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ABSTRACT  
This research paper investigates the challenge of optimizing energy production and minimizing wastage in 

combined cycle power plants (CCPPs). The inability to store excess energy poses a significant hurdle in meeting 

consumer demand efficiently. Addressing this very pressing issue could lead to cost-effective electricity 

generation and improved consumer access to affordable energy. A potential solution, could potentially lie in 

accurately predicting power output based on various parameters affecting energy production. To explore this 

solution, we cunningly utilize machine learning (ML) plus ensemble ML algorithms in our study. The focal point 

of our research is the comparison between the performance of diverse ML methods in predicting CCPP power 

output. In particular, we evaluate the effectiveness of linear regression, ridge regression, lasso regression, 

decision tree, random forest and LGBM models in this context. The evaluation criteria for judging the models 

have been taken as mean square error, root mean square error and R
2
 score. The results showed that tuned 

random forest showed the best performance and untuned decision tree showed the least accuracy in our analysis. 

Index Terms - Combined Cycle Power Plant(CCPP), Machine learning, Linear Regression, Ridge Regression, 

Lasso Regression, Decision Trees, Random Forest, LGBM 

INTRODUCTION 
Combined-cycle power plants utilize both gas and steam turbines concurrently to generate electricity more 
efficiently compared to traditional simple-cycle plants. This method can yield up to 50% more electricity from the 
same amount of fuel. The waste heat produced by the gas turbine is harnessed to power the steam turbine, thereby 
increasing overall energy production[1]-[3]. 

The principle behind this is that the working fluid, or exhaust, in the first engine remains hot enough after its 
cycle is over for a second heat engine to use the exhaust heat to generate energy. The operation of a combined-
cycle power plant involves several key stages: 

 Gas Turbine cycle: A gas turbine, which is quite similar to a jet engine is an important component. By 
burning natural gas or maybe another fuel, it produces hot gasses that burn super fast. When these hot gasses 
are pointed across its blades, a turbine spins quite energetically. The generator links up with the turbine, 
converting the rotational energy into electrical power. 

 Waste heat recovery: The exhaust gases contain a considerable quantity of heat even after the gas turbine has 
completed its task. This "waste heat" is not squandered in a combined cycle plant. A heat recovery steam 
generator is used to channel the hot exhaust gases (HRSG). This apparatus extracts the residual thermal 
energy. 

 Steam Turbine cycle: The captured heat is used to produce steam from water. This steam is then directed over 
the blades of a steam turbine. Like the gas turbine, the steam turbine is connected to a generator, producing 
additional electricity. 

Predicting power output in advance allows for the efficient fulfillment of consumer needs. This research aims to 
compare the efficacy of various machine learning models in predicting power output from combined cycle power 
plants (CCPPs). Accurately estimating net energy production is crucial for providing low-cost energy. 
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LITERATURE REVIEW 
Salama Alketbi and Ali Bou Nassif compared four models including KNN, random forest etc. They conducted a 
study by employing three ML models which were K nearest neighbors, multilayer perceptron and random forest. 
In their research they found random forest as best performing model with RMSE of 3.3061[1] . Ali Alperen 
Islikaye and Aydin Cetin compared k-NN Regression, Simple Linear Regression, Linear Regression, Decision 
Trees, Bayesian Regression and RANSAC Regression. They concluded k-NN, Linear Regression and RANSAC 
regressions achieved the best performance among the other tested ML models [2] . C. Ahamed Saleel used deep 
learning models and conducted a comparative predictive analysis and trained four models of each neural network 
i.e ANN and DNN and found out that there output were in same range of accuracy [3] 

DATASET OVERVIEW 
The data has been collected through UCI machine learning repository and the link for that dataset is Link:- 
https://archive.ics.uci.edu/dataset/294/combined+cycle+power+plant 

The dataset in question is a a really rich collection of 9,568 data points, meticulously gathered during an extensive 
period of six years, from 2006 to 2011. This period marks a phase when the Combined Cycle Power Plant (CCPP) 
were operating at full capacity, making sure all data reflects conditions of peak performance and efficiency[4] . 
The operation of CCPPs are highly influenced by ambient conditions, which makes this dataset particularly 
valuable for understanding and optimizing power plant performance under varying environmental scenarios. 

