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ABSTRACT 
In modern software development, Continuous-Integration and Continuous-Deployment pipelines are crucial for 

efficient and reliable software delivery. However, identifying bottlenecks or performance issues within the 

pipeline can be challenging. Traditional analysis methods often rely on manual inspection or ad hoc approaches, 

making it difficult to pinpoint specific areas that require optimization. This work aims to address this problem by 

proposing a predictive model that identifies bottlenecks in the Continuous-Integration and Continuous-

Deployment pipeline and provides insights for improvement. It has been observed that during the SDLC lifecycle, 

software developers never could predict the optimal time to deploy the microservices which results in financial 

losses. The proposed work effectively predicts the optimal timing for executing pull requests, push requests, and 

deployments within the context of software development projects for microservices in DevOps culture. By 

analyzing and assimilating historical data encompassing various aspects such as code modifications, team 

activity levels, and project milestones, the aim is to equip developers with actionable insights that can 

significantly enhance project planning and coordination. The workload in Continuous-Integration and 

Continuous-Deployment pipelines can fluctuate significantly, with varying amounts of code changes, parallel test 

executions, and deployment scenarios. This dynamic nature adds further complexity to bottleneck identification 

and necessitates the need for automated, data-driven analysis techniques. Out of the three models; Random 

forest, Logistic regression, and Light GBM; it was observed that Light GBM performs best in terms of accuracy, 

AUC, and F1 score with 81%, 77%, and 82% respectively. In terms of the build stage bottleneck, it is observed 

that there are on an average 10 bottlenecks with the highest number of bottlenecks in the build 4 stage of the 

pipeline which recorded 15 bottlenecks. In terms of test stage bottleneck, there are on an average 7 bottlenecks 

with the highest number of bottlenecks in the unit test stage of the pipeline which recorded 15 bottlenecks. In 

terms of deployment stage bottlenecks, there are on an average 4 bottlenecks with the highest number of 

bottlenecks in the deployment orchestration which recorded 15 bottlenecks. 

Keywords: Random Forest Regressor, Gradient Boosting Regressor, LSTM, RMSE, DevOps, Git, Subversion, 
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1.  INTRODUCTION 
The complexity of modern Continuous-Integration and Continuous-Deployment (CI/CD) pipelines, with their 
interconnected stages and dependencies involving various tools, frameworks, and infrastructure components, 
makes it impractical to perform manual analysis [1]-[3]. The dynamic nature of workloads further complicates the 
identification of bottlenecks, as the fluctuating levels of code changes, parallel test executions, and deployment 
scenarios require automated and data-driven analysis techniques [4]. Without a reliable and efficient method to 
identify bottlenecks, software development teams face several challenges [5]-[9]. They may experience delays in 
software delivery due to inefficient resource allocation or lengthy build and test cycles. Performance issues may 
go unnoticed until they impact the overall system, resulting in poor user experience or even system failures. 
Additionally, the lack of actionable insights on bottleneck locations hampers the team's ability to prioritize and 
implement targeted optimizations, leading to suboptimal pipeline performance [10]. Therefore, there is a critical 
need to develop a predictive model that can accurately identify bottlenecks in CI/CD pipelines and provide 
actionable insights for improvement. Such a model would enable development teams to proactively identify and 
address performance issues, optimize resource allocation, streamline the software delivery process, reduce cycle 
times, and enhance overall software delivery efficiency and reliability. By bridging the gap between manual 
inspection and a data-driven approach, the predictive model would empower software development teams to gain 
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a deeper understanding of their CI/CD pipelines' performance, identify potential bottlenecks with precision, and 
make informed decisions regarding optimization strategies [11]-[15]. This advancement would significantly 
contribute to the continuous improvement of software delivery processes and enable organizations to deliver high-
quality software with increased efficiency and reliability. Figure 1 shows the architectural flow of build and 
deploy of microservices from development to business production servers. 

 
Fig. 1: Architectural Flow of Build and Deploy of Microservices from Development to Business Production 

Servers 

This work proposes a detailed and comprehensive approach that integrates machine learning techniques with 
historic software development data to predict the optimal timing of pull requests, push requests, and deployments. 
By leveraging the power of machine learning, it aims to provide developers with actionable insights to enhance 
project planning and coordination, ultimately improving the efficiency and productivity of software development 
teams. To deal with the aforementioned problem, this work proposes the usage of gadget-getting-to-know 
techniques to gain insights into bottlenecks in the modern CI/CD pipeline. The answer involves amassing and 
analyzing historic records from the CI/CD gadget, which includes construct logs, test outcomes, code metrics, 
deployment logs, and overall performance monitoring facts. By training models on these records bottlenecks in 
the pipeline can be expected and diagnosed. 

