 

Theorem 15. For any spanning sub-graph H of G, 

)H()G( snssns   . 

Theorem 16. For any graph G, 

2
)12(

)(



qp

Gsns  
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Further the equality holds if G=K2. 

Proof: Let D be a sns -set of G. Since <V-D> is connected. 

1DVDVq  . 

Thus, 
2

)12(
)(




qp
Gsns  . 

further, the equality holds if G=K2. 

Theorem 17. For any graph G, 

1)()G(  Gpsns   

where ω (G) is the clique number of G. 

Proof: Let U be the set of vertices of G such that <U> is complete with U =ω  (G). 

Then for any uU, (V-U)  {u} is a strong nonsplit dominating set of G. 

Thus  uU)(V(G) sns =p-ω (G)+1. 

Now we list the exact values of )G(sns for some standard graphs: 

(i) For any complete graph Kp with p2 vertices, 

1)G( sns . 

(ii) For any complete bipartite graph Kr,t 

 








otherwise1

,2,2
,

tr

trtrif
trsns  

(iii) For any cycle Cp, 

  2 pC psns  

(iv) For any wheel Wp, 

  1psns W  

(v) For any path with p6 vertices, 

  2 pPpsns  

Recently, Kulli and Janakiram introduced the concept of block nonsplit domination as follows: 

A dominating set of D of a connected graph G= (V,E) is a block nonsplit dominating set if the induced sub-graph 
<V-D>  is a block in G. The block non-split domination number  Gbns  is the minimum cardinality of a block 

nonsplit dominating set of G [20]. In this, we extend the concept of strong non-spilt domination to block strong 
nonsplit domination as follows: 
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A strong dominating set D of a connected graph G=(V,E) is said to be a block strong nonsplit dominating set if 
the induced sub graph <V-D> is a block in G. The block strong nonsplit domination number ( )bsns G  of G is the 

minimum cardinality of a block strong nonsplit dominating set of G. 

All graphs considered here are assumed to be connected. 

 
Figure.2 

In figure 2 , G1, G2 have no block strong nonsplit dominating sets, whereas for  G3, {v1, v2, v3, v6, v7, v8} is a block 
strong nonsplit dominating set. 

Theorem 18. A graph G has a block strong nonsplit dominating set if and only if there exists a block in G 
containing only cut vertices of G. 

Proof : Let D be a block strong nonsplit dominating set G, then <V-D> is a block in G. Since D is a strong 
dominating set, each vertex in V-D is a cut-vertex of G. 

Converse is obvious. 

CONCLUSION 
In this paper, we define the notions of accurate split and non-split dominations in graphs. We got many bounds on 
accurate split and non-domination numbers. Exact values of these new parameters are obtained for some standard 
graphs. As a future work, the readers extend the results and study the applications of the parameters in a wider 
sense. 
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