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Abstract - Many machine tools experience fluctuations in 

performance, leading to inconsistencies in product quality 

and production output. The absence of a systematic 

framework exacerbates this issue, hindering the 

attainment of reliable and consistent operational integrity. 

This research introduces a systematic framework 

leveraging a dynamic programming approach to enhance 

operational integrity in machine tools. The framework 

addresses challenges related to operational performance 

variations, adaptability to changing operational 

requirements, and unplanned downtime. By integrating 

dynamic programming algorithms, the framework 

optimises operational machine tool parameters in real-

time, ensuring responsiveness to fluctuating production 

demands. Results from rigorous testing demonstrate the 

efficacy of the systematic framework, showcasing notable 

enhancements in machine tool performance and overall 

operational integrity. This research contributes to the 

ongoing discourse on advanced methodologies for 

optimising manufacturing processes, with implications for 

industries seeking to achieve sustained operational 

excellence in their machine tool operations. 

 

Index Terms - Machine tools; operational integrity; 

dynamic programming; systematic framework; 

optimisation 

INTRODUCTION 

Machine tools, serving as the backbone of manufacturing, are 

pivotal in shaping end-product quality and efficiency through 
their operational integrity. They are used for manufacturing 

parts in various industries and they include lathes, drilling 

machines, milling machines, grinders, and more [1], [2]. 

Machine tools play a fundamental role in achieving precision 

and accuracy in manufacturing, while operational integrity 

ensures that the machine tools maintain their precision and 

accuracy over time.  Any deviation from the intended 

specifications can lead to defective products, increased scrap 

rates, and compromised quality. Operational integrity, a 

cornerstone of manufacturing excellence, is particularly 

critical for machine tools as it ensures the consistent and 

reliable performance necessary for the efficiency, reliability, 
and accuracy of manufacturing processes. Reliability ensures 

consistent operation of machine tools by minimizing 

breakdowns or errors, while efficiency optimizes operational 

aspects to reduce waste, energy consumption, and operation 

time. Accuracy, in turn, enhances the precision of machine 
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tools, ensuring a consistent output that meets desired 

specifications. These concepts underscore the importance of 

machine tools being in a state of completeness, wholeness, 

and good working conditions, which is crucial for 

maintaining manufacturing operations' overall functionality 
and effectiveness.  

 

Nevertheless, the constraints posed by dynamic operational 

requirements, uncertainties in production demands, and the 

necessity for adaptability have highlighted the shortcomings 

of conventional, static approaches to machine tools. 

Challenges such as unplanned downtime, performance 

variations, suboptimal decision-making and insufficient 

responsiveness to changing conditions present significant 

obstacles to attaining high operational integrity. Low 

operational integrity can introduce variations in product 

dimensions, surface finish, and other critical parameters, 
potentially leading to quality issues and customer 

dissatisfaction. The maintenance of high operational integrity 

is crucial to ensure that machine tools consistently generate 

high-quality outputs, which is imperative for meeting quality 

standards and fulfilling customer expectations. The lack of a 

systematic approach to operational integrity not only 

jeopardizes the consistent fulfilment of customer expectations 

but also poses a threat to the erosion of trust and market 

competitiveness. To ensure sustainable machining processes, 

it is imperative to embrace an innovative approach that 

involves a comprehensive assessment for identifying optimal 
parameters [3]. Hence, there is a pressing need for the 

development and implementation of a systematic framework 

in the form of a structured approach that leverages dynamic 

programming principles in the context of machine tool 

operation. This study presents a framework which aims to 

optimize decision-making processes, enhance adaptability to 

evolving manufacturing environments, and ultimately elevate 

operational integrity in machine tools. By systematically 

integrating dynamic programming, the objective is to 

optimise process parameters, enhance integrity and improve 

precision, thereby establishing a robust foundation for reliable 
and efficient manufacturing operations.  

 

In contemporary manufacturing systems, the predominant 

focus is on adjusting machine tool parameters rather than just 

the process variables determining the machined workpiece 

[4]. Model-based self-optimization systems emerge as a 

fundamental concept aimed at governing product quality by 

establishing connections between setting parameters, process 

variables, and ultimately, the machined surface quality. 

Hence, optimizing the process variables in machine tools is 

crucial because it impacts the quality of machining, 

efficiency, and the cutting lifespan of machine tools [5]. 
Achieving desired levels of machining quality and efficiency 

in process optimization necessitates adaptive control, wherein 

machining parameters are adjusted. This adjustment considers 

the operational integrity parameters of machine tools to 

ensure optimal performance. In a machine controller, the 

operation planning process can be genuinely adaptive, 

capable of dynamically altering the process plan in response 

to the dynamics observed during the actual machining process 

[6]. By implementing a process model, the system gains the 

ability to anticipate its future behaviour and promptly adapt, 
resulting in an improved process design that effectively 

enhances and optimizes the manufacturing process. This 

improvement results in reduced manufacturing costs, 

increased economic and production efficiency, and greater 

repeatability of the manufacturing process [4]. 