Rest of the paper is organized as follows. Section 2 gives the methodology and the experimental description 
including the various steps used for vulnerabilities detection in the cloud. Results and discussion are given in 
section 3. Section 4 concludes the work. 

2. METHODOLOGY AND EXPERIMENT DESCRIPTION 
Containerized applications generally make extensive use of cluster networks [16]-[18]. To understand how an 
application interacts and identifies anomalous communications, active network traffic is to be observed [19]-[22]. 
At the same time, if active traffic is compared to allowed traffic, network policies can be identified that are not 
actively used by cluster workloads. This information can be used to further strengthen the allowed network 
policy, removing unneeded connections to reduce the attack surface [23]. Kubernetes nodes must be on a separate 
network and should not be exposed directly to public networks. If possible, direct connections should be avoided 
to the general corporate network [24]-[25]. This is only possible if Kubernetes control and data traffic are isolated. 
Otherwise, both flow through the same pipe, and open access to the data plane implies open access to the control 
plane. Ideally, nodes should be configured with an ingress controller, set to only allow connections from the 
master node on the specified port through the network access control list (ACL). 

The proposed methodology consists of the following steps: 

1. Dataset Description: The primary data source is the archive from Git Hub that is available for querying via the 
Amazon RDS database as the data is stored in table format. In RDS, the data stored is then extracted into tabular 
format and used for further processing and analysis. Some of the data regarding collaborators and teams was 
extracted using the GitHub API. The data extracted consisted of 1.2 million observations and 10 features. The 
data consisted of the pipeline information from January 1, 2023 to May 25, 2023. 
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2. Data Collection: Gather historical data from the CI/CD system, including build logs, test results, code metrics, 
deployment logs, and performance monitoring data. This data should cover a significant period and include 
information about build times, test coverage, code quality, and deployment success rates. Figure 2 shows the data 
collection for microservices applied for machine learning approaches. 

 
Fig. 2: Data Collection for microservices applied for machine learning approaches 

3. Data Processing: After the dataset is generated using Amazon RDS, the data is exported in parquet format and 
finally it is processed in Python using Pyspark. 

4. Feature Engineering: Extract relevant features from the collected data, such as build duration, test coverage 
percentage, code complexity metrics, and deployment failure rates. Transform the raw data into a suitable format 
for machine learning algorithms. 

5. Model Training: Apply machine learning algorithms, such as classification or regression models, to train on 
historical data. Split the data into training and validation sets, ensuring that the model captures the patterns and 
relationships within the data. 

6. Model Evaluation: Assess the performance of the trained model using appropriate evaluation metrics, such as 
accuracy, precision, recall, or mean absolute error. Fine-tune the model parameters to optimize its predictive 
accuracy. 

7. Bottleneck Identification: Utilize the trained model to predict and identify bottlenecks within the CI/CD 
pipeline. Analyze the model's outputs and generate insights on specific areas that require optimization or 
improvement. 

A holistic flow of the methodology used in the work is shown in figure 3. 

 
Fig. 3: A Holistic Flow of the Methodology Used in the Work 
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3.  RESULTS AND DISCUSSION 

Table 1 shows the performance metrics (Accuracy, AUC, F1) of different models; Random Forest, Logistic 
Regression, and LightGBM. The results demonstrate that LightGBM works better than Random Forest and 
Logistic Regression. 

Table 1: Performance Metrics of Different Models 
Model Accuracy AUC F1 

Random Forest 0.72 0.71 0.75 
Logistic Regression 0.64 0.58 0.62 

LightGBM 0.81 0.77 0.82 

Build Stage Bottlenecks: 
A pipeline is taken that has 5 build stages and the number of bottlenecks predicted by LightGBM algorithm is 
computed. It is observed that there are on an average 10 bottlenecks and the highest number of bottlenecks have 
been observed in the build 4 stage of the pipeline. Figure 4 shows the build stage bottleneck. Out of the three 
models; Random forest, Logistic regression and LightGBM; it was observed that LightGBM performs best in 
terms of accuracy, AUC and F1 with 81%, 77% and 82% respectively. 