I. Independent Variables (Features) 
The dataset features four critical ambient variables that are known to directly influence the efficiency and output 
of the power plant. These variables were continuously monitored and recorded as average values to capture the 
environmental conditions around the plant. The independent variables include: 

 Temperature (T): Recorded in degrees Celsius (°C), this specific variable represents the ambient temperature. 
Temperature is really a very crucial factor affecting the thermal efficiency of the power plant, as it strongly 
influences the air density and thus the amount of air available for combustion processes. 

 Exhaust vacuum (V): Measured in centimeters of mercury (cm Hg), the exhaust vacuum level is indicative of 
the turbine's operating condition. A really higher vacuum actually suggests more efficient turbine operation, 
leading to better overall plant efficiency. 

 Ambient pressure (AP): Measured in millibars (mbar) and reflects the atmospheric pressure surrounding the 
power plant. Ambient pressure can surprisingly affect the air intake of the combustion system and 
consequently the power output. 

 Relative humidity (RH): Expressed as a percentage (%), relative humidity measures the amount of moisture 
present in the air. Humidity can impact the cooling process within the plant and the density of the air, which in 
turn definitely affects combustion and power generation efficiency. 

Sensors positioned throughout the plant assist in capturing these values by taking a secondly record of ambient 
variables. 

II. Independent Variables (Features) 

 Net hourly energy output(PE): It is the net hourly electrical energy output measured in Mega Watts (MW) 

Table I 

Parameter AT V AP RH PE 

Total count 9568 9568 9568 9568 9568 
Mean value 19.651 54.305 1013.259 73.308 454.365 

Standard 
deviation 

7.452 12.707 5.938 14.600 17.066 

https://archive.ics.uci.edu/dataset/294/combined+cycle+power+plant
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Minimum 
value 

1.810 25.360 992.890 25.560 420.260 

Maximum 
value 

37.110 81.560 1033.300 100.160 495.760 

DATA ANALYSIS 

III. Correlations 
Correlations are used to determine the linear relationship between various variables in the picture. The value of 
correlation varies from -1 to +1. +1 indicates a perfect positive linear relationship between the variables. -1 
indicates a perfect negative linear relationship between the variables whereas 0 indicates no linear relationship 
between them. 

 
Figure I 

CORRELATION MATRIX 
Expanding on the observations regarding the relationship between different variables in the dataset, specifically 
ambient temperature (AT), exhaust vacuum (V), and power output (PE), provides deeper insights into the scenario 
of the power plant's operational efficiency. There is a strong negative linear relationship between ambient 
temperature (AT) and power output(PE), as indicated by the correlation coefficient, which is almost equal to -1. 
This indicates that the plant's power output tends to decrease as the surrounding temperature increases. The 
thermodynamic characteristics of the power generation cycle are responsible for this relationship. Increased 
outside temperatures reduces the effectiveness of the thermal cycle's cooling process, thereby lowering the power 
plant's overall efficiency. This effect is noticeable because it has a direct bearing on the plant's operating strategy, 
particularly when the outside temperature is high. 

The fact that the correlation coefficient between ambient temperature (AT) and exhaust vacuum(V) is nearly 1 
indicates a strong positive linear relationship between these two. This suggests that the exhaust vacuum tends to 
increase along with the ambient temperature. The thermodynamic laws that control how the power plant operates 
provide an explanation for this relationship. Increased exhaust gas volumes may be caused by warmer ambient 
temperatures, which could raise the vacuum levels in the turbine's exhaust system. 
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RESEARCH ALGORITHMS 

I. Linear regression 
Linear regression is a fundamental statistical and machine learning method used to model the relationship 
between a dependent variable and one or more independent variables. Finding a linear equation that most 
accurately predicts the dependent variable from the independent variables is the aim of linear regression. 

