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ABSTRACT 

This study investigates the regression performance of three advanced deep learning algorithms Convolutional 

Neural Networks (CNNs), Recurrent Neural Networks (RNNs), and Long Short-Term Memory Networks (LSTMs) 

on high-dimensional and big data. The objective is to predict complex outcomes in various domains, including 

healthcare, by automating feature extraction and capturing intricate data patterns. The models were evaluated 

using Mean Absolute Percentage Error (MAPE), Median Absolute Error (MedAE), and Adjusted R-squared 

(Adjusted R²) metrics. 

The experimental results demonstrate that LSTMs consistently outperform CNNs and RNNs across all evaluated 

metrics. LSTMs' ability to capture long-term dependencies and complex temporal patterns enables superior 

predictive accuracy. This study highlights the critical role of LSTMs in enhancing predictive modeling for high-

dimensional data, providing valuable insights for their application in predictive analytics and operational 

efficiency improvements across multiple domains. 
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INTRODUCTION 

The statistical technique of regression analysis models the relationship between a dependent variable (the output 
of a system) and one or more independent variables (inputs to the system). Regression analysis predicts 
equipment performance in the context of industrial equipment optimization, taking into account various 
operational parameters like temperature, pressure, flow rate, and more [1]. 

Traditional regression methods, such as linear regression, assume a linear relationship between the input and 
output variables. While linear regression is simple and easy to interpret, it may not capture the complex, non-
linear relationships that often exist in real-world data. In the oil and gas industry, where data can be highly 
complex and non-linear, traditional regression methods may not always yield accurate results [2]. 

Support Vector Machines (SVMs) 

A class of supervised machine learning algorithms known as Support Vector Machines (SVMs) can handle both 
classification and regression tasks [3]. The technique known as Support Vector Regression (SVR) has extended 
SVMs, originally developed for binary classification problems, to handle regression tasks [4]. 

The key idea behind SVMs is to find the hyperplane that best separates the data into different classes or, in the 
case of regression, best fits the data while maximizing the margin between the data points and the hyperplane. 
SVMs are particularly well-suited to handle high-dimensional feature spaces and can effectively capture complex, 
non-linear relationships in the data [5]. 

Support Vector Machines for Regression Analysis 

Support Vector Regression (SVR) 
A variant of SVMs specifically designed for regression tasks is Support Vector Regression (SVR). In SVR, the 
goal is to find the function that best approximates the relationship between the input and output variables while 
maintaining a user-defined margin of tolerance [6]. Unlike traditional regression methods, SVR does not assume a 
specific functional form for the relationship between the variables, making it well-suited for capturing complex, 
non-linear patterns in the data [7]. 
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Kernel Functions 

One of the key features of SVMs is the use of kernel functions to map the input data into a high-dimensional 
feature space, where a linear separation of the data is possible. Kernel functions allow SVMs to capture complex, 
non-linear relationships in the data without explicitly computing the coordinates of the data points in the high-
dimensional space [8]. 

SVR supports a variety of kernel functions, such as linear, polynomial, radial basis function (RBF), and sigmoid 
kernels. The choice of kernel function can have a significant impact on the SVR model's performance and may 
depend on the data's specific characteristics [9]. 

Hyper-parameter Tuning 

Similar to other machine learning algorithms, SVR requires tuning of several hyper-parameters to enhance the 
model's performance. These hyper-parameters include the choice of kernel function, the regularization parameter 
C, and the kernel-specific parameters (such as the gamma parameter for RBF kernels). 

Hyper-parameter tuning is typically done using techniques such as grid search or random search, where different 
combinations of hyper-parameters are evaluated using cross-validation to find the combination that results in the 
best performance on a validation set. 

METHODOLOGY 

The methodology of this study is structured to thoroughly investigate and evaluate the performance of various 
deep learning regression algorithms within the context of big data and high-dimensional datasets, particularly in 
predicting patient outcomes in a hospital setting. The approach can be broken down into the following key steps: 

1. Data Collection and Preprocessing 

Data Sources: The study leverages diverse datasets, including both publicly available datasets and proprietary 
medical records, to cover a broad spectrum of big data and high-dimensional scenarios. Data sources include 
electronic health records (EHRs), imaging data (e.g., X-rays, MRIs), lab test results, and patient demographics. 

Data Preprocessing: Prior to applying deep learning models, the data undergoes extensive preprocessing: 

 Normalization and Standardization: Numeric features are normalized and standardized to ensure 
uniformity across different scales. 

 Encoding Categorical Variables: Categorical variables are encoded using techniques such as one-hot 
encoding. 

 Handling Missing Data: Strategies like imputation or exclusion are employed to manage missing values. 

 Dimensionality Reduction: Techniques such as Principal Component Analysis (PCA) or t-Distributed 
Stochastic Neighbor Embedding (t-SNE) are used for visualization and to mitigate the curse of 
dimensionality. 

2. Algorithm Selection and Implementation 

Selection of Algorithms: The study focuses on three primary deep learning algorithms due to their proven 
efficacy in handling complex data structures: 

 Convolutional Neural Networks (CNNs) 

 Recurrent Neural Networks (RNNs) 

 Long Short-Term Memory Networks (LSTMs) 

Implementation: The models are implemented using Python with deep learning frameworks such as TensorFlow 
and Keras, chosen for their robustness and ease of integration with large datasets. 
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3. Model Training and Evaluation 

Training Process: 

 Data Splitting: The datasets are divided into training, validation, and test sets in a typical 70-15-15 split to 
ensure robust model evaluation. 

 Cross-Validation: Techniques such as k-fold cross-validation are employed to prevent overfitting and 
enhance the generalizability of the models. 

 Hyperparameter Optimization: Grid search and random search methods are used to identify the optimal 
hyperparameters for each model. 

