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ABSTRACT 
Quality in software is a crucial element, given the rising demand. As software designs grow in complexity, the 
likelihood of encountering defects increases. Testers play a key role in enhancing software quality by addressing 
these defects. Consequently, defect analysis becomes instrumental in the overall improvement of software quality. 
The intricate nature of software contributes to a greater occurrence of defects, making manual detection a time-
intensive endeavor. This challenge has motivated researchers to devise methods for automated software defect 
detection. In this paper a novel deep learning model SDDAIDL (Software Defect Detection by Artificial Immune 
& Deep Learning) was developed by optimizing the input software features. Two stage feature optimization was 
done first is artificial immune system and other was convolution, maxpooling operations. Filter and transformed 
features were used for the learning of fully connected neural network. Experiment was done on different software 
feature sets and result shows that proposed model has increase the evaluation parameter values. 

Index Terms: Deep Learning, Software Defect Detection Genetic Algorithm, Feature optimization. 

I. INTRODUCTION 

The software business is dynamic because it responds to consumer demand and advances in technology. Since 
people are responsible for the bulk of software development, errors are to be expected [1]. Planning, analyzing, 
designing, implementing, testing, integrating, and maintaining a software system nowadays is no easy task. A 
software engineer's job entails meeting strict deadlines and spending constraints while creating complex software 
systems. Software engineering (SE) professionals and academics have worked on improving the quality and 
decreasing the cost of the software development life-cycle for decades. Numerous academic works have been 
produced in pursuit of better, more efficient methods of pinpointing potential problem spots [2]. However, the 
difficulty rises as the size of the code-base continues to expand. 

When creating software, it's fairly uncommon for errors to arise due to things like sloppy logic or inadequate data 
handling, both of which force developers to start again and drive up the price of maintenance. The decline in 
satisfied customers may be traced back to all of these factors. In this paradigm, problems are prioritized by 
severity, and remedial and preventative measures are implemented accordingly [3]. 

Defects in software have the potential to significantly lower the quality of the product, which is an issue for both 
consumers and programmers. Manual software detection becomes a difficult and time-consuming operation due 
to the increasing complexity of program designs and technologies [4]. Because of the high stakes involved, 
expanding the knowledge base and developing novel defect prediction and modeling approaches is of utmost 
importance in the software engineering industry, which is particularly vulnerable to financial losses caused by 
defects. To understand how to use machine learning software defect prediction to enhance quality and save costs 
during software development. This has made research into automated software identification a priority for many 
businesses in recent years. Many research have examined various ML methods, such as Bayesian learning, neural 
networks, Support Vector Machine (SVM), and so on, with the goal of creating defect prediction models for 
certain classes. But what you need to know is that all of these methods have varying degrees of success with 
different types of data sets. In order to address this issue, the authors of this research presented a deep learning 
model [5]. 
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Here's how the rest of the paper is laid out: In Section 2, we take a quick look at the many different defect models 
for software that have been presented. In addition, the SDDAIDL model is fully described with block diagram and 
explanation in Section 3. Section 4 describes the experiment, whereas Section 5 discusses the findings and draws 
conclusions. 

II. RELATED WORK 
In [6], S. M. Rifat et al. present an enhanced YOLOv3 network model and generate a large-scale bearing-cover 
defect dataset. The proposed model comprises four submodels: a Bottleneck Attention Network, serving as an 
attention prediction subnet model, a large-size output feature branch and a defect localization subnet model. This 
work devise a comparison experiment under unusual lighting circumstances to assess the new model's 
generalizability, robustness, and applicability. To test the reliability of the suggested modules, we devise an 
ablation experiment. 

Combinations of machine learning techniques have been proven to be useful for software fault prediction by Z. 
Zheng et al. in [7]. Intriguingly, the mean accuracy of a classifier built from an Artificial Neural Network and a 
Random Forest is 91%. The results of this study prove that Machine Learning may be an effective tool in the field 
of computer programming. 

To ensure that projects of varying sizes are handled with the same degree of detail, A. S. Kurdija et al. in [8] 
developed a model based on a convolutional graph for defect detection. The model analyzes the nodes and edges 
in the abstract syntax tree of a software module's source code to determine whether or not the module is flawed. 

In order to gain a more comprehensive understanding of how software attributes impact the effectiveness of deep 
learning-based software defect predictors, D. -L. Miholca et al. conducted a thorough investigation, as detailed in 
[9]. Going beyond the extensive feature sets commonly found in literature for identifying defect-proneness, we 
enhance our approach by incorporating conceptual software characteristics that encapsulate the semantics of the 
source code. To automatically engineer these conceptual properties. 