As our data contains more than one independent variables so we have used to multiple linear regression for 
predictive analysis. The linear equation that governs this model is: 

 Y= β0  + β1X1  + β2X2     +...+ βnXn 

 

(1) 

Here: 

Y =  Dependent variable (power output of the plant) 

Xi = Value of the ith   independent feature 

Βi = Value of ith coefficient 

Β0 = Intercept of the regression line fitted 

The first step in implementing the linear regression model is to find the possible values of β that minimize the 
difference between the observed values and predicted values by the model. The method of least squares, which 
finds the best-fitting line by minimizing the sum of the squares of the vertical distances (can also be termed as 
errors) of the points from the line, is usually used to accomplish this process. 

II. Ridge regression 
Ridge regression is an important machine learning technique that is necessary for developing robust models where 
multicollinearity and overfitting are likely to occur. This method modifies standard linear regression by including 
a penalty term proportionate to the square of the coefficients. It is particularly useful for managing highly 
correlated independent features. The main benefits of ridge regression over linear regression are better model 
generalization to perform better on testing data that hasn't been seen yet, reducing overfitting through adding 
complexity penalties, and managing multicollinearity by balancing the effects of correlated variables[5]. 

The residual sum of squares is defined as: 

 RSS =    

 

(2) 

In ridge regression a L2 term (Ridge penalty) is added at the last which is the sum of squares of coefficients. This 
discourages large coefficients, leading to a model where the influence of each feature on the target variable is kept 
as small as possible, thus reducing model complexity and helping to prevent overfitting. The loss function in ridge 
regression is as follows: 

 Loss(β) =  

 

(3) 

Here 

y = Actual value 

 = Predicted value 

P = Total number of independent features 
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Βj = Coefficient associated with jth feature 

λ = Regularization parameter 

When using ridge regression in practical situations, selecting the right regularization parameter, or lambda, is 
crucial. Choosing λ is an important choice. A model with an excessively large λ will be overly simplistic and may 
underfit the data (high bias). Should λ be excessively small, the model might overfit the data, resulting in a high 
variance, and the penalty effect would be negligible. Usually, cross-validation is employed to determine the 
optimal λ. 

III. Lasso regression 
Lasso regression, also known as Least Absolute Shrinkage and Selection Operator, is a kind of linear regression 
that, like ridge regression, has a regularization element in its objective function. The kind of penalty that is 
applied to the coefficients, however, is what really makes a difference. In addition to assisting in the reduction of 
overfitting, Lasso regression allows for variable selection by essentially eliminating certain variables from the 
model by shrinking their coefficients to exactly zero. 

The loss function for lasso regression is: 

 Loss(β) =  

 

(4) 

The lasso penalty promotes sparsity in the model coefficients. By penalizing the sum of the absolute values of the 
coefficients, lasso can drive some coefficients to zero, effectively selecting a simpler model that relies on fewer 
variables. 

IV. Decision tree 
Decision Trees are  non-linear predictive models widely used in machine learning for both classification and 
regression tasks. In our particular research we have used the decision tree regressor for predictive analysis. They 
behave like humans in decision-making processes by splitting data into branches at decision nodes, leading to a 
set of results represented by leaf nodes. In case of continuous value target variable like in our case, decision tree 
gives the average of all the values present in the leaf node. Decision Trees are intuitive and easy to understand, 
making them popular for a wide range of applications. 

It has a hierarchical tree structure consisting of a root node, branches, internal nodes, and leaf nodes [6]. 

 Starting at the root: At the root, the entire dataset is taken into account.To divide the data into subsets, the 
algorithm chooses a feature and a split point on that feature. 

 Best split determination: Based on factors such as variance reduction in regression, entropy in classification 
tasks; or Gini impurity the decision to split occurs at each node, maximizing the homogeneity of the resulting 
nodes is the aim. 