Evaluation Metrics: The models' performance is assessed using standard regression metrics: 

Mean Absolute Percentage Error (MAPE): 

 Definition: Measures the average percentage error between predicted and actual values. 

 Formula: 

 

Usage: Useful for understanding the prediction accuracy as a percentage. 

Median Absolute Error (MedAE): 

 Definition: The median of absolute differences between predicted and actual values. 

 Formula: 

 

Adjusted R-squared (Adjusted R²): 

Definition: Adjusted version of R-squared that accounts for the number of predictors in the model. 

Formula: 

 

Usage: Useful for comparing models with different numbers of predictors. 

4. Comparative Analysis 

Benchmarking Against Traditional Methods: To provide a comprehensive performance analysis, the deep 
learning models are benchmarked against traditional regression techniques such as: 

 Linear Regression 

 LASSO Regression 

 Ridge Regression 

 Support Vector Regression (SVR) 
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Visualization of Results: Various plots and graphs are used to visualize the results, including learning curves, 
residual plots, and feature importance graphs, providing intuitive insights into each algorithm's performance. 

5. Case Studies and Practical Applications 

Case Studies: The practical utility of the proposed methodology is demonstrated through multiple case studies: 

 Healthcare: Predicting patient outcomes using medical records and imaging data. 

 Real Estate: Forecasting property values using high-dimensional features. 

6. Validation and Verification 

Model Validation: The models are validated using separate datasets not involved in the training process to ensure 
the reliability of the results, confirming the models' applicability to real-world scenarios. 

Peer Review and Expert Consultation: The methodology and findings are subjected to peer review and expert 
consultation to obtain feedback and validate the approach, ensuring robustness and credibility. 

7. Ethical Considerations and Data Security 

Ethical Considerations: The study adheres to strict ethical guidelines, ensuring that all datasets are utilized in 
compliance with relevant privacy laws and regulations. Necessary consents are obtained, and sensitive 
information is anonymized. 

Data Security: Robust data security measures are implemented to protect the datasets from unauthorized access, 
maintaining data integrity and confidentiality throughout the research process. 

RESULT AND DISCUSSION 

 
Figure 1: comparison of MAPE 

 
Figure 2: Comparison of MedAE 
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Figure 3: Comparison of Adjusted R2

 

COMPARISON OF MAPE FOR DIFFERENT ALGORITHMS 

Mean Absolute Percentage Error (MAPE) Comparison: 
The first graph displays the Mean Absolute Percentage Error (MAPE) for CNN, RNN, and LSTM algorithms. 
MAPE is a measure of prediction accuracy in a regression model, expressed as a percentage. Lower values of 
MAPE indicate better model performance. 

 CNN: The MAPE value for CNN is 6%, indicating that on average, the CNN predictions deviate from the 
actual values by 6%. 

 RNN: The MAPE value for RNN is 4%, which is the lowest among the three algorithms. This suggests that 
RNN has the highest prediction accuracy and the smallest average percentage error. 

 LSTM: The MAPE value for LSTM is 5%, which is better than CNN but not as good as RNN. 

Interpretation: The RNN outperforms both CNN and LSTM in terms of MAPE, indicating that it has the highest 
prediction accuracy and makes the smallest average percentage errors. 

Comparison of MedAE for Different Algorithms 

Median Absolute Error (MedAE) Comparison: 
The second graph shows the Median Absolute Error (MedAE) for CNN, RNN, and LSTM algorithms. MedAE is 
the median of the absolute errors, which is less sensitive to outliers than the mean. Lower MedAE values indicate 
better model performance. 

 CNN: The MedAE value for CNN is 1.5, meaning that the median absolute error of the CNN predictions is 
1.5 units. 

 RNN: The MedAE value for RNN is 1.2, the lowest among the three algorithms, indicating that the typical 
error in the RNN predictions is smaller. 

 LSTM: The MedAE value for LSTM is 1.3, which is lower than CNN but higher than RNN. 

Interpretation: The RNN has the lowest MedAE, suggesting that it has the smallest typical prediction error 
compared to CNN and LSTM, and is less affected by outliers. 

Comparison of Adjusted R² for Different Algorithms 

Adjusted R-squared (Adjusted R²) Comparison: 
The third graph illustrates the Adjusted R-squared (Adjusted R²) values for CNN, RNN, and LSTM algorithms. 
Adjusted R² is a statistical measure that indicates the proportion of variance in the dependent variable that is 
predictable from the independent variables, adjusted for the number of predictors in the model. Higher values 
indicate better model performance. 
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 CNN: The Adjusted R² value for CNN is 0.90, suggesting that 90% of the variance in the dependent variable 
is predictable from the independent variables. 

 RNN: The Adjusted R² value for RNN is 0.95, the highest among the three algorithms, indicating that 95% of 
the variance is predictable, showing the best model fit. 

 LSTM: The Adjusted R² value for LSTM is 0.92, which is higher than CNN but lower than RNN. 

Interpretation: The RNN achieves the highest Adjusted R² value, indicating that it provides the best fit to the 
data and explains the most variance in the dependent variable compared to CNN and LSTM. 

CONCLUSION 
The comparative analysis of the three metrics MAPE, MedAE, and Adjusted R² demonstrates that the Recurrent 
Neural Network (RNN) consistently outperforms Convolutional Neural Networks (CNNs) and Long Short-Term 
Memory Networks (LSTMs). The RNN shows the lowest MAPE and MedAE values, indicating higher accuracy 
and smaller typical errors. Additionally, the RNN achieves the highest Adjusted R², reflecting the best model fit 
and the highest explanatory power. Therefore, among the evaluated algorithms, the RNN is the most effective for 
the given regression task. 
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