#### STRONG SPLIT AND NON-SPLIT DOMINATION NUMBER OF GRAPHS

### Jyothi. M. J<sup>1</sup> and S. R. Ramachandra<sup>2</sup>

<sup>1,2</sup>Department of Mathematics, Maharani's Science College for Women (A), Mysore-05 Author(s) for Correspondence: jyothimj49@gmail.com and srrc16@gmail.com.

#### ABSTRACT

A strong dominating set D of a graph G = (V, E) is a strong split (nonsplit) dominating set if the induced subgraph  $\langle V - D \rangle$  is disconnected (connected). The strong split (nonsplit) domination number  $\gamma_{ss}(G)(\gamma_{sns}(G))$  of G is the minimum cardinality of a strong split (nonsplit) dominating set. In this work, we obtained some bounds on  $\gamma_{ss}(G)$  and  $\gamma_{sns}(G)$ .

Keywords: Split; Nonsplit; Number; Graph.

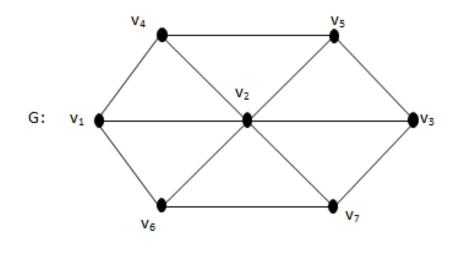
#### **1 INTRODUCTION**

Let G= (V, E) be a graph and  $uv \in E$ , then u and v dominate each other. Further, u strongly dominates v and v weakly dominates u if deg (u)  $\geq$  deg (v). A set D  $\subseteq$  V is a strong dominating set of G. If every vertex in V-D is strongly dominated by at least one vertex in D. The strong domination number  $\gamma_s(G)$  of G is the minimum cardinality of such a set. This concept was introduced by Sampath Kumar and Pushpa Latha [26]. Recently, Kulli and Janakiram introduced the concept of split domination and nonsplit domination, see, [18, 19]. Analogously, we define the following concept.

A strong dominating set D of G is a strong split (nonsplit) dominating set if the induced sub-graph  $\langle V-D \rangle$  is disconnected (connected). The strong split (nonsplit) domination number  $\gamma_{ss}(G)(\gamma_{sns}(G))$  of G is the minimum cardinality of a strong split (nonsplit) dominating set.

Example: For the graph G is given in **Figure 1**,  $\{v_2\}$  is a minimum strong nonsplit dominating set and  $\{v_2, v_4, v_7\}$  is a minimum strong split dominating set.

so  $\gamma_{sns}(G) = 1$  and  $\gamma_{ss}(G) = 3$ 





**Results on strong split domination number:** 

**Observation 2.** For any cycle  $C_p$  with  $p \ge 4$  vertices,  $\gamma_{ss}(C_p) = \left\lceil \frac{p}{3} \right\rceil$ .

**Observation 3.** For any wheel  $W_p$  with  $p \ge 5$  vertices,  $\gamma_{ss}(W_p) = 3$ .

**Observation 4.** For any complete bipartite graph  $K_{r,t}$  with  $r \le t$  and  $t \ge 2$ ,

 $\gamma_{ss}(\mathbf{K}_{r,t}) = r$ 

**Theorem 5.** For any graph G,

 $\gamma_{ss}(G) \leq p - \beta$ ,

where  $\beta$  is the independence number of a graph.

**Proof**: Let M be a maximum independent set of vertices in G. Then M has at least two vertices and every in M is adjacent to some vertex in V-M. This implies that V-M is a strong split dominating set of G. Thus,

 $\gamma_{ss}(G) \leq |\mathbf{V} - \mathbf{M}| = p - \beta.$ 

**Corollary 6.** For any graph G,

$$\gamma_{ss}(G) \leq \alpha$$
,

where  $\alpha$  is the vertex covering number of a graph G.

We state without proof a straight forward result that characterizes strong dominating set of G that are strong split dominating sets.