 Recursive splitting: This process of selecting the best feature and split points, then splitting the dataset, 
continues recursively for each child node. 

 Stopping criteria: When a stopping condition is satisfied, the recursion comes to an end. Might occur when 
the nodes attain a certain depth to avoid overfitting, when the number of samples reaches a minimum, or when 
more splitting does not increase homogeneity with the resulting nodes. All these hyperparameters have been 
tuned in this research to achieve a robust learning model. 

 Prediction: A decision tree uses the majority class of the samples inside it to predict the class of a leaf node in 
order to classify data. Regression forecasts a value by averaging the values within the leaf. 
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Hyperparameter tuning is also possible in decision trees where we can systematically search for the optimal set of 
hyperparameters which will give the best results from the model. In decision trees we can tune the parameters 
such as maximum depth of the tree, minimum number of samples required per leaf, minimum number of samples 
required to split the node. 

Without constraints, decision trees can grow deep with complex structures and get vulnerable to overfitting so it’s 
generally a good practise to tune the parameters to build a robust model that performs well on unseen data as well. 

V. Random forest 
Random forest is an ensemble learning method which operates by constructing multiple decision trees and merges 
them together to get a more accurate and stable prediction. Each tree in the forest is built from a random sample of 
the training data, making each tree a bit different from the others. This process is known as "bagging". In contrast, 
“boosting” is a term referred to the practise where weak learners are combined sequentially to create a strong 
learner with the highest accuracy. When building each tree, Random Forest randomly selects a subset of the 
features (variables) at each split in the decision tree. This adds to the diversity of the model, making it more 
robust and reducing the risk of overfitting. 

VI. Light gradient boosting machine (LGBM) 
Using tree-based learning algorithms, LGBM is an implementation of gradient boosting machines (GBM). LGBM 
distinguishes itself from other GBM frameworks by employing an innovative tree-building algorithm. Unlike 
most other boosting techniques, which grow trees horizontally (level-wise), it grows trees vertically (leaf-wise). 
LGBM will thus select the leaf with the largest delta loss to grow, enabling quicker convergence and increased 
efficiency[7][8]. 

Key features of LGBM are: 

 Efficiency and scalability: Gradient boosting gains significant efficiency and scalability improvements from 
LGBM. Because of its ease of handling large datasets, it is appropriate for situations where computational 
resources are scarce. 

 Leaf wise growth strategy: LGBM grows trees leaf-wise, in contrast to conventional LGBM frameworks that 
grow trees level-wise. This method can achieve much better accuracy with fewer trees because it minimizes 
more loss than the level-wise method. 

 Handling of categorical features: LGBM can naturally handle categorical features by representing them in a 
way that is more informative for the model, without the need for extensive pre processing to convert categories 
into numerical values. 

 Gradient-based One-Side Sampling (GOSS) and Exclusive Feature Bundling (EFB): These are the two 
main methods that LGBM uses to minimize the quantity of features and data instances without appreciably 
compromising accuracy. GOSS randomly samples the instances with small gradients while retaining all the 
instances with large gradients. In order to minimize the feature dimension, EFB bundles mutually exclusive 
features, or features that are rarely non-zero simultaneously. 

VII. Performance metrics 
To evaluate a model’s prediction accuracy we’ve chosen three performance checking metrics namely, MSE(Mean 
square error), RMSE(Root mean square error) and coefficient of determination R2. The mathematical 
representation is given below:- 

 MSE =  

 

(5) 
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 RMSE =  

 

(6) 

Here, 

n = Total number of samples 

yactual = Actual value of power output 

ypredicted =  Predicted value of power output 

After splitting the dataset into independent and dependent variable, the complete dataset is split into training data 
and testing data. 70% of total entries (6697) in dataset are used for training the models and 30% of the entries 
(2871) will be used to test all the models. 