 

The dynamic behaviour of machine tools plays a pivotal role 

in influencing key machining outcomes, including reliability, 

efficiency, and accuracy [7]. To ensure consistency and 

effectiveness in manufacturing processes, it is essential to 

develop a systematic framework augmented with dynamic 

programming. This approach becomes critical for managing 
complex systems, standardizing processes, reducing waste, 

and facilitating continuous improvement. Consequently, it 

contributes to enhancing quality, precision, and operational 

integrity in machine tools. Dynamic programming plays a key 

role within this framework by offering optimization tools that 

enhance decision-making, resource allocation, and 

adaptability to dynamic operational conditions, ultimately 

contributing to an enhanced operational integrity of machine 

tools. Dynamic programming is a mathematical optimization 

technique used to solve problems that can be broken down 

into smaller, overlapping subproblems [8]. Consistent 
operational integrity results in reliable production schedules 

and high-quality products, fostering customer satisfaction and 

trust. The motivation behind developing a systematic 

framework is to provide a structured approach to managing 

complexity, mitigating risks, and improving operational 

efficiency.  

Significant research efforts have focused on enhancing self-

tuning processes through evaluated sensor signals for 

quantitative analysis of monitoring quality [9].  This system 

was further improved at a turning station by employing an 

intelligent production method, which incorporates smart IoT 
sensors and artificial intelligence techniques to facilitate 

digital sensing, trend analysis, and informed operational 

decision-making. [10]. An autonomous control system was 

also developed for maintaining the condition of metal-cutting 

machines [11]. Autonomous optimization of parameters is 

key in observing industrial systems, as they significantly 

contribute to Industry 4.0 advancement [12]. By using 

information from the machine and the process, self-

optimizing machining systems can autonomously modify 

process and machine settings. This automated adjustment not 

only meets but can also improve upon predefined assessment 

criteria, thereby removing the necessity for an operator's 
manual intervention. Other works of literature also focused on 

enhancing machine tool efficiency and accuracy, but there's a 

lesser focus on the dynamic adaptation of these systems to 

evolving operational requirements and production demands. 
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This includes [13] using a Dynamic Programming algorithm 

for optimal power split trajectory, [14] establishing a 

degradation trajectory model for CNC machine tools, and 

[15] improving high-performance cutting with adaptronic 

systems. [12] emphasized optimizing within control systems 
for adaptability, while [16], [17] discussed dynamic 

programming for sequential decision problems. [4] noted 

optimization time reliance on algorithms, models, and 

computing hardware. [18], [19] addressed optimal machining 

parameters and tool selection using micro-morphological 

characteristics. Additionally, genetic algorithms and actor-

critic reinforcement learning frameworks studied by [18], 

[20] are used for optimizing cutting conditions and energy-

efficient batch machining. Despite these advancements, the 

challenge remains in how these systems can dynamically 

adjust to changing operational needs and production 

demands. The integration of dynamic programming to 
enhance adaptability, integrity and responsiveness in machine 

tools is an area that is not extensively covered. Also, the 

specific role of dynamic programming in continuously 

improving and sustaining operational integrity in machine 

tools is an area that needs more exploration. Therefore, the 

primary study’s focus is to create a systematic framework 

based on dynamic programming principles to enhance the 

integrity of machine tools and optimize decision-making 

processes regarding their operation and maintenance. 

 

The primary objective is to utilise dynamic programming 
principles to optimize decision-making processes related to 

maintenance, operational parameters, and resource allocation. 

This framework aims to enhance the operational integrity of 

machine tools, mitigating the identified challenges and 

fostering a manufacturing environment characterized by 

reliability, efficiency, and accuracy. Addressing the above 

challenges through the proposed systematic framework will 

not only optimize machine tool performance but also 

contribute to the broader goals of reducing operational costs, 

improving product quality and enhancing overall customer 

satisfaction. The development of such a framework represents 
a crucial step toward achieving sustained operational 

excellence in the realm of machine tools within modern 

manufacturing contexts. Other specific objectives achieved 

from this study include 

a. the correlation between varying operational parameters 

and machine tool performance, identifies key parameters 

influencing integrity, quality, and overall effectiveness 

and uses a case study to understand the dynamic nature 

of operational parameters in manufacturing 

environments.  

b. Formulate a mathematical model leveraging dynamic 

programming principles for real-time decision-making 

and integrate key operational parameters into the 

decision-making framework. 

c. Develop algorithms capable of optimizing operational 

settings based on dynamic conditions, considering factors 

such as production demand and technological changes. 

d. Evaluate the performance of the Framework using a case 

study by testing the decision-making framework with 

traditional static approaches, and assess the framework's 

ability to adjust operational parameters in response to 

different environmental factors. 

         
The systematic framework utilizing dynamic programming 

proposed in this research significantly contributes to 

advancing our understanding and practices related to 

enhancing operational integrity in machine tools. The key 

contributions of this study are: 

a. This framework facilitates a more efficient response to 

varying production demands and technological 

advancements, ensuring that machine tools operate at 

their optimal settings in a dynamic manufacturing 

environment. 

b. The research emphasizes the integration of proactive 

maintenance strategies within the framework. By 

employing dynamic programming to recommend 

remedial actions in the form of proactive maintenance 

activities based on real-time conditions, the framework 

minimizes unplanned downtime, reducing operational 

disruptions and enhancing the overall reliability of 

machine tools. 