A hybrid Deep Neural Network model for improved software bug prediction is presented by Kajal Tameswar et 
al. in [10]. To better optimize the Deep Neural Network design, a number of different Nature-Inspired Algorithms 
have been used to the problem of exploring the hyperparameter solution space. Using a NASA dataset, 
researchers have undertaken experiments to try and anticipate software faults. 

In [11], Jingyu Liu et al. integrate the codes from several computer languages with information derived from 
natural language literature in order to improve the semantic characteristics. an innovative approach for software 
defect prediction that integrates the Transformer architecture with a multi-channel CNN. The model leverages a 
pretrained language model and a CNN-based classifier to generate context-aware representations and capture the 
local correlation of sequences. 

Using a feature set consisting of classes, objects, codes, etc., Tanujit et al. [12] suggested a new hybrid approach 
for locating software flaws. In order to improve the efficacy of feed-forward neural network models, the authors 
of this research created a hellinger tree. The Hellinger net model employs a very asymmetric distance for dealing 
with class problems. The adoption of a tree topology for neural network learning is effective in general. This 
model's functioning accuracy might be improved by additional feature reduction. 

III. PROPOSED METHODOLOGY 

In this study, we present a methodology for detecting defects in software at a late stage of development. Dataset 
processing and feature clustering are the initial steps in the proposed SDDAIDL (Software Defect Detection by 
Artificial Immune & Deep Learning) methodology. In Fig. 1 we saw a block diagram depicting the interaction 
between the various modules. Table 1 contains a selection of the notation used to describe the suggested model. 
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Table 1: Notation used in SDDAIDL. 
Notation Meaning 
SDRD Software Dataset Raw Dataset 

PD Processed Data 
ND Normalized Data 

J Jth Column in Data 
F Number of Features 
Fs Selected Features 
Fr Rejected Features 
A Antibody 

AF Fitness 
Ff Filter feature 
B Block of software session 
C Convolution 
s Stride 
p Padding 
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Fig. 1 Proposed SDDAIDL block diagram. 

Raw Dataset Cleaning Due to the original data's unstructured nature, the cleaning process involved converting 
the data to meet the specific environment's requirements for rows and columns. The dataset was cleaned up by 
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removing things like software versions, class names, function names, etc.  Column average or zero count was 
used to fill in missing data or cells with null values [13]. Some numbers in the paper's examples ranged from zero 
to one ('Data Access Metrics,' 'Cohesion across Methods,' etc.), while others ranged in the hundreds ('Inheritance 
Depth,' 'Measure of Aggregation,' etc.). For example, the amount of lines of code might be thousands long. Each 
column's values were sent through Eq. 1 individually to complete the normalization [14]. 

---------------Eq. 1 

The values in columns PC are normalized from zero to one using Eq. 1. The normalize function mitigates the bias 
that might arise while training on a limited set of features. In the case of feature selection with uneven values, the 
leaning is diminished regardless of which column is chosen (high or low range). 

Clustering of Features 

The suggested approach employs an artificial immune system [15] that has been tweaked to successfully cultivate 
input processed feature sets. 

The defect class is determined by analyzing a matrix of characteristics extracted from the preprocessed dataset. 
This study employs an artificial immune system technique to compile such a feature ontology. This method 
updates the population in two ways, both of which change the chromosomal values in a single iteration: by 
cloning and by mutation. The chances of arriving at a successful feature ontology solution improve with each 
iteration thanks to a random cloning and mutation stage. 

Generate Antibodies 
To generate antibodies in the context of this study, a random set of features is formulated using a Gaussian 
function, resulting in a binary feature set composed of 0s and 1s. This binary feature set is similar to an antibody 
in the genetic algorithm, where the presence of a feature is denoted by 1, and its absence is denoted by 0. Within 
this framework, each feature in the population is equipped with two flags: 1 signifies presence, while 0 indicates 
absence. Additionally, the population is defined by lower and upper bounds, specifying the presence and absence 
of features, respectively. This closes in the generation of m antibodies (denoted as A), representing the initial 
population, shown in Eq. 2. 

AGenerate_Antibody(m) ---------------Eq. 2 

Affinity 

The concept of affinity is introduced to evaluate the effectiveness of antibodies within the population. Affinity is 
gauged by constructing a temporary deep learning model, and defect detection is performed based on the trained 
model to estimate accuracy. The accuracy value estimate as per Eq. 3, specifically in correctly detecting the defect 
class, serves as the affinity of the antibody. 

AfAffinity(A) ---------------Eq. 3 

Affinity 
Input: A, PD 

Output: Af 

1. Loop 1:m 

2. [Fs Fr]A[m] 

3. TModelTrainCNN(Fs, PD) 

4. Af[m]TestCNN(PD) 

5. End 
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Cloning 
Cloning, a crucial step in the process, involves deriving the best solution (Ab) from the population by considering 
the affinity value of each antibody. In the cloning phase, the status of a few features in the best antibody, Ab, is 
randomly altered. This alteration may involve changing the status from present to absent or vice versa, ultimately 
leading to the cloning of the model. 