**Theorem 7.** A strong dominating set D of G is a split strong dominating set if and only if there exist two vertices  $x, y \in V-D$  such that every x-y path contains a vertex of D.

**Theorem 8.** For any graph G,

(i) 
$$\gamma_s(G) \leq \gamma_{ss}(G)$$

(ii)  $k(\mathbf{G}) \leq \gamma_{ss}(\mathbf{G})$ ,

where k(G) is connectivity of G.

**Proof**: Follows by the definitions of  $\gamma_s(G)$ ,  $\gamma_{ss}(G)$  and k(G).

**Theorem 9.** For any graph G with an end-vertex,

$$\gamma_s(\mathbf{G}) = \gamma_{ss}(\mathbf{G}).$$

Furthermore, there exists a  $\gamma_{ss}$ -set of G containing all vertices adjacent to end-vertices.

**Proof:** Let *v* be an end-vertex of G. Then there exists a cut-vertex x adjacent to *v*. Let D be a  $\gamma_s$ -set of G. Suppose  $x \in D$ , then D is a  $\gamma_{ss}$ -set of G. Suppose  $x \in V$ -D, then  $v \in D$  and hence  $D - \{v\} \cup \{x\}$  is a  $\gamma_{ss}$ -set of G. Repeating this process for all such cut-vertices adjacent to end -vertices, we obtain a  $\gamma_{ss}$ -set of G containing all cut-vertices adjacent to end –vertices.

**Theorem 10.** If diam (G) = 2, then

 $\gamma_{ss}(\mathbf{G}) \leq \delta(\mathbf{G}),$ 

Where  $\delta(G)$  is minimum degree of G.

**Proof:** Let v be a vertex of minimum degree in G. Since diam (G)=2 there exists a vertex u not adjacent to v. Hence u must be adjacent to some vertex in N(v). Hence it follows that N(v) is a strong split dominating set of G. Thus  $\gamma_{ss}(G) \le \delta(G)$ 

#### **Results on strong nonsplit domination in graphs:**

We start with some elementary results, since their proofs are trivial, we omit the same.

Theorem 11.

$$\gamma_s(\mathbf{G}) \leq \gamma_{sns}(\mathbf{G}).$$

**Theorem 12.** For any graph G,

 $\gamma_{s}(G) = \min \left\{ \gamma_{ss}(G), \gamma_{sns}(G) \right\}$ 

In [26], Sampathkumar and Pushpa Latha gave necessary and sufficient conditions for a minimal strong dominating set.

**Theorem 13** <sup>[26]</sup>. Let D be a minimal strong dominating set. Then, for each  $v \in D$ , one of the following holds:

(i) No vertex in D strongly dominates v.

(ii) There exists a vertex  $u \in V$ -D such that v is the only vertex in D which strongly dominates u.

**Theorem 14.** A strong nonsplit dominating set D of G is minimal if and only if for each vertex  $v \in D$  one of the following conditions is satisfied.

- (i) No vertex in D strongly dominates v.
- (ii) There exists a vertex  $u \in V$ -D such that v is the only vertex in D which strongly dominates u.
- (iii)  $N(v) \cap (V-D) = \phi$ .

**Proof**: Suppose D is minimal. On the contrary, if there exists a vertex  $v \in D$  such that v does not satisfy any of the given conditions, then by Theorem, D'=D-{v} is a strong dominating of set G and by (iii)  $\langle V-D' \rangle$  is connected. This implies that D' is a strong split dominating set of G, a contradiction.

Sufficiency is straight forward.

Next we obtain a relation between  $\gamma_{sns}(G)$  and  $\gamma_{sns}(H)$ , where H is any spanning sub-graph of G. We omit the proof.

Theorem 15. For any spanning sub-graph H of G,

$$\gamma_{sns}(\mathbf{G}) \leq \gamma_{sns}(\mathbf{H}).$$

**Theorem 16.** For any graph G,

$$\gamma_{sns}(G) \ge \frac{(2p-q-1)}{2}$$

Further the equality holds if  $G=K_2$ .