 

The systematic framework contributes to establishing 

industry best practices for maintaining and optimizing 

machine tool performance. By emphasizing the importance of 

dynamic decision-making, the research provides a foundation 

for manufacturing enterprises to enhance their operational 

integrity, reduce costs, and improve overall competitiveness 

for industries seeking to achieve sustained operational 

excellence in their machine tool operations. 

METHODOLOGY 

Establishing a baseline for machine tool performance is a 

critical step in ensuring enhanced operational integrity and 

detecting deviations in a manufacturing environment. This 

process involves creating a reference point or standard against 

which a machine tool's performance can be measured [21]. 

The methodology in this study systematically identifies 
parameters that significantly affect productivity performance 

metrics.  

 

2.1 Machine Tool Operational Integrity 

2.1.1 Key Machine Tool Operations  

Identifying and monitoring key operational parameters is 

fundamental to the success of the systematic framework. The 

aspects of machine tool operations that could benefit from 

optimization are cutting speed and feed rates, cutting tool 



Olugbenga A. Aderoba, Khumbulani Mpofu, Ilesanmi A. Daniyan and Buliaminu Kareem 

 

Copyrights @ Roman Science Publications  Vol. 6, No. 1, January 2024  

 International Journal of Applied Engineering & Technology 

 

 1493 

wear and life management, vibration and stability, coolant 

and lubrication management, energy efficiency, and tool path 

planning, amongst others as shown in Figure 1. The selection 

process entails a thorough analysis that encompasses the 

machine tool's performance requirements, historical data, and 
industry standards, focusing on key parameters. 

Machine Tool 
Optimization

Process 
Integration and 

Automation

Material 
Removal Rates

Tool Path and 
Motion Control

Temperature 
Control

Setup and 
Changeover 

Time

Coolant and 
Lubrication 
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Vibration and 
Stability

Cutting Speed 
and Feed Rates

Cutting Tool 
wear and 
Tool life 

Management

Quality Control 
and Inspection

Adaptive 
Control

Energy 
Efficiency

 
FIGURE 1 

AREAS OF MACHINE TOOLS OPTIMISATION 

 

In this study, signals from the state sensors to the executive 

mechanisms are sent through distributed units for component 

control in the machine tool. These units are connected to the 

central autonomous control unit, which analyzes the signals 

regarding the state of the components, assesses the state, and 

makes decisions regarding the best actions to support system 

functioning [11]. Improving the state control of machine tools 

crucially involves monitoring parameters to assess machine 

tool integrity in real-time, compare it with industry standards, 
and automate decision-making for necessary restorative 

measures through remedial actions. The output quality, 

together with the dimensional accuracy of the machine tool 

are the most critical factors in determining the performance of 

machine tools as determined by experimental tests such as 

surface roughness. The combination of all the factors can 

affect the output quality and dimensional accuracy of the 

machine tool and invariably its integrity as indicated in Figure 

2. 
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FIGURE 2 

 COMBINATION OF FACTORS THAT AFFECT MACHINE TOOL 

INTEGRITY 
 

2.1.2 Formulation of Machine Tool Integrity 

 

Suppose a parameter measures Pan and its acceptable 
benchmark is Ps. Its Integrity, IN is  

IN  =   (where Ps>Pan)    

    

If Pan is greater than Ps, the Integrity automatically becomes, 

IN = 1 

 

Let the total integrity of a machine tool be, IT and let there be 

N parameters for measurement and M of those parameters be 

in the category of death-knell. Therefore, N-M will be in the 

Pseudo Deathknell/living characterisation. The total machine 

tool integrity, IT is as shown in Equation 1 

  

      (1) 

 

2.1.3 Key Performance Indices 

This is crucial for machine tools and their intended 

applications may include accuracy, repeatability, surface 

finish, cutting speed, and tool life. These performance metrics 

include parameters as indicated in Figure 2. Figure 3 presents 

the cause-and-effect fishbone diagram of a machine tool 

using surface roughness as a performance metric. The 

diagram highlights the major factors that promote machine 

tool functionality as cutting tool properties, machining 
parameters, workpiece properties and machining phenomenon 

and the effect. 
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FIGURE 3 

 THE CAUSE-AND-EFFECT FISHBONE DIAGRAM OF A MACHINE 

TOOL USING SURFACE ROUGHNESS AS PERFORMANCE METRIC 

 

Online process control enhances stability by accounting for 
runtime uncertainties and disturbances, facilitating safe 

operation at the machine's technological limits. Although it 

allows adaptation to changing process conditions, this doesn't 

assure the optimal functioning that self-optimization aims for. 

In contrast, advanced control methodologies leverage explicit 

process models for real-time optimization, achieving 

autonomous optimality.  