ACloning(Ab, A) ---------------Eq. 4 

Hypermutation 
The chromosomes undergo a hypermutation procedure, wherein they are mutated in inverse proportion to their 
affinity. The clones derived from the best antibody undergo the least mutation, while those from the poorest 
antibody undergo the most significant mutation. The hypermutation process can exhibit uniform, Gaussian, or 
exponential characteristics. Following mutation, an analysis is conducted on both the clones and their original 
antibodies, and the best N antibodies are selected for the subsequent iteration in the evolutionary algorithm. 

AHypermutation(A) ---------------Eq. 5 

Final Feature Set 

After T number of iteration of artificial immune system algorithm final feature set was select. This selected 
feature set was used for the training of spiking neural network. Normalized dataset selected features were 
transformed into training vector with desired output class of the either defect represent by 1 or normal class 
represent by 0. 

Deep Learning Model Convolution Neural Network 

The main goal of CNN is to utilize filter feature Ff, structural information and reuse weight parameters. To 
achieve this goal, CNNs propose two new operations (i.e., the convolution operation and the pooling operation) 
[17]. In order to increase the learning above two operation transform the matrix geometrically for updates. [14, 
15]. This section, briefly discuss the convolution operation and the pooling operation in CNNs. Input feature 
vector os software session is transformed into block B having dimension bxb. 

BBlock(FF, b)--------Eq. 6 

Convolution 

Hence, CNNs are easier to train and less vulnerable to over-fitting. 

CConvolutionOperator(B, s, p, Fc)--------Eq. 7 

Stride is a variable employed for controlling movement speed, characterized by integer values. Padding involves 
the addition of null rows or columns to a block if deemed necessary. The filter, denoted as F, is applied to the 
block B. 

Max-Pooling 
Max-pooling is a common technique in Convolutional Neural Networks (CNNs) for downsampling, achieved 
through either maximum pooling or average pooling. Post-pooling, the filter feature maps are effectively enlarged 
by a factor of a, making the convolution operation s times more impactful in expanding the receptive field. To 
progressively encode high-level filter features, pooling operations typically employ a factor of s = 2. Convolution 
and pooling operations often collaborate in groups to achieve their objectives. 

CMaxpooling (C, s, p, Fm)--------Eq. 8 

Fully Convolutional Networks 
In Fully Convolutional Networks (FCNs), convolution and pooling operations enable CNNs to extract spatial 
information from the input space. However, the per-pixel classification formulation in FCNs hinders the 
utilization of spatial correlation in the output space. The input block B, obtained after the convolutional operation, 
serves as a training vector in FCN. The desired output is categorized as either a defect or non-defect class. A 
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trained CNN can directly accept the processed (convolutional operation) blocked filter feature as input and predict 
the block class (defect or normal). 

Testing of Deep Learning model 
In this second module of proposed work SDDAIDL input raw dataset was processed and filter by selected 
artificial immune system or final feature sets. Extracted features were normalize and passed in the trained deep 
trained model to get class of the software session either defect or normal. 

Proposed SDDAIDL Algorithm 
Input: SDRD // Software Defect Raw Dataset 

Output: SDDM // Software Defect Detection Model 

1. PDDataset_Cleaning(SDRD) 

2. AGenerate_Antibody(m) 

3. Loop 1:T 

4. ACloning(Ab, A) 

5. AfDetection_accuracy(A) 

6. AHypermutation(A) 

7. End Loop 

8. FfMax_position_Antibody(Affinity(A)) 

9. BBlock(FF, b) 

10. Loop 1:n // Number of software sessions 

11. BConvolutionOperator(B, s, p, Fc) 

12. BMaxpooling (B, s, p, Fm) 

13. EndLoop 

14. SDDMTrainCNN(Fs, B) 

Input raw dataset is preprocessed and find best set of features for the software bug detection was done by this 
model SDDAIDL. Artificial Immune System was used for the feature selection and CNN for the leaning. Trained 
model will predict the defect in software. 

IV. EXPERIMENT AND RESULTS 
The implementation of the model involved utilizing a MATLAB program on a computer equipped with a 4 GB 
RAM and an i6 generation CPU. To assess the performance of the model, metrics including precision, recall, f-
measure, and accuracy were employed for comparative analysis. 

Dataset 

In order to conduct the experiments, the IC-DePress dataset served as the primary dataset for the program. The 
evaluation of the proposed model spanned across six separate projects, encompassing a total of 13,522 sessions 
within the dataset. A comparison of the proposed model was conducted using software fault detection 
methodologies as outlined in [12]. 