RESULTS AND DISCUSSIONS 
First three models trained were the linear regression, ridge regression and lasso regression. Linear regression 
resulted in a MSE of 20.3683, RMSE of 4.5131 and a R2 score of 0.93 on testing data. Ridge regressor was 
trained and optimal value of  λ found out using GridSearchCV was 27.8. It resulted in a MSE of 20.3690, RMSE 
of 4.5132 and a R2 score of 0.93. Similarly lasso regressor was trained and optimal value of  λ was found to be 
10-6. Due to this very small value of  λ lasso regressor gave similar results to linear regressor. The MSE was 
found out to be 20.3683, RMSE of 4.5131 and a R2 score of 0.93. 

The decision tree regressor (without any hyperparameter tuning) gave an MSE of 0 on training data but MSE of 
24.5744 was found on testing data indicating an overfitted decision tree. To reduce the overfitting the model was 
tuned with pre selected options for various hyperparameters and after the tuning the MSE on training data was 
found to be 10.5317. On testing data the MSE was reduced to 16.1826, RMSE was found to be 4.0227 and a R2 
score of 0.944. 

 
Figure II Graph between Actual and Predicted Values by Linear Regressor 
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Figure III Graph between Actual and Predicted Values By Ridge Regressor 

 
Figure IV Graph between Actual and Predicted Values by Ridge Regressor 

 
Figure V Graph Between Actual and Predicted Values by Untuned  Decision Tree 
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We noticed many outliers in the above graph. An untuned decision tree predicted certain values quite far away 
from the accurate line thus increasing the errors. We could remove these outliers by fine tuning the decision tree 
(Table II). The graph for tuned decision tree is given below. 

 
Figure VI Graph Between Actual And Predicted Values By Tuned  Decision Tree 

 
Figure VII Graph between Actual and Predicted Values By Untuned Random Forest 

Random forest regressor without any hyperparameter tuning gave a MSE of 11.0897, RMSE of 3.3301 and a R2 
score of 0.96 on testing data. To reduce the MSE even more we attempted hyperparameter of the model. After 
hyperparameter tuning the MSE was reduced to 10.7825, RMSE was 3.2836 and a R2 score of 0.96. The best 
selected parameters are given in Table III. 
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Figure VIII Graph Between Actual and Predicted Values By Tuned  Random Forest 

LGBM model gave a MSE of 11.0215, RMSE of 3.3198 and a R2 score of 0.96. 

Table II Tuned Parameters for Decision Tree 
Tuning parameters Value 

selected 

Description 

ccp_alpha 0 To reduce the complexity of 
simulation 

criterion MSE MSE was chosen as criteria to 
evaluate the error 

max_features auto The number of features to consider 
when looking for the best split 

max_depth 9 The maximum depth of the tree 
min_impurity_decrease 0 Stop a split if the amount of split is 

less than zero 
max_leaf_nodes None Leaf nodes were not limited 

min_samples_split 8 The minimum required samples to 
split an internal node 

min_samples_leaf 2 The leaf node’s minimum samples 

Table III Tuned Parameters For Random Forest 
Tuning parameters Value selected Description 

ccp_alpha 0 To reduce the complexity of 
simulation 

criterion MSE MSE was chosen as criteria to 
evaluate the error 

max_features 0.6 The number of features to consider 
when looking for the best split 

max_depth 13 The maximum depth of the tree in 
RF 

min_impurity_decrease 0 Stop a split if the amount of split is 
less than zero 

max_leaf_nodes None Leaf nodes were not limited 
min_samples_split 2 The minimum required samples to 
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split an internal node 
min_samples_leaf 1 The leaf node’s minimum samples 

max_samples 1 No. of samples(%) to train each 
decision tree 

n_estimators 110 Number of trees in the forest 

CONCLUSION 
The best model with most accurate predictions was random forest. After hyperparameter tuning it gave a MSE of 
10.7825, RMSE of 3.2836 and a R2 score of 0.96. The other models in order of their prediction accuracy with the 
most accurate model coming first are as follows:-  LGBM, Random forest (Untuned), Decision tree (Tuned), 
Linear regression = Lasso regression, Ridge regression, Decision tree (Untuned). 
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