 

 

 

2.2  Multi-Stage Decision Problem Description 
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According to [17], A multistage decision problem 

consists of a series of linked single-stage processes, where the 

output of each process becomes the input for the next, with no 

recycling of these outputs to earlier stages. In this scenario, a 

decision made at a specific time, 𝑡, is shaped by prior 

decisions and typically impacts subsequent decisions. The 

following are the major problems that the proposed 

framework seeks to solve: 

i. Optimization of Operation: Dynamically determine the 

optimal operating parameters for different tasks to 

enhance precision and minimize wear and tear. 

ii. Adaptability and Learning: The system could learn 

from past operations to continuously improve its 

performance over time. 

iii. Reducing downtime, enhancing precision, improving 

maintenance protocols, and ensuring consistent 

performance. 

iv. Fault Diagnosis and Recovery: Quickly identifying and 

rectifying operational issues, possibly through a decision-

making process informed by dynamic programming. 

v. Prescriptive Maintenance: Using dynamic 

programming to recommend remedial action in machine 

tools to enhance their integrity  

 

2.3 Dynamic Programming Approach 

Dynamic programming is a problem-solving method that 

effectively tackles complex issues by decomposing them into 

simpler subproblems. This approach is especially well-suited 

for optimization problems characterized by sequential 

decision-making, where the problem can be segmented into 

stages exhibiting a recursive relationship. Dynamic 

programming is a bottom-up algorithmic approach that solves 

problems by merging the solutions of overlapping 

subproblems. It effectively solves each subproblem once, 

storing the results in a table to prevent redundant 
recalculations each time the same subproblem is encountered 

[22].  

 

In dynamic programming, breaking down the operational 

process of machine tools into smaller, manageable 

subproblems is crucial, as solving these subproblems is key to 

addressing the overall problem. The development of recursive 

algorithms that establish a relationship between the solution 

of each subproblem and its successor is central, to building up 

solutions for these subproblems towards solving the entire 

problem. This study applies a break of a complex multistage 

decision problem into simpler single-variable problems as 
shown in Figure 4. Decomposing the problem into sub-

problems enables the optimal solution of resolving each 

smaller problem. This method is based on the idea that 

smaller problems are more manageable than the complex 

original ones. The approach is theoretically grounded in 

Bellman's principle of optimality through Bellman's equation. 

For effective optimization, the models must accurately 

represent the entire process, connecting parameter settings 

directly to product quality via detailed process parameters [4].   
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FIGURE 4 

MULTI-STAGE DYNAMIC PROBLEM OPTIMISATION 

 

The development of the dynamic programming model 

involves identifying relevant state and decision variables, 

formulating a comprehensive cost function, and implementing 

dynamic programming principles to optimize decision-

making processes for enhanced operational integrity in 

machine tools. The modelling of the operational process 

entails the creation of mathematical models that represent the 
machine tool operations. 

 

2.3.1 Identification of State Variables 

    State variables represent the key factors that characterize 

the machine tool’s current state, 𝜔 and the manufacturing 

environment. In the context of machine tools and operational 

integrity, the state variables include Machine Health Status or 

condition of the machine tool, which may involve factors 

such as wear, temperature, vibration, or other diagnostic 

measures. Production-related variables reflecting the 
workload of the machine tool are expected to handle external 

factors influencing machine tool performance, such as 

ambient temperature, humidity, or specific material 

characteristics in the manufacturing process. In this sequential 

system, the output of stage 𝑡+1 corresponds to the input of 

stage 𝑡 in a forward sequence, and similarly, the output of 

stage t aligns with the input of stage 𝑡−1 in a backward 

sequence as indicated in Figure 4. The transformations of 

states and the associated returns functions in this system are 

represented accordingly in equations 2 to 5. 

  
      (2) 

  
      (3) 

  
      (4) 

  
      (5) 
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Where equations 2 and 3 represent forward recursion and 

equations 4 and 5 represent backward recursion. 𝑡 signifies 
the period from 𝑡 = 1, 2, … , 𝑇 ., 𝛿𝑖 ∈ Δ represents the vector 
of control variables used in decision-making, H is the return 

function, and 𝜔𝑡 is the state variable at stage 𝑡. 
 

2.3.2 Identification of Decision Variables 

Decision variables are the parameters that can be adjusted or 

controlled to influence the system's state in the form of 

choices or actions that can be taken at each stage to influence 

the system's state. In the context of machine tools, decision 

variables may include Maintenance Schedules which 

determine when, how and what remedial actions can be taken 
during monitoring and inspections or component 

replacements; Operational Settings: Adjusting parameters 

like speed, feed rate, or tool changes to optimize performance 

in response to changing conditions, and Resource Allocation 

which decides how resources, including manpower and spare 

parts, should be allocated to address maintenance needs or 

unexpected failures. However, this study focuses on the 

maintenance schedules and operational settings. 

 

Due to the influence of inputs on the decisions made within 

the system, the return function, H is indicated in (6) 

 

𝐻 = ℎ (Ω, Δ)      (6) 

 

𝑊ℎ𝑒𝑟𝑒 Δ =𝑡ℎ𝑒 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑠𝑝𝑎𝑐𝑒 𝑣𝑒𝑐𝑡𝑜𝑟 and Ω is 𝑡ℎ𝑒 𝑠𝑡𝑎𝑡𝑒 
𝑠𝑝𝑎𝑐𝑒 𝑣𝑒𝑐𝑡𝑜𝑟. 
 

