
ISSN: 2633-4828 Vol. 5 No.4, December, 2023

International Journal of Applied Engineering & Technology

Copyrights @ Roman Science Publications Ins. Vol. 5 No.4, December, 2023
 International Journal of Applied Engineering & Technology

 3348

THE STUDY OF COMPONENT BASED SOFTWARE INDUSTRY

Praveen Kumar1 and Dr. Kailash Patidar2

1Research Scholar, Computer Sciences & Application, Dr. A.P.J. Abdul Kalam University, Indore
2Research Supervisor, Computer Sciences & Application, Dr. A.P.J. Abdul Kalam University, Indore

1Praveenkr1@gmail.com and 2kailashpatidar123@gmail.com

ABSTRACT
Cost, timeframes, and quality are three of the most important factors in any software development process.

Professional, technically competent labor and the constant evolution of technology account for the bulk of the

price tag. Software projects can benefit greatly from schedule planning. Rapid software development is essential,

as is meeting project deadlines. To compete in today's software business industry, the software development

process has had to evolve along with the advancement of technology. Too many long-held assumptions about the

software development process have been confirmed by experience and observation. However, in the long run, the

cost-benefit analysis of the development process shows that not all forms of recursive reuse are worthwhile. Many

large, well-known corporations have tried and failed to apply an improvement process strategy, while others keep

trying but fail to fully consider all of the potential advantages. Many businesses still choose for laborious

software engineering despite the fact that the upgrade's result is detrimental to their bottom line. The software

business has seen a recent revolution due to a move toward a more modular approach, known as component-

based software development. When different software components are joined, they form a whole with their own

unique capabilities. The overall quality of a software product is equivalent to the quality of its constituent

elements.

Keywords: Software, Development, Business, Quality, Product.

I. INTRODUCTION
The software industry includes businesses for development, maintenance and publication of software that are
using different business models, mainly either "license/maintenance based" (on-premises) or "Cloud based" (such
as SaaS, PaaS, IaaS, MBaaS, MSaaS, DCaaS etc.). The industry also includes software services, such as training,
documentation, consulting and data recovery. The software and computer services industry spends more than 11%
of its net sales for Research & Development which is in comparison with other industries the second highest share
after pharmaceuticals & biotechnology.

The software industry has grown significantly during the last three to four decades. Automobiles, embedded
systems, online commerce, and service industries like banking, telecommunications, and hotels all need software
solutions. Cost, timeframes, and quality are three of the most important factors in any software development
process. Professional, technically competent labor and the constant evolution of technology account for the bulk
of the price tag. Software projects can benefit greatly from schedule planning. Rapid software development is
essential, as is meeting project deadlines. The past of software development is not encouraging, since many
missed deadlines can be seen across the field (Yu, 2009). Today, software quality is a central credo alongside cost
and schedule for creating superior software solutions.

Since the 1980s, several software businesses have complained about issues with the software development
process, claiming that a "software crisis" has taken place. Robert Glass says, "I look at my failure tales and see
exception reporting, spectacular failures in the middle of numerous triumphs, a cup that is [now] almost full."
While the software industry has made great strides so far, there is still room for improvement in the software
development process (Glass,1998).

In the software development process, one of the biggest obstacles is making sense of and applying the necessary
domain logic to the existing body of information (Hidalga et al, 2008).

mailto:Praveenkr1@gmail.com
mailto:kailashpatidar123@gmail.com

ISSN: 2633-4828 Vol. 5 No.4, December, 2023

International Journal of Applied Engineering & Technology

Copyrights @ Roman Science Publications Ins. Vol. 5 No.4, December, 2023
 International Journal of Applied Engineering & Technology

 3349

A fast data center or cutting-edge hardware innovations won't make up for ignoring the work of a person to better
the software development process (Brian, 2012).

Although open-source requires more skilled man power, it is the new doorway for the software business to serve
consumer requirement, along with SaaS.

To compete in today's software business industry, the software development process has had to evolve along with
the advancement of technology. Too many long-held assumptions about the software development process have
been confirmed by experience and observation. However, in the long run, the cost-benefit analysis of the
development process shows that not all forms of recursive reuse are worthwhile. Many large, well-known
corporations have tried and failed to apply an improvement process strategy, while others keep trying but fail to
fully consider all of the potential advantages. Many businesses still choose for laborious software engineering
despite the fact that the upgrade's result is detrimental to their bottom line.