Evaluation Parameters 

Precision, Recall, and F-score were evaluated as test factors for predictive ability. The True Positive (TP), False 
Positive (FP), True Negative (TN), and False Negative (FN) values [19] determine these values. 



ISSN: 2633-4828  Vol. 5 No.4, December, 2023  

 

International Journal of Applied Engineering & Technology 
 

 

Copyrights @ Roman Science Publications Ins.  Vol. 5 No.4, December, 2023 

 International Journal of Applied Engineering & Technology 

 

 2780 

 

Table 1 Confusion matrix for comparison. 
Actual Algorithm 

True False 

Positive TP FP 
Negative TN FN 

In above true positive value is obtain by the system when the prediction class and actual class also says that defect 
present. While in case of false positive value it is obtain by the system when the input session is not defected and 
actual class also says that session is defected. 

RESULTS 

Table 2 Accuracy based comparison of software defect detection models. 
Software Hellinger Net SDDAIDL 

S_Camel 83.12 88.21 
S_IVY 83.55 84.19 
S_JEdit 87.45 89.72 

S_Licene 73.34 75.66 
S_POI 69.04 79.72 

Table 2 shows accuracy of software defect detection models. It was found that for all set testing software 
proposed model SDDAIDL has performed well as compared to existing model Hellinger Net. Further fig. 2 shows 
average accuracy of software defect detection and it was found that SDDAIDL model has improved values by 
4.2% as compared Hellinger Net. Hence use of artificial immune gentic algorithm has increases the work 
efficiency of learning and detection. 

 
Fig. 2: Average accuracy percentage value based comparison of software defect detection models. 

Table 3 Precision based comparison of software defect detection models. 
Software Hellinger Net SDDAIDL 

S_Camel 0.9556 1 
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S_IVY 0.9974 1 
S_JEdit 0.9825 0.9994 
S_Licene 0.855 0.9059 
S_POI 0.8898 0.9983 

Precision values of software defect detection models were shown in table 2 and it was found that proposed 
SDDAIDL has improved the values. Fig. 3 shows that proposed SDDDIDL model has improved the precision 
value by 4.55% as compared to existing model. 

 
Fig. 3: Average precision value based comparison of software defect detection models. 

Table 4: Recall based comparison of software defect detection models. 
Software Hellinger Net SDDAIDL 

S_Camel 0.8311 0.9073 
S_IVY 0.8351 0.842 
S_JEdit 0.8736 0.9065 

S_Licene 0.7417 0.7887 
S_POI 0.6905 0.8285 

Table 4 shows recall values of comparing models of software detect detection and it was found that use artificial 
immune genetic algorithm for feature reduction has improved the work efficiency. SDDAIDL has increases the 
recall value by 7.04% as compared to existing model comparing model proposed in [12]. 
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Fig. 4: Average F-measure value based comparison of software defect detection models. 

Table 5: F-measure based comparison of software defect detection models. 
Software Hellinger Net SDDAIDL 

S_Camel 0.9078 0.9308 
S_IVY 0.9102 0.9131 
S_JEdit 0.9323 0.9429 

S_Licene 0.8156 0.8205 
S_POI 0.8163 0.8581 

F-measure values shown in table 5 for different testing software and it was obtained that CNN based detection 
model has high accurate. This enhancement of CNN was obtained by use of filtered feature set of AIS algorithm. 

Table 6: Reliability based comparison of software defect detection models. 
Software Hellinger Net SDDAIDL 

S_Camel 0.9469 0.9516 
S_IVY 0.3951 0.3952 
S_JEdit 0.9271 0.9276 

S_Licene 0.598 0.6783 
S_POI 0.607 0.6264 

Reliability values of the proposed SDDAIDL was high as compared to Hellinger Net model in each testing 
software. Reliability values of SDDAIDL was improved by 2.93% as compared to Hellinger Net. 

V. CONCLUSIONS 
This paper presents the development of a software defect detection model achieved through the optimization of 
the input dataset. The optimization process involved carefully selecting suitable attributes using an artificial 
immune system. Additionally, the incorporation of convolutional and max-pooling operators contributed to 
enhancing the model's overall performance. Experiments were conducted using authentic software testing 
datasets, and evaluations were carried out across various parameters. The results indicate a noteworthy 
enhancement in the accuracy of defect detection by 5.029%, alongside a considerable improvement in recall 
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values by 7.04%. These findings underscore the effectiveness of feature optimization in the model's learning 
process. Moving forward, researchers are encouraged to explore alternative learning models for the detection of 
software defects, building upon the insights gained from this study. 
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