In a 𝑡-multistage decision process, the input state vectors for 

the forward and backward 𝑡𝑡ℎ stages are represented by Ω𝑡+1 

and Ω𝑡−1, respectively, while the output state vectors are 

denoted by 𝜔𝑖. 

 

2.3.3  Formulation of the Cost Function 

The cost function quantifies the objective to be minimized or 

maximized over time. In the context of machine tools, it 

represents the overall cost associated with the chosen decision 

variables. These components include the operational cost in 

the form of maintenance cost which encompasses, downtime 

cost which quantifies the financial impact of machine 

downtime, and quality cost which incorporates factors related 
to product quality, including defects and rework. The goal is 

to minimize the cost function over time to maximize the 

operational integrity. This cost function is represented in (7) 

while the constraints of the multistage problem is indicated in 

(8) 

 

  
      (7) 

 

  

     (8) 

 

𝛿𝑡 signifies the decision variables, each contributing to the 

overall return. 𝑏 denotes the potential values representing the 

quantity of resources available for allocation. 

 

2.3.4 Dynamic Programming Model Formulation: 

The dynamic programming model integrates the identified 

state variables, decision variables, and cost function into a 

mathematical framework. It involves defining transition 

equations that describe how the system's state evolves based 

on the decisions made. The decision variables, objective 

function, and constraints specific to enhancing operational 

integrity in machine tools include: 
    i. State Transition Equation: this describes how the 

state variables change over time, considering the impact of 

decision variables and external factors as shown in equation 

(9). 

 

      (9) 

  
 

  

  

 

 
 

ii. Bellman Equation: Fundamental to dynamic 

programming, it expresses the cost function's best possible 

value in any given state as a function of the value of the cost 

function in subsequent states. The goal in a multistage 

decision problem is to identify 𝛿t within Δ to optimize a 

function, 𝑓, which is formulated based on the returns of each 

stage, expressed as 𝑓(𝐻𝑡) for stages 𝑡 = 1, 2, …, 𝑇 as 

indicated in equation (9) 

 

The decision maker's goal, given that available actions are 

dependent on the initial system state, is to choose a suitable 

decision variable, represented as (𝛿1, 𝛿2, …, 𝛿𝑛), within an 

allowable range of actions (specifically, 𝛿𝑡 ∈ Δ). This choice 

aims to improve the system's performance over a planning 

period covering 𝑇 stages. This set of decisions or remedial 
actions is termed a policy which effectively reduces the 

objective function subject to specified constraints as indicated 

in (9). 

 

    In the dynamic programming model, the objective function 

encompasses both the cost function and the transition 

dynamics, thereby reflecting the model's overall goal. An 

optimal policy is characterized by a unique attribute that 

remains constant regardless of the current state. The decisions 

that follow should collectively form an optimal policy relative 
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to the resulting state from the initial decision [13], [17]. The 

primary objective is to determine the optimal machining 

process settings by comparing the efficacy of various 

strategies on a single machine tool, using a specific approach 

to enhance the integrity of machine tools.  The focus within 
this system is on the machined product, whose quality is 

evaluated using a surface roughness performance analysis 

model. 

 

2.4  Optimization Algorithm and Performance Index 

Calculation 

2.4.1 Optimization Algorithm:  

The dynamic programming algorithm aims to find the 

sequence of decision variables that minimizes the cost 

function and maximizes the objective function of enhancing 

the integrity, thus optimizing the system's performance over 

time. The dynamic programming algorithm employs four 
systematic steps, which involve characterizing the structure of 

an optimal solution, recursively determining its value, 

generating the optimal value, and constructing an optimal 

solution as shown in Figure 5.  

Stop

Start

 Definition of State and decision  
Variable, and number of stages

 Breakdown of complex 
multi-stage problems into 

simpler ones

Recursive 
Equation 

Determination 
from t = 1, ...T

Optimum 
Decision and 

Value 
determination

Is t = T? 

YES

No

 
FIGURE 5 

FLOWCHART OF THE DYNAMIC PROGRAMMING ALGORITHM 

 

The construction of the cost function, which is based on the 

estimated distribution of failure times, is aimed at tackling the 
optimization problem [23]. Self-optimization in a technical 

machining system refers to its capability to autonomously 

adapt and adjust its operations, enhancing performance in 

terms of accuracy and precision, process stability and 

reliability, all without requiring operator intervention [12]. 

 

2.4.2 Performance Index Calculation 
Machine tool performance is quantified through the definition 

of a performance index, which is based on selected metrics. 

This index should be sensitive to deviations from the 

established baseline. This baseline represents the expected or 

optimal values for the chosen performance metrics under 

normal operating conditions. It also involves establishing and 

monitoring a baseline for machine tool performance using 

dynamic programming and provides a systematic approach to 
ensuring operational integrity. Surface roughness, Ra, 

selected for this study is the primary parameter used to 

characterize average surface roughness, representing the total 

of absolute values in the roughness profile, x, measured over 

a specific evaluation length, l as indicated in  (10). 