II. LITERATURE AND REVIEW
Dr-Rafiq Ahmad Khan et al (2022) Security is one of the most critical aspects of software quality. Software
security refers to the process of creating and developing software that assures the integrity, confidentiality, and
availability of its code, data, and services. Software development organizations treat security as an afterthought
issue, and as a result, they continue to face security threats. Incorporating security at any level of the Software
Development Life Cycle (SDLC) has become an urgent requirement. Several methodologies, strategies, and
models have been proposed and developed to address software security, but only a few of them give reliable
evidence for creating secure software applications. Software security issues, on the other hand, have not been
adequately addressed, and integrating security procedures into the SDLC remains a challenge. The major purpose
of this paper is to learn about software security risks and practices so that secure software development methods
can be better designed. A systematic literature review (SLR) was performed to classify important studies to
achieve this goal. Based on the inclusion, exclusion, and quality assessment criteria, a total of 121 studies were
chosen. This study identified 154 security risks and 424 best practices that help software development
organizations to manage the security in each phase of the SDLC. To pursue secure SDLC, this study prescribed
different security activities, which should be followed in each phase of the SDLC. Successful integration of these
activities minimizing effort, time, and budget while delivering secure software applications. The findings of this
study assist software development organizations in improving the security level of their software products and
also enhancing their security efficiency. This will raise the developer’s awareness of secure development practices
as well.

Filipe Arantes Fernandes et al (2022) Context: In the Software Engineering Education (SEE) context, virtual
worlds have been used in order to improve learning outcomes. However, there is a gap in the literature in order to
characterize the use of the Metaverse for SEE. Objective: the objective of this work is to characterize the state-of-
the-art of virtual worlds in SEE, provide a research agenda to fill the limitations found, and propose an
architecture of the Metaverse for SEE. Method: we conducted a systematic literature review, and we established 8
research questions that guided the study, as well as performed data extraction. Results: we report on 17 primary
studies that deal mostly with immersive experiences in SEE. The results show some limitations: few SE topics are
covered; most applications simulate environments and do not explore new ways of viewing and interacting; there
is no interoperability between virtual worlds; learning analysis techniques are not applied; and biometric data are
not considered in the validations of the studies. Conclusion: although there are virtual worlds for SEE, the results
indicate the need to develop mechanisms in order to support the integration between virtual worlds. Therefore,
based on the findings of the review, we propose an architecture of the Metaverse for SEE (MetaSEE). We hope
that this work can motivate promising research in order to foster immersive learning experiences SE in the
Metaverse.

Anil Jadhav et al (2022) Software development effort and cost estimation (SDECE) is one of the most important
tasks in the field of software engineering. A large number of research papers have been published on this topic in

ISSN: 2633-4828 Vol. 5 No.4, December, 2023

International Journal of Applied Engineering & Technology

Copyrights @ Roman Science Publications Ins. Vol. 5 No.4, December, 2023
 International Journal of Applied Engineering & Technology

 3350

the last have decades. Investigating research trends using a systematic literature review when such a large number
of research papers are published is a very tedious and time-consuming task. therefore, in this research paper, we
propose a generic automated text mining framework to investigate research trends by analyzing the title, author’s
keywords, and abstract of the research papers. the proposed framework is used to investigate research trends by
analyzing the title, keywords, and abstract of select 1015 research papers published on SDECE in the last have
decades. We have identified the most popular SDECE techniques in each decade to understand how SDECE has
evolved in the past decades. It is found that artificial neural network, fuzzy logic, regression, analogy-based
approach, and COCOMO methods are the most used techniques for SDECE followed for optimization, use case
point, machine learning, and function point analysis. • e NASA and ISBSG are the most used dataset for SDECE.
• e MMRE, MRE, and PRED are the most used accuracy measures for SDECE. Results of the proposed
framework are validated by comparing it with the outcome of the previously published review work and we found
that the results are consistent. We have also carried out a detailed bibliometric analysis and metareview of the
review and survey papers published on SDECE. this research study is significant for the development of new
models for cost and effort estimations.

Filipe Arantes Fernandes et al (2019) This paper proposes to present an approach to obtain evidence about the
influence of immersion in improving learning outcomes in Software Engineering. An immersive platform has
been developed and a preliminary study with 6 subjects has been conducted to identify usability issues in an
immersive application prototype to support the comprehension of Object-Oriented Paradigm theoretical concepts.
Although the main problems are related to the affordances of the virtual world and the interaction between user
and application, there was evidence that immersive technologies have the potential to support Software
Engineering Education.