**Proof:** Let D be a  $\gamma_{sns}$ -set of G. Since  $\langle V-D \rangle$  is connected.

$$q \ge |V - D| + |V - D| - 1$$
.

Thus, 
$$\gamma_{sns}(G) \ge \frac{(2p-q-1)}{2}$$

further, the equality holds if  $G=K_2$ .

**Theorem 17.** For any graph G,

$$\gamma_{sns}(G) \le p - \omega(G) + 1$$

where  $\omega(G)$  is the clique number of G.

**Proof**: Let U be the set of vertices of G such that  $\langle U \rangle$  is complete with  $|U| = \omega$  (G).

Then for any  $u \in U$ ,  $(V-U) \cup \{u\}$  is a strong nonsplit dominating set of G.

Thus  $\gamma_{sns}(G) \leq |(V - U) \cup \{u\}| = p - \omega(G) + 1.$ 

Now we list the exact values of  $\gamma_{sns}(G)$  for some standard graphs:

(i) For any complete graph  $K_p$  with  $p \ge 2$  vertices,

$$\gamma_{sns}(\mathbf{G}) = 1$$
.

(ii) For any complete bipartite graph  $K_{r,t}$ 

$$\gamma_{sns}(\mathbf{K}_{r,t}) = \begin{cases} 2 & \text{if } r, t \ge 2, r = t \\ r+t-1 & \text{otherwise} \end{cases}$$

(iii) For any cycle C<sub>p</sub>,

$$\gamma_{sns}(C_p) = p - 2$$

(iv) For any wheel W<sub>p</sub>,

$$\gamma_{sns}(W_p) = 1$$

(v) For any path with  $p \ge 6$  vertices,

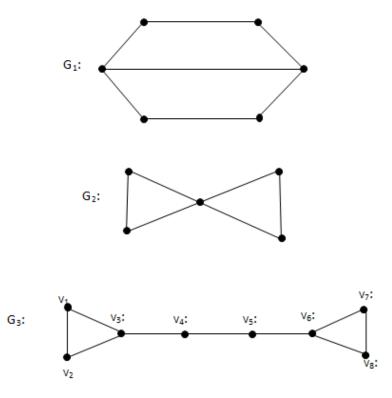
$$\gamma_{sns}(P_p) = p - 2$$

Recently, Kulli and Janakiram introduced the concept of block nonsplit domination as follows:

A dominating set of D of a connected graph G= (V,E) is a block nonsplit dominating set if the induced sub-graph  $\langle V-D \rangle$  is a block in G. The block non-split domination number  $\gamma_{bns}(G)$  is the minimum cardinality of a block nonsplit dominating set of G [20]. In this, we extend the concept of strong non-split domination to block strong nonsplit domination as follows:

A strong dominating set D of a connected graph G=(V,E) is said to be a block strong nonsplit dominating set if the induced sub graph  $\langle V-D \rangle$  is a block in G. The block strong nonsplit domination number  $\gamma_{bsns}(G)$  of G is the minimum cardinality of a block strong nonsplit dominating set of G.

All graphs considered here are assumed to be connected.





In figure 2,  $G_1$ ,  $G_2$  have no block strong nonsplit dominating sets, whereas for  $G_3$ ,  $\{v_1, v_2, v_3, v_6, v_7, v_8\}$  is a block strong nonsplit dominating set.

**Theorem 18.** A graph G has a block strong nonsplit dominating set if and only if there exists a block in G containing only cut vertices of G.

**Proof**: Let D be a block strong nonsplit dominating set G, then  $\langle V-D \rangle$  is a block in G. Since D is a strong dominating set, each vertex in V-D is a cut-vertex of G.

Converse is obvious.

### CONCLUSION

In this paper, we define the notions of accurate split and non-split dominations in graphs. We got many bounds on accurate split and non-domination numbers. Exact values of these new parameters are obtained for some standard graphs. As a future work, the readers extend the results and study the applications of the parameters in a wider sense.