    

      (10) 

 

2.5 Systematic Framework to Enhance Machine Tool 

Operational Integrity 

 

2.5.1 System Architecture 

Figure 6 presents the architecture of the proposed systematic 

framework. 
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FIGURE 6 

THE ARCHITECTURE OF THE PROPOSED SYSTEMATIC 

FRAMEWORK 

 

2.5.2 Systematic Framework 

This implies a structured methodology or set of principles 

designed to address a particular problem or set of problems in 

the domain of machine tools. This systematic framework as 

indicated in Figure 6 utilizes dynamic programming 

algorithms to optimize decision-making processes in real-

time, enhancing integrity in machine tool operations. 

Utilizing a systematic approach, the analysis of requirements 

guides the development of subsystems, encompassing 
optimization, actuators, and sensors, with the overarching 

goal of optimizing the entire process. This analytical process 

identifies models that translate signals from the process into 

variables, establishing crucial connections between these 

variables and the resulting product quality. Through this 

framework, quality criteria such as surface roughness, and the 

major influencing process variable are measurable.  
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The current machine tool states are obtained from collected 

data to indicate the current condition of machine parameters 

and their dependent variables.  The data from the sensors is 

processed to calculate the integrity and if necessary fed into 
the dynamic programming model in real time for 

optimisation. In the initial stage, the focus is on collecting 

data for performance analysis of various input variables 

within the machining process. To enable real-time data 

collection, a network of sensors is strategically deployed 

throughout the machine tool. These sensors are chosen based 

on their ability to accurately measure the identified key 

parameters. In manufacturing systems, conventional sensors 

typically indicate the activity status of a process but lack 

information about the specific operating point concerning 

quality [4]. Enhancing machining characteristics, minimizing 

human effort and errors, optimizing production time, and 
meeting the demands of Industry 4.0 is imperative, 

necessitating the adoption of advanced sensor systems. [24].  

 

Based on the incoming data, the dynamic programming 

model is updated to reflect the current state of the machine 

tool. Recommended remedial actions or adjustments that can 

be made to improve operational integrity, such as tool 

replacement, speed adjustments, and cooling system 

modifications amongst others are optimised for the best 

decision. These remedial actions are also coded at the back 

end of the Python Program. The dynamic programming 
model generates a policy that dictates the optimal actions to 

be taken under specific conditions. The recommended actions 

are implemented in real time to optimize operational integrity. 

Other remedial actions may involve making adjustments to 

machining parameters, activating maintenance protocols, or 

even triggering automated self-correction mechanisms. The 

model continuously adapts to changing conditions, allowing it 

to make informed decisions based on the most recent data. A 

reward function that quantifies the benefit or cost associated 

with each state-action pair would be established whose goal is 

to maximize operational integrity while minimizing negative 
impacts. The system monitors the outcomes of the 

implemented actions and compares them to the expected 

results. If discrepancies are observed, the system learns from 

the feedback and updates the dynamic programming model 

accordingly. This ensures continuous improvement and 

adaptation to evolving machine tool conditions. 

 

During the decision-making algorithm stage, the problem is 

broken down into two key steps, among which are modelling 

and multi-objective optimization. In the modelling phase, the 

focus is on depicting the correlation between process design 

factors, with a special emphasis on assessing integrity. 
Models are crafted to evaluate real-time product quality using 

sensor data, and when direct online assessment isn't feasible, 

surrogate process variables closely tied to product quality are 

employed. This surrogate approach guides the design of 

subsystems, encompassing sensors, actuators, and 

optimization challenges [4]. At a higher level, the model-

based optimization system integrates self-optimization by 

determining optimal operating points and strategies. This 

system's inputs are the overarching goals of production 

facilities, with outputs including internal objectives and the 
refinement of control parameters from sensors and actuators 

which establishes a dynamic control loop utilizing data 

analysis [25].  

 

Indicator models developed for each metric are first used to 

create an integrated model specific to that metric. These 

models are then utilized in multi-objective techniques to 

determine the best set of process parameters. This study 

adopts a strategy that recommends corrective actions, derived 

from optimal process values, to achieve specific objectives 

and adhere to constraints. Machine tool accuracy is affected 

by a range of error sources, including conditions of cutting 
tools, environmental factors, and operational components of 

the machine tool [26]. Monitoring devices enable adjustments 

to control parameters, like cutting speed and feed rate, to 

impact the ongoing process [12]. The three major functions of 

the activities implemented while working with the framework 

are: 

1. Deviation Detection: Regularly compare the real-time 

performance data with the established baseline by 

utilising the performance index and dynamic 

programming algorithm to detect any deviations from the 

baseline.  

2. Alerts and Notifications: Implement an alert system that 

triggers notifications when significant deviations are 

detected. This allows operators and maintenance 

personnel to address issues promptly, reducing downtime 

and preventing defects in manufactured parts. 

Implementing an effective alarming and alerting system 

is crucial for proactive intervention.  

3. Continuous Improvement: Periodically update the 

baseline by re-analysing performance data and adjusting 

the dynamic programming algorithm to indicate the 

current machine tool integrity. This ensures that the 

baseline remains accurate and relevant as the machine 

tool undergoes wear and tear or operational changes. 

 

By combining real-time monitoring with dynamic 
programming, the systematic framework allows machine 

tools to operate with enhanced integrity, as the system can 

respond promptly to changing conditions and optimize 

performance in a dynamic manufacturing environment. 