Dr-Rafiq Ahmad Khan et al (2022) Software security has become increasingly important because the malicious
attack and other hacker risks of a computer system have grown popularity in the last few years. As a result,
several researchers have examined security solutions as early as the requirement engineering phase. With the
growth of the software business and the internet, there is a need to understand the security risks against each
phase of the software development life cycle (SDLC). This study aims to empirically investigate and prioritize the
risks that could negatively impact the software security aspects of SDLC in the context of global software
development (GSD). To achieve the study objectives, we conducted an industrial empirical study to determine the
impact of software security threats against each phase of SDLC. Furthermore, the fuzzy analytical hierarchy
process (FAHP) was used to prioritize the list of software security risks against the SDLC. The results and
analysis of this study provide a ranked-based decision-making framework, which assists practitioners in
considering the most critical security risks on priority. The results show "improper plan for secure requirement
identification, inception, authentication, authorization, and privacy," "lack of threat models updating," "lack of
output validation," "lack of certification in the final release and archive," and "spoofing" as the top-ranked
security risks of SDLC in GSD. In addition, the application of FAHP is novel in this domain as it is helpful to
address multicriteria decision-making problems.

III. SOFTWARE PROCESS IMPROVEMENT
SPI encompasses the following steps in the software development process:

(a) Examine and revise key performance indicators of a software development lifecycle.

(b) Find the worth of the approach's effective parameters by calculating how hard it is to use it to create software.

(c) Following the above examination, the best strategy for progress may be put into action. This SPI strategy
redraws the conventional method of software development into one that is more malleable, adaptable, and
trustworthy.

In spite of the time and work involved, the technique for software enhancement ultimately pays off. The effective
software parameters might be reduced as a consequence of process improvements. There will be less chance of

ISSN: 2633-4828 Vol. 5 No.4, December, 2023

International Journal of Applied Engineering & Technology

Copyrights @ Roman Science Publications Ins. Vol. 5 No.4, December, 2023
 International Journal of Applied Engineering & Technology

 3351

flaws or bugs making through to the end user, less money spent on software upkeep, less time spent on quality
problems, and fewer hidden expenses due to software delivery delays.

The technique for software enhancement is time-consuming and labor-intensive, but it pays off in the long run. As
a consequence, more efficient procedures result in fewer requirements for software parameters. Also, it lessens the
likelihood that problems will be passed on to customers, cuts down on the price of software upkeep, lessens the
amount of time spent fixing quality problems, and lessens the indirect costs associated with delivering software
late.

The Rout T 2002 (Terry, 2002)

SPI framework elements are described in figure 1.

Figure 1: Elements of an SPI framework (Rout T, 2002)

Recently, SPI has been adopted as a regular practice by most major corporations. Contrary to popular belief, a
significant amount of software development for major businesses is handled by small enterprises with a modest
number of employees. It might be challenging for smaller companies to modify their SPI operations. Standard
procedures for developing software for big corporations and small businesses are vastly different. It is typical for
a smaller business to have fewer formal procedures and a looser structure. Even though it is proud and values
originality, the SPI framework is sometimes criticized for being too bureaucratic and overthinking. As a result,
process optimization is vital for businesses of all sizes. In small businesses, there may not be enough resources to
fully execute an SPI structure. The execution of the SPI framework requires the commitment of enough resources,
both monetary and human. As a result, it is important for software companies of all sizes to take into account the
commercial rationale for SPI. Only once its advocates have shown that they can exert significant financial power
are SPI projects authorized and put into action (Pino et al., 2008). Examining and implementing technical benefits
(such fewer field defects, improved craftsmanship, cheaper maintenance costs, or shorter market time)
demonstrates monetary leverage. Return on investment must be shown for SPI expenditures.

IV. SOFTWARE ENGINEERING
The term "software engineering" refers to a group of practices in which an engineering mindset is applied to the
creation and upkeep of software systems. By "technology," we mean everything from basic ideas to whole
systems. To quote the IEEE standard definition of software engineering:

Software Engineering is the application of a systematic, disciplined, quantifiable approach to the development,

operation and maintenance of software; that is, the application of engineering to software (IEEE, 1990).

ISSN: 2633-4828 Vol. 5 No.4, December, 2023

International Journal of Applied Engineering & Technology

Copyrights @ Roman Science Publications Ins. Vol. 5 No.4, December, 2023
 International Journal of Applied Engineering & Technology

 3352

In this context, Philippe Kruchten recommends distinguishing qualities of software engineering over Civil,
Electrical, and Mechanical engineering, as follows: -

 Software Engineering may be challenging to study in its theoretical form due to a lack of foundational ideas
regarding the software development process.