 
Fig. 4: Build Stage Bottleneck 

Test stage Bottlenecks: 
A pipeline is taken that has 4 test stages namely unit tests, integration tests, system tests and performance tests; 
and the number of bottlenecks predicted by the LightGBM algorithm is computed. It is observed that there are on 
an average 7 bottlenecks and the highest number of bottlenecks have been observed in the build unit test stage of 
the pipeline. Figure 5 shows the test stage bottleneck. 

 
Fig. 5: Test Stage Bottleneck 
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Deployment Stage Bottlenecks: 

A pipeline is taken that has 4 deployment stages namely; build artifacts, configuration management, deployment 
orchestration and validation; and the number of bottlenecks predicted by Light GBM algorithm is computed. It is 
observed that there are on an average 4 bottlenecks and the highest number of bottlenecks have been observed in 
the deployment orchestration stage of the pipeline. Figure 6 shows the build stage bottlenecks. 

 
Fig. 6: Build Stage Bottlenecks 

For the evaluation of the model, three months were consumed using 3 projects information from March 2023 to 
June 2023. Initially, the bottlenecks in the small-scale projects were detected easily due to the size of the project. 
After trying to improve the bottlenecks and re-simulating the project, the efficiency of the project was improved 
by 20% with the standard error of 5%. For the medium scaled projects, it improved by 10% with the standard 
error of 2%. For the large-scaled projects, the improvement was 5% with a standard error of 2%. 

To select the features, an RFE (Recursive Feature Elimination) algorithm was used along with Boruta Python and 
performed a combination of forward and shadow feature searches on the data to determine the best features 
possible. Multiple models were used for experimentation to find the one that best predicts the data. For any given 
model,  stratified k-fold cross-validation (k=10) was employed with a 30% test set and a 70% training set, 
utilizing a dataset of 1.2 million observations. The accuracy scores, AUC scores, and F1 were calculated of each 
classifier to compare and contrast their performance. When comparing the results across all the models, it was 
observed that the LGBM classifier achieves the highest accuracy and AUC score. However, other algorithms were 
either overfitting or having high bias. To explore the effect of the model, models were evaluated for the different 
project deployments. For this analysis, the random forest classifier and logistic regression were excluded due to 
high overfitting and high bias. When predicting the bottlenecks, the projects were sized into small-scale, medium-
scale, and large-scale. The small-scale project bottlenecks were evaluated by implementing the algorithm on the 
previous small-scale projects and correcting all the bottlenecks in the current project. The productivity in terms of 
time and efficiency was improved by 20-30%. For the moderate-scale projects, the evaluation was done in the 
same way but only few bottlenecks available were tested due to the limitation of time, and this improved the 
efficiency by 10-12%. For the large-scale projects, efficiency improved by 7% as only partial testing was possible 
due to the limitation of time. 

4.  CONCLUSION 
This work addressed the challenges of identifying bottlenecks in CI/CD pipelines and proposed a predictive 
model that leverages machine learning techniques to provide insights for improvement. The model is trained on 
historical data from the CI/CD system, including build logs, test results, code metrics, deployment logs, and 
performance monitoring data. The evaluation of the model demonstrates its effectiveness in identifying 
bottlenecks at different stages of the CI/CD pipeline. By addressing these bottlenecks, developers can optimize 
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the software delivery process and increase efficiency. The results show that small-scale projects can achieve 
efficiency improvements of up to 20-30%, moderate-scale projects can achieve improvements of around 10-12%, 
and even large-scale projects experience an efficiency boost of approximately 7%. By utilizing the insights 
provided by the predictive model, developers can make informed decisions to improve the CI/CD process. This 
leads to shorter delivery cycles, reduced development time, and increased overall efficiency of the software 
development. The integration of machine learning techniques in the CI/CD pipeline contributes to more effective 
software delivery, enabling organizations to stay competitive in the rapidly evolving software development 
landscape. Overall, the proposed predictive model offers a valuable solution to the challenge of bottleneck 
identification in CI/CD pipelines. It bridges the gap between manual inspection and data-driven analysis, 
empowering development teams to proactively address performance issues, optimize resource allocation, and 
streamline the software delivery process. With the ability to accurately identify bottlenecks and provide actionable 
insights, organizations can enhance their software delivery efficiency and reliability, ultimately leading to 
improved competitiveness in the market. 
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