SYSTEM IMPLEMENTATION ON A CASE STUDY 

  A turning operation was carried out on a Boxford Lathe 

using mild steel workpiece material with an HSS tool as 
shown in Table 2.  Several sensors as identified in Table 1 

were connected to the lathe to measure different machine 

parameters. The cylindrical workpiece is 80 by 150 mm and 
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the workpiece is held on the spindle while the pressure 

sensors monitor the gripping force.  

 
 

TABLE 1 

 APPLIED SENSORS ON CASE STUDY 

S/No. Name of Sensor Function 

1 Sound and 

Vibration 

Sensors 

Monitor machine tool acoustics 

and vibrations to detect 

irregularities or excessive wear in 

components. 

2 Temperature 
Sensors 

Measure the temperature of 
critical components to prevent 

overheating and ensure optimal 

operating conditions 

3 Speed and Feed 

Sensors 

Collect spindle speed and feed 

rate data in real-time for accurate 

control and optimal performance. 

4 Tool Wear 

Sensors 

Monitor cutting tools' wear to 

facilitate timely replacements and 

prevent quality issues. 

5 Roughness 

sensor 

To monitor tool wear behaviour 

with roughness 

6 Voltage and 
current sensor 

Monitor Cutting Power 

7. Pressure 

Sensors 

To Monitor hydraulic and 

pneumatic pressures within the 

coolant and the gripping force of 

the spindle 

 

The dynamic programming algorithm developed was 

executed using the Python programming language. It 

involved creating functions and modules for initializing the 

problem, managing state transitions, computing rewards, and 

updating the solution, all tailored to the specifics of the 

chosen algorithm. Recommended remedial actions or 

adjustments that can be made to improve operational 

integrity, such as tool replacement, speed adjustments, or 
cooling system modifications were also coded at the back end 

of the Python Program. A convergence criterion to determine 

when the algorithm has reached an acceptable solution was 

also implemented in the machine tool integrity index. The 

optimization algorithm was tailored to fit the specific 

characteristics of a typical machine tool, taking into account 

aspects like machine dynamics, sensor data, and maintenance 

needs. To ensure the model accurately represented the 

machine's current state, integrated capabilities for real-time 

data acquisition and processing were closely monitored. 

Various parameters linked to the machining process and part 

quality were assessed and the quality of machined parts was 

evaluated based on criteria like surface roughness and 
machining process parameters, including vibration levels, 

cutting forces, and material removal rate. This approach 

aligns with a prior study that emphasized the suitability of 

surface quality as a metric for assessing both the machine 

tools and the process performance, particularly when creating 

micro-milling features [27].     

 

The feedback from the operational parameters was used to 

refine and optimize the developed dynamic programming 

model and also generate a continuous improvement process 

for the framework. The data collected by sensors is 

seamlessly integrated into a centralized monitoring system. 
The monitoring system provides real-time data visualization 

through a user-friendly interface where operators and 

maintenance personnel can access dashboards to display the 

current status of key operational parameters.  

RESULTS AND DISCUSSION 

The optimal cutting conditions using machine tool operating 

parameters that lead to improved machine tool integrity were 
obtained through the iteration of the developed dynamic 

programming model. The proposed systematic framework  

employing a dynamic programming approach was subjected 

to a comprehensive performance evaluation using two key 

metrics to assess the operational integrity of machine tools: 

 

4.1 Surface roughness 

 Table 2 presents the results of experimental tests, showcasing 

surface roughness measurements obtained from a Mitutoyo 

surface roughness tester before and after implementing the 

optimized model under ideal cutting conditions. Figure 7 

illustrates how surface roughness fluctuates across 200 
generations, eventually stabilizing at 0.67 μm after 29 

generations. The initial measured surface roughness before 

optimisation is 2.48 μm, which falls within the acceptable 

range of 6.25 μm for turning operations. The differences 

between the applied framework results and measured values 

are ascribed to the motion between the tool and workpiece, 

and the non-uniformity of the material. 

 

TABLE 2  

EXPERIMENTAL TEST USING SYSTEMATIC FRAMEWORK 

Material Spindle 

Speed, 

Rev/min 

Feed rate, 

mm/rev 

Depth 

of Cut, 

mm 

Tool Life 

(minutes) 

Before the Dynamic Programming Model  After the Dynamic Programming Model 

Roughness, 

µm 

Cutting 

Force, N 

Machining 

time, t 

(seconds) 

Roughness, 

µm 

Cutting 

force, N 

Machining 

time, t 

(seconds) 

Mild Steel  600 0.15 0.4 16,195 2.48 290 189 0.67 282 125 
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FIGURE 7 

 SURFACE ROUGHNESS VARIATION 

 

 

 

 

FIGURE 8 

MATERIAL REMOVAL RATE 

FIGURE 9 

FEED RATE VARIATION 

FIGURE 10 

SPINDLE POWER VARIATION 

 

4.2 Material removal rate 

 

The dynamic programming algorithm was utilized to 

determine the optimal combination of cutting parameters, 

considering constraints like surface roughness, spindle power, 

and feed rate. The evolution of these cutting parameters is 

depicted in Figures 8 to 10 respectively. The material removal 

rate, as illustrated in Figure 8, sees larger variations in the 

first 15 generations, and finally stabilizes at a rate of 7000 

mm3/min. The spindle power optimization results are shown 

in Figure 10. Experimental findings reveal a 33.8% reduction 

in machining time post-optimization, with the optimization 

also successfully meeting both constraints for spindle power. 
 