 The effect of software modifications is hard to estimate, but they are encouraged.

 The fast pace of technological change prevents accurate evaluation of emerging technology.

 Note that when estimating the price of software, you should not include in time spent resolving bugs, making
upgrades, or redesigning the system (Basili et al., 2008).

New software development methodologies, Open Source Software (OSS), Commercial Off-The-Shelf (COTS),
and a more systematic synthesis and aggregation of international domains are some of the current issues in
software engineering (Basili et al., 2008).

Structured, Object-Oriented Analysis (OOA), Agile, and Component-Based Software Engineering are just few of
the various methods used to create software (CBSE).

Top-down design is the foundation of the structured programming paradigm. Here, the whole program is broken
down into smaller components called modules. By separating code into modular chunks, structured programming
makes it easier to fit more code into memory and allows for more code reuse. Research by Darcy and colleagues
(2005) Mathematicians Corrado Bohm and Guiseppe Jacopini used only sequences, choices, and loops to prove
the idea of structural programming.

The Object Oriented methodology is a powerful tool for addressing practical issues. The mechanisms for reusing
code blocks, designs, and analyses are all provided by object-oriented programming. System design, class design,
interface design, and database design are the four components that make up the OO approach's design process
(Booch, 1996). Classes and objects play a central role in the OO methodology at all stages from analysis to
implementation. Object-oriented languages like C++ and Java provide a variety of useful features, including
encapsulation, inheritance, data binding, and polymorphism.

Agile software development is an iterative process that emphasizes incremental definition, design, and
implementation and offers comprehensive testing and development (Sommerville,2010; Talby et al., 2006). One
of the most well-known approaches of Agile software development is known as E Xtreme Programming (XP)
(Auer and Miller, 2001).

V. COMPONENT-BASED SOFTWARE ENGINEERING
Around the turn of the millennium, the term "component-based software engineering" (CBSE) began to circulate.
Because software developers aren't happy with the results of object-oriented reuse analysis, this method was
developed. Loosely connected software component integration entails the definition, selection, implementation,
retrieval, and integration of such components into applications.

Through the use of integration mechanisms such as interfaces, pipes, and glue code, CBSE increases the degree to
which software may be reused by building applications from pre-existing software components. Figure 2 shows
the main steps of Sommerville's CBSE method (2010).

ISSN: 2633-4828 Vol. 5 No.4, December, 2023

International Journal of Applied Engineering & Technology

Copyrights @ Roman Science Publications Ins. Vol. 5 No.4, December, 2023
 International Journal of Applied Engineering & Technology

 3353

Figure 2: Component-based Software Engineering Process

VI. BENEFITS OF COMPONENT-BASED SOFTWARE ENGINEERING

1. Reduced Development Cost: Component-based Through the use of software reuse principles, Software
Engineering helps keep development costs down. Basically, it eliminates the necessity to create software from
scratch. Consequently, this reduces waste and, by extension, costs.

2. Reduced Development Time : All software components are thoroughly tested and debugged before
development even begins, which is why CBSE cuts down on development time. Therefore, while using
software components, the time needed for testing and debugging the application is reduced.

3. Easy To Manage Software Complexities : All software components in component-based software
engineering are pre-tested, certified, and documented, making it easy to handle the intricacies of software
development. We can quickly detect and correct any discrepancies.

4. Improved Quality of Software Development Process : There are several opportunities for mistake detection
and correction throughout the process of reusing software components. That's why the software we make is so
reliable.

5. Reduced Defect Density: The defect density is obtained by dividing the total number of defects by the total
number of lines of code. Because CBSE uses pre-tested and configured software components, the resulting
applications have a lower defect density than those whose design did not make use of reusable software
components.

VII. CONCLUSION
Recently, a shift to a more modular approach known as component-based software development has sparked a
revolution in the software industry. Software is made up of separate, specialized modules that are then combined.
The overall quality of a piece of software is determined by the sum of its parts. The software sector relies on
relatively new technology and is likely to be more aware of the need to innovate than other industries. It is not
surprising, then, that the firms surveyed or studied as cases all seemed explicitly aware of the knowledge intensive
services activities they needed and used. In particular, they were aware of the need to retain and build on in-house
capabilities, and they recognised that purchased services were a source of new capabilities. Most firms had
explicit mechanisms for absorbing and developing the new knowledge that the services brought them.