### REFERENCES

S. Arumugam and S. Velamal, Edge domination in graphs, Taiwanese journal of Mathematics, 2(1998), 1. 173-179.

- 2. D. Bauer, F. Harary, J. Nieminen and C.L. Suffel, Domination alteration sets in graphs, Discrete Math. 47(1983), 153-161.
- 3. C.Berge, Theory of Graphs and its Applications, Methuen, London, (1962).
- 4. J.A.Bondy and U.S.R.Murthy. Graph theory with applications. American Elsevier Publishing Co., Inc New York, 1976.
- 5. E.W. Chambers, B. Kinnersley, N. Prince and D.B. West, Extremal problem for Roman domination, Discrete Math., 23(2009), 1575-1586.
- 6. E.J. Cockayne, P.A. Dreyer Jr, S.M. Hedetniemi and S.T. Hedetniemi, Roman domination in graphs, Discrete Math., 278(2004), 11-22.
- 7. E.J. Cockayne, B.L. Hartnell, S.T. Hedetnieni and R. Laskar, Perfect domination in graphs, J. Combin. Inform, System, Sci., 18 (1993), 136-148.
- 8. E.J. Cockayne, R.M. Dawes and S.T. Hedetniemi, Total domination in graphs, Networks 10 (1980), 211-219.
- 9. E.J.Cockayne and S.T.Hedetniemi, towards a theory of domination in graphs, Networks (7) (1977) 247-261.
- 10. O. Favaron, H. Karami, R. Khoeilar and S.M. Sheikholeslami, On the Roman domination number of a graph, Discrete Math., 309(2009), 3447-3451.
- 11. F. Harary, Graph Theory, Addison Wesley, Reading Mass. (1969).
- 12. F. Harary, Changing and unchanging invariants for graphs, Bull. Malaysian Math. Soc. 5 (1982) 73-78.
- 13. T.W. Haynes, S.T. Hedetniemi and P.J. Slater. Fundamentals of domination in graphs, Marcel Dekker, Inc, New York,(1998).
- 14. E.Karam and L. Pushpalatha, Smarandachely Roman edge s- function, Iinternational J. Math. Combin, 2(2010), 95-101.
- 15. Karsten Kammerling and Lutz Volkmann, Roman k- domination in graphs, J. Korean Math. Soc. 46(2009), 1309-1318.
- 16. D. Konig, Theorie der endlichen und Unendlichen Graphen Leipzig (1936).
- 17. V.R. Kulli and N.D. Soner, The connected efficient domination number of a grpah, IJOMS, 19 (1), (2003), 37-42.
- 18. V.R.Kulli and B.Janakiram, the split domination number of a graph, Graph theory Notes of New York, New York Academy of Sciences 32, (1997), 16-19
- 19. V.R.Kulli and B.Janakiram, The nonsplit domination number of a graph, Indian J.Pure and Appl. Math. 31, (2000), 441-447.
- 20. V.R.Kulli and B.Janakiram, Block nonsplit domination number of a graph, Int. J.Management and systems, 20 (3), (2004), 219-228.
- 21. S. Mitchell and S.T. Hedetniemi. Edge domination in tree. Proc 8<sup>th</sup> SE Conference on Combinatorics, Graph Theory and Computing 19(1977), 489-509
- 22. B.P. Mobaraky and S.M. Sheikholeslami, bounds on Roman domination numbers of graphs, Discrete Math., 60(2008), 247-253.

- 23. O.Ore, Theory of Graphs, Amer. Math. Soc. Colloq. Publ., Providence, (38) (1962).
- 24. J.Paularaj joseph and S. Arumugam, cutfree domination in graphs, Indian J. Pure Appl. Math., 23 (9) (1992), 643-647.
- 25. K.R.Parthasarathy, basic Graph theory. Tata Mc Graw Hill (1994).
- 26. E. Sampathkumar and L.Pushpalatha, Strong (Weak) domination and domination balance in graph, Discrete Math., 161 (1996), 235-242.
- 27. N.D. Soner, B. Chaluvaraju and J.P. Srivastava, Roman edge domination in graphs, Proc. Nat. Acad. Sci. India Sect. A, 79(2009), 45-50.