The system enabled a transition from time-based to 

prescriptive maintenance, reducing maintenance costs by 

15%. Overall productivity improved by 20% due to enhanced 

machine tool integrity. The dynamic programming-based 

framework demonstrated a significant reduction in tool wear 

and tear compared to traditional methods. This was evidenced 

by a 15% decrease in tool replacement frequency, leading to 

substantial cost savings in maintenance and downtime. The 

framework contributed to a remarkable improvement in 

machining accuracy, as indicated by a 10% reduction in 

dimensional variations across machined components. This 
outcome is crucial for industries requiring high precision and 

consistent product quality. A snapshot of the monitoring 

system and recommended remedial action is as shown in 

Figure 11. 

(A) 

(B) 
FIGURE 11  

(A) SNAPSHOT OF PYTHON DEVELOPED MONITORING SOFTWARE  

(B) SNAPSHOT OF RECOMMENDED REMEDIAL ACTIONS 

 

 

 

CONCLUSION AND RECOMMENDATIONS 
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The application of the developed systematic framework 

demonstrates promising results in enhancing operational 

integrity in machine tools as the optimized decision-making 

process leads to improved machining performance, reduced 

downtime, and minimized errors. The study provides 
empirical evidence supporting the effectiveness of the 

proposed framework in achieving operational excellence in 

diverse machining scenarios. It also addresses complex 

operational challenges in a structured and optimized manner. 

The successful implementation of the framework in the case 

study led to significant improvements in machine tools 

reliability, efficiency and performance depicting the integrity 

of machine tools. The critical role of operational integrity in 

manufacturing processes cannot be overstated, as it directly 

influences product quality, production efficiency, and overall 

system reliability. The incorporation of real-time data and 

feedback mechanisms allowed for continuous monitoring and 
adjustment, further contributing to the robustness of the 

system. 

 

To successfully implement the proposed dynamic 

programming framework, manufacturing industries need to 

identify the optimal substructure and overlapping 

subproblems. This is a unique problem that varies from one 

industry to another depending on the problem to be solved 

and the level of machine integrity desired.  The identification 

of the optimal substructure will enable the manufacturing 

industries to obtain optimal solutions to machine integrity 
problems by deriving optimal solutions from their 

subproblems. This implies that the major challenge of 

machine integrity to be solved must be broken down into 

smaller subproblems. The aggregation of the solution to the 

subproblems will provide insight into the solution to the 

overall problem of machine integrity. Furthermore, there is a 

need for manufacturing industries to adjust their business 

model to suit the requirements of the proposed framework. 

Some of these requirements include the Identification of the 

dynamic programming variables, definition of the recurrence 

relation, identification of the base case and selection of an 
iterative or recursive solution as well as the addition of the 

memoization and determination of the time complexity. 

 

Moreover, the dynamic programming approach facilitated the 

creation of optimized schedules for prescriptive maintenance, 

minimizing disruptions and ensuring the longevity of machine 

tools. This proactive maintenance strategy is a significant 

advancement in enhancing operational integrity and 

preventing potential issues that can escalate into critical 

failures. The findings contribute to the field of manufacturing 

by providing a viable approach to address the challenges 

associated with complex machining operations, paving the 
way for improved operational efficiency and reliability in 

machine tools. Through a meticulous analysis of the inherent 

challenges associated with machine tool operations, the 

framework addresses key issues, offering a comprehensive 

solution to elevate operational integrity to new heights. The 

dynamic programming approach enables real-time adaptation 

to varying machining conditions, minimizing the impact of 

uncertainties and disturbances. By optimizing decision-

making processes and control strategies, the framework 
ensures that machine tools can operate at peak performance 

under diverse operational scenarios. The ability to 

dynamically adjust parameters and trajectories based on real-

time feedback contributes to the prevention of tool wear, 

reduction of machining errors, and enhancement of overall 

process stability. Moreover, the systematic nature of the 

developed framework allows for easy integration into existing 

machining systems, paving the way for practical 

implementation across different industries. The findings 

provide practical insights into the effectiveness of dynamic 

decision-making in improving machine tool efficiency, 

adaptability, and overall operational integrity. 
 

Our research has laid a strong foundation for leveraging 

dynamic programming to enhance operational integrity; 

however, there are ongoing opportunities for additional 

exploration and development. This includes the incorporation 

of advanced technologies such as deep learning techniques. 

This forward-looking approach provides a roadmap for 

further advancements in the field, suggesting ways to improve 

machine tools' intelligence and adaptability. Combining 

dynamic programming with deep learning algorithms holds 

promise for further improving the adaptive capabilities of 
machine tools. Developing models that can learn and predict 

optimal control strategies based on historical data and real-

time information can contribute to more intelligent and 

autonomous machining systems. 
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