REFERENCE
1. Khan, Dr-Rafiq & Khan, Siffat Ullah & Khan, Habib & Ilyas, Muhammad. (2022). Systematic Literature

Review on Security Risks and its Practices in Secure Software Development. IEEE Access. 10. 5456-5481.
10.1109/ACCESS.2022.3140181.

2. Fernandes, Filipe & Werner, Claudia. (2022). A Systematic Literature Review of the Metaverse for Software
Engineering Education: Overview, Challenges and Opportunities. 10.13140/RG.2.2.25341.64489.

ISSN: 2633-4828 Vol. 5 No.4, December, 2023

International Journal of Applied Engineering & Technology

Copyrights @ Roman Science Publications Ins. Vol. 5 No.4, December, 2023
 International Journal of Applied Engineering & Technology

 3354

3. Anil Jadhav, Mandeep Kaur, and Farzana Akter (2022) Evolution of Software Development Effort and Cost
Estimation Techniques: Five Decades Study Using Automated Text Mining Approach. Hindawi
Mathematical Problems in Engineering Volume 2022, Article ID 5782587, 17 pages
https://doi.org/10.1155/2022/5782587

4. Fernandes, Filipe & Werner, Claudia. (2019). Towards Immersive Software Engineering Education. 7-8.
10.5753/svr_estendido.2019.8451.

5. Khan, Dr-Rafiq & Khan, Siffat Ullah & Azeem Akbar, Muhammad & Alzahrani, Musaad. (2022). Security
risks of global software development life cycle: Industry practitioner's perspective. Journal of Software:
Evolution and Process. 10.1002/smr.2521.

6. L. S. Adriaanse and C. Rensleigh, “Web of science, scopus and Google scholar,” 0e Electronic Library, vol.
31, no. 6, pp. 727–744, 2013.

7. p. Mongeon and A. Paul-Hus, “'e journal coverage of web of science and scopus: a comparative analysis,”
Scientometrics, vol. 106, no. 1, pp. 213–228, 2016.

8. B. Nie and S. Sun, “Using text mining techniques to identify research trends: a case study of design
research,” Applied Sciences, vol. 7, no. 4, p. 401, 2017.

9. B. Sigweni and M. Shepperd, “Feature weighting techniques for CBR in software effort estimation studies: a
review and empirical evaluation,” in Proceedings of the 10th International Conference on Predictive Models
in Software Engineering, pp. 32–41, Torino, Italy, 2014, September.

10. H. Rastogi, S. Dhankhar, and M. Kakkar, “A survey on software effort estimation techniques,” in
Proceedings of the 2014 5th International Conference-Confluence the Next Generation Information
Technology Summit, pp. 826–830, IEEE, Noida, India, September, 2014.

11. F. Gonzalez-Ladr ´ on-de-Guevara and M. Fern ´ andez-Diego, ´ “ISBSG variables most frequently used for
software effort estimation: a mapping review,” in Proceedings of the 8th ACM/ IEEE International
Symposium on Empirical Software Engineering and Measurement, pp. 1–4, New York, USA, September,
2014.

12. H. Hamza, A. Kamel, and K. Shams, “Software effort estimation using artificial neural networks: a survey of
the current practices,” in Proceedings of the 2013 10th International Conference on Information Technology:
New Generations, pp. 731–733, IEEE, Las Vegas, NV, USA, April, 2013.

13. P. Faria and E. Miranda, “Expert Judgment in Software Estimation during the Bid Phase of a Project--An
Exploratory Survey,” in Proceedings of the 2012 Joint Conference of the 22nd International Workshop on
Software Measurement and the 2012 Seventh International Conference on Software Process and Product
Measurement, pp. 126–131, IEEE, Nagoya, Japan, Octobar, 2012.

14. M. El Bajta, A. Idri, J. L. Fernandez-Alem ´ an, J. N. Ros, and ´ A. Toval, “Software cost estimation for
global software development a systematic map and review study,” in Proceedings of the 2015 International
Conference on Evaluation of Novel Approaches to Software Engineering (ENASE), pp. 197–206, Barcelona,
Spain, April, 2015.

15. M. Saroha and S. Sahu, “Tools & methods for software effort estimation using use case points model—a
review,” in Proceedings of the International Conference on Computing, Communication & Automation, pp.
874–879, Barcelona, Spain, April, 2015.

https://doi.org/10.1155/2022